grosses Laufwasserkraftwerk in Brasilien inkl. THG-Emissionen! Es werden nur grosse Wasserkraftwerke („large-dams") mit geringer Stauhöhe und großen Wasservolumina am Beispiel der Amazonas-Staudämme betrachtet. Die Daten gelten für tropische Regionen von Südamerika (Brasilien-Amazonas, Venezuela) und Afrika. Es wird unterstellt, dass die Wasserkraftwerke ausschließlich zur Stromerzeugung dienen. #1 stellt ein Modell zur zeitabhängigen Bilanzierung von CO2 und Methan-Emissionen aus dem Stauwasser von Wasserkraftwerken in Amazonien vor. Voraussetzungen für die Modellbildung sind dabei die Randbedingungen: 1. Die überflutete Wasserfläche ist größtenteils mit Regenwald bestanden (428 t/ha). Geringe Freiflächen (ca. 10%) werden vernachlässigt, da die überflutete Wasserfläche selber nur mit einer vergleichbaren Genauigkeit bestimmt werden kann. 2. Die überflutete Wasserfläche kann in einen immer überfluteten Anteil mit anaeroben Zersetzungsbedingungen und eine aeroben Anteil unterteilt werden. 3. Aus der Biomasse in den anaeroben Zonen wird Methan (Fall c) mit einer geringer Rate gebildet (500 Jahre). Die Produktion von Methan kann daher als nahezu konstant betrachtet werden. 4. Die Biomasse in aeroben Zonen wird in kurzer Zeit (10 Jahre) zu CO2 umgesetzt. Es ergibt sich ein deutlicher Abfall der CO2- Emissionen innerhalb der ersten 10 Jahre. 5. Methan wird zusätzlich über Macrophytenwachstum (Fall b) und Zerfall sowie durch Methanbildung aus zugeführter Biomasse (Fall a) durch die neu geschaffene Wasserfläche/Wasservolumen erzeugt. Fearnside bezieht Besonderheiten der betrachteten Wasserkraftwerke im Amazonasbecken wie ausgeräumte Waldfläche vor und nach dem Stauen, Unterteilung des Stausees in ständig wie nur säsonal-überflutete Regionen mit ein. Aus dem Ergebnis wird allerdings deutlich, daß die daraus erwachsenen Unterschiede zwischen den vier Wasserkraftwerken vernachlässigbar sind. In erster Näherung zeigt damit sein Modell nur eine Abhängigkeit von der Wasseroberfläche. Aus den untersuchten Wasserkraftwerken können folgende spezifischen Emissionen abgeleitet werden: Emissionen Einheit Größe Methan aus a- Wasserfläche jährlich g/m2 20 b- Macrophyten jährlich g/m2 5,5 c- anaerober Abbau jährlich g/m2 20 Summe Methan jährlich g/m2 45,5 CO2 aus aeroben Abbau insgesamt kg/m2 51 CO2 aus aeroben Abbau50 Jahre Betriebszeit jährlich kg/m2 1,03 Aus dem aeroben Abbau der Biomasse wird innerhalb von ca. 10 Jahren Kohlendioxid freigesetzt. Die insgesamt freigesetzte Menge wird über eine Betriebszeit von 50 Jahren gemittelt. Für große Wasserkraftwerke in Canada hat Rudd (#2) die jährlichen Methanemissionen aus überflutetem Land mit 7,7 g/m2 und die jährlichen CO2-Emissionen zu ca. 200 g/m2 aus Messungen abgeschätzt. Die Unterschiede in beiden Arbeiten resultieren aus dem Biomasse-Inventar, welches angesetzt worden ist. Rudd nimmt ein Inventar von 4,8 kg C/m2 oder ca 10 kg/m2 Biomasse an während Fearnside mit einem aktivem Biomasse-Inventar von 14 kg C/m2 rechnet. Die Unterschiede zwischen beiden Abschätzungen hinsichtlich der Biomasse scheinen gerechtfertigt zu sein. Für die hier diskutierten tropischen Staudämme soll mit dem Modell von Fearnside (#1) gerechnet werden. Die überflutete Landfläche des Staudammes ist eine gut dokumentierte Größe von Großstaudämmen. Es zeigt sich jedoch, daß deutliche Unterschiede zwischen den einzelnen Staudämmen existieren. Balbina Tucuri Samuel gewichtetesMittel KapazitätMW 250 4000 200 Größe km2 3147 2247 465 Leistung GWh 970 18030 776 Fläche/Leistung m2/kWh 3,2 0,125 0,599 0,296 Methan-Emiss. g/kWh 148 5,7 27,3 13,5 CO2-Emiss. kg/kWh 3,34 0,13 0,62 0,31 Für Staudämme im Amazonas wird ein Emissionsfaktor von 13,5 g Methan/kWh und 310 g CO2/kWh angenommen und auf andere tropische Staudämme übertragen. Auslastung: 6000h/a Brenn-/Einsatzstoff: Ressourcen Flächeninanspruchnahme: 1250000m² gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 50a Leistung: 50MW Nutzungsgrad: 100% Produkt: Elektrizität
Tropische Wasserkraftwerke inkl. THG-Emissionen! Es werden nur große Wasserkraftwerke („large-dams") mit geringer Stauhöhe und großen Wasservolumina am Beispiel der Amazonas-Staudämme betrachtet. Die Daten gelten für tropische Regionen von Südamerika (Brasilien-Amazonas, Venezuela) und Afrika. Es wird unterstellt, daß die Wasserkraftwerke ausschließlich zur Stromerzeugung dienen. Fearnside (Fearnside 1995) stellt ein Modell zur zeitabhängigen Bilanzierung von CO2 und Methan-Emissionen aus dem Stauwasser von Wasserkraftwerken in Amazonien vor. Voraussetzungen für die Modellbildung sind dabei die Randbedingungen: 1. Die überflutete Wasserfläche ist größtenteils mit Regenwald bestanden (428 t/ha). Geringe Freiflächen (ca. 10%) werden vernachlässigt, da die überflutete Wasserfläche selber nur mit einer vergleichbaren Genauigkeit bestimmt werden kann. 2. Die überflutete Wasserfläche kann in einen immer überfluteten Anteil mit anaeroben Zersetzungsbedingungen und eine aeroben Anteil unterteilt werden. 3. Aus der Biomasse in den anaeroben Zonen wird Methan (Fall c) mit einer geringer Rate gebildet (500 Jahre). Die Produktion von Methan kann daher als nahezu konstant betrachtet werden. 4. Die Biomasse in aeroben Zonen wird in kurzer Zeit (10 Jahre) zu CO2 umgesetzt. Es ergibt sich ein deutlicher Abfall der CO2- Emissionen innerhalb der ersten 10 Jahre. 5. Methan wird zusätzlich über Macrophytenwachstum (Fall b) und Zerfall sowie durch Methanbildung aus zugeführter Biomasse (Fall a) durch die neu geschaffene Wasserfläche/Wasservolumen erzeugt. Fearnside bezieht Besonderheiten der betrachteten Wasserkraftwerke im Amazonasbecken wie ausgeräumte Waldfläche vor und nach dem Stauen, Unterteilung des Stausees in ständig wie nur säsonal-überflutete Regionen mit ein. Aus dem Ergebnis wird allerdings deutlich, daß die daraus erwachsenen Unterschiede zwischen den vier Wasserkraftwerken vernachlässigbar sind. In erster Näherung zeigt damit sein Modell nur eine Abhängigkeit von der Wasseroberfläche. Aus den untersuchten Wasserkraftwerken können folgende spezifischen Emissionen abgeleitet werden: Emissionen Einheit Größe Methan aus a- Wasserfläche jährlich g/m2 20 b- Macrophyten jährlich g/m2 5,5 c- anaerober Abbau jährlich g/m2 20 Summe Methan jährlich g/m2 45,5 CO2 aus aeroben Abbau insgesamt kg/m2 51 CO2 aus aeroben Abbau50 Jahre Betriebszeit jährlich kg/m2 1,03 Aus dem aeroben Abbau der Biomasse wird innerhalb von ca. 10 Jahren Kohlendioxid freigesetzt. Die insgesamt freigesetzte Menge wird über eine Betriebszeit von 50 Jahren gemittelt. Für große Wasserkraftwerke in Canada hat Rudd (Rudd 1993) die jährlichen Methanemissionen aus überflutetem Land mit 7,7 g/m2 und die jährlichen Kohlendioxid-Emissionen zu ca. 200 g/m2 aus Messungen abgeschätzt. Die Unterschiede in beiden Arbeiten resultieren aus dem Biomasse-Inventar, welches angesetzt worden ist. Rudd nimmt ein Inventar von 4,8 kg C/m2 oder ca 10 kg/m2 Biomasse an während Fearnside mit einem aktivem Biomasse-Inventar von 14 kg C/m2 rechnet. Die Unterschiede zwischen beiden Abschätzungen hinsichtlich der Biomasse scheinen gerechtfertigt zu sein. Für die hier diskutierten tropischen Staudämme soll mit dem Modell von Fearnside gerechnet werden. Die überflutete Landfläche des Staudammes ist eine gut dokumentierte Größe von Großstaudämmen. Es zeigt sich jedoch, daß deutliche Unterschiede zwischen den einzelnen Staudämmen existieren. Balbina Tucuri Samuel gewichtetesMittel KapazitätMW 250 4000 200 Größe km2 3147 2247 465 Leistung GWh 970 18030 776 Fläche/Leistung m2/kWh 3,2 0,125 0,599 0,296 Methan-Emiss. g/kWh 148 5,7 27,3 13,5 CO2-Emiss. kg/kWh 3,34 0,13 0,62 0,31 Für Staudämme im Amazonas wird ein Emissionsfaktor von 13,5 g Methan/kWh und 310 g CO2/kWh angenommen und auf andere tropische Staudämme übertragen. Auslastung: 4000h/a Brenn-/Einsatzstoff: Ressourcen Flächeninanspruchnahme: 600000m² gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 30a Leistung: 1000MW Nutzungsgrad: 100% Produkt: Elektrizität
Stromerzeugungsmix für Venezuela, Daten nach #1
Tropische Wasserkraftwerke inkl. THG-Emissionen! Es werden nur große Wasserkraftwerke („large-dams") mit geringer Stauhöhe und großen Wasservolumina am Beispiel der Amazonas-Staudämme betrachtet. Die Daten gelten für tropische Regionen von Südamerika (Brasilien-Amazonas, Venezuela) und Afrika. Es wird unterstellt, daß die Wasserkraftwerke ausschließlich zur Stromerzeugung dienen. Fearnside (Fearnside 1995) stellt ein Modell zur zeitabhängigen Bilanzierung von CO2 und Methan-Emissionen aus dem Stauwasser von Wasserkraftwerken in Amazonien vor. Voraussetzungen für die Modellbildung sind dabei die Randbedingungen: 1. Die überflutete Wasserfläche ist größtenteils mit Regenwald bestanden (428 t/ha). Geringe Freiflächen (ca. 10%) werden vernachlässigt, da die überflutete Wasserfläche selber nur mit einer vergleichbaren Genauigkeit bestimmt werden kann. 2. Die überflutete Wasserfläche kann in einen immer überfluteten Anteil mit anaeroben Zersetzungsbedingungen und eine aeroben Anteil unterteilt werden. 3. Aus der Biomasse in den anaeroben Zonen wird Methan (Fall c) mit einer geringer Rate gebildet (500 Jahre). Die Produktion von Methan kann daher als nahezu konstant betrachtet werden. 4. Die Biomasse in aeroben Zonen wird in kurzer Zeit (10 Jahre) zu CO2 umgesetzt. Es ergibt sich ein deutlicher Abfall der CO2- Emissionen innerhalb der ersten 10 Jahre. 5. Methan wird zusätzlich über Macrophytenwachstum (Fall b) und Zerfall sowie durch Methanbildung aus zugeführter Biomasse (Fall a) durch die neu geschaffene Wasserfläche/Wasservolumen erzeugt. Fearnside bezieht Besonderheiten der betrachteten Wasserkraftwerke im Amazonasbecken wie ausgeräumte Waldfläche vor und nach dem Stauen, Unterteilung des Stausees in ständig wie nur säsonal-überflutete Regionen mit ein. Aus dem Ergebnis wird allerdings deutlich, daß die daraus erwachsenen Unterschiede zwischen den vier Wasserkraftwerken vernachlässigbar sind. In erster Näherung zeigt damit sein Modell nur eine Abhängigkeit von der Wasseroberfläche. Aus den untersuchten Wasserkraftwerken können folgende spezifischen Emissionen abgeleitet werden: Emissionen Einheit Größe Methan aus a- Wasserfläche jährlich g/m2 20 b- Macrophyten jährlich g/m2 5,5 c- anaerober Abbau jährlich g/m2 20 Summe Methan jährlich g/m2 45,5 CO2 aus aeroben Abbau insgesamt kg/m2 51 CO2 aus aeroben Abbau50 Jahre Betriebszeit jährlich kg/m2 1,03 Aus dem aeroben Abbau der Biomasse wird innerhalb von ca. 10 Jahren Kohlendioxid freigesetzt. Die insgesamt freigesetzte Menge wird über eine Betriebszeit von 50 Jahren gemittelt. Für große Wasserkraftwerke in Canada hat Rudd (Rudd 1993) die jährlichen Methanemissionen aus überflutetem Land mit 7,7 g/m2 und die jährlichen Kohlendioxid-Emissionen zu ca. 200 g/m2 aus Messungen abgeschätzt. Die Unterschiede in beiden Arbeiten resultieren aus dem Biomasse-Inventar, welches angesetzt worden ist. Rudd nimmt ein Inventar von 4,8 kg C/m2 oder ca 10 kg/m2 Biomasse an während Fearnside mit einem aktivem Biomasse-Inventar von 14 kg C/m2 rechnet. Die Unterschiede zwischen beiden Abschätzungen hinsichtlich der Biomasse scheinen gerechtfertigt zu sein. Für die hier diskutierten tropischen Staudämme soll mit dem Modell von Fearnside gerechnet werden. Die überflutete Landfläche des Staudammes ist eine gut dokumentierte Größe von Großstaudämmen. Es zeigt sich jedoch, daß deutliche Unterschiede zwischen den einzelnen Staudämmen existieren. Balbina Tucuri Samuel gewichtetesMittel KapazitätMW 250 4000 200 Größe km2 3147 2247 465 Leistung GWh 970 18030 776 Fläche/Leistung m2/kWh 3,2 0,125 0,599 0,296 Methan-Emiss. g/kWh 148 5,7 27,3 13,5 CO2-Emiss. kg/kWh 3,34 0,13 0,62 0,31 Für Staudämme im Amazonas wird ein Emissionsfaktor von 13,5 g Methan/kWh und 310 g CO2/kWh angenommen und auf andere tropische Staudämme übertragen. Auslastung: 4000h/a Brenn-/Einsatzstoff: Ressourcen Flächeninanspruchnahme: 600000m² gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 30a Leistung: 1000MW Nutzungsgrad: 100% Produkt: Elektrizität
Im Bundesstaat Monagas in Venezuela riss nach Behördenangaben am 4. Februar 2012 eine Öl-Pipeline. Aus der beschädigten Pipeline floss Rohöl in den Fluss Guarapiche. Der Gouverneur José Gregorio Briceño rief am 10. Februar 2012 den Notstand aus. Der Río Guarapiche dient als Trinkwasserspeicher für die umliegenden Städte.
Ölraffinerie in Venezuela, Daten für Energie und Emissionen nach #1 (aktualisiert mit #3), für Reststoffe und Wasserbedarf nach #2. Auslastung: 7000h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Öl Flächeninanspruchnahme: 150000m² gesicherte Leistung: 100% Jahr: 2015 Lebensdauer: 20a Leistung: 1500MW Nutzungsgrad: 95% Produkt: Brennstoffe-fossil-Öl
Mix zur Aufteilung der Primäraluminiumherstellung bezgl. Nachfrage BRD. Allokation: keine Genese der Daten: Aus #1 geht hervor, daß im Jahr 1994 die Primäraluminiumproduktion der Bundesrepublik (ca. 0,5 Mio t) nur ein Drittel des inländischen Verbrauchs (ca. 1,5 Mio t) abdeckte. Die Statistik zeigt ferner, daß die Direktimporte der BRD von Primäraluminium auf mehrere Dutzend Länder verteilt sind, wobei ein Schwerpunkt auf West- und Osteuropa liegt. Von einer Berücksichtigung der Primärproduktion dieser Staaten wurde Abstand genommen, da Europa (ohne östliche Staaten) als Ganzes ca. 2 Mio t weniger Primäraluminium produziert als selbst verbraucht, d.h. Nettoimportregion für Primäraluminium ist (Metallstatistik 1995). Aus diesem Grund wurde für die Zusammensetzung des Primäraluminiumdispatchers in GEMIS ein anderes Vorgehen gewählt. Neben der Berücksichtigung der Eigenproduktion der BRD (33 %) werden die Staaten bzw. Staatengruppen herangezogen, welche die wichtigsten Nettoexporteure von Primäraluminium auf dem Weltmarkt sind. Es sind dies mit den folgenden Nettoexporten im Jahr 1994 (nach Abzug der Primäralumiumimporte der Staaten): Norwegen 0,66 Mio t GUS 2,40 Mio t Australien 0,94 Mio t Tropen 1,35 Mio t Unter Tropen sind Brasilien, Venezuela sowie Schwarzafrika zusammengefaßt. Kanada wurde als Nettoexporteur nicht berücksichtigt, da es im wesentlichen die Unterversorgung der USA bei Primäraluminium deckt. Die durch Eigenproduktion ungedeckte Nachfrage der BRD nach Primäraluminium von 67 % wird im Dispatcher entspechend dem Gewicht der oben aufgeführten Weltnettoexporteure ausgedrückt. Der Dispatcher für die Primäraluminiumproduktion setzt sich wie folgt zusammmen: BRD 33% GUS 30% Australien 12% Tropen 17% Norwegen 8%
Mix zur Aufteilung der Primäraluminiumherstellung bezgl. Nachfrage BRD. Allokation: keine Genese der Daten: Aus #1 geht hervor, daß im Jahr 1994 die Primäraluminiumproduktion der Bundesrepublik (ca. 0,5 Mio t) nur ein Drittel des inländischen Verbrauchs (ca. 1,5 Mio t) abdeckte. Die Statistik zeigt ferner, daß die Direktimporte der BRD von Primäraluminium auf mehrere Dutzend Länder verteilt sind, wobei ein Schwerpunkt auf West- und Osteuropa liegt. Von einer Berücksichtigung der Primärproduktion dieser Staaten wurde Abstand genommen, da Europa (ohne östliche Staaten) als Ganzes ca. 2 Mio t weniger Primäraluminium produziert als selbst verbraucht, d.h. Nettoimportregion für Primäraluminium ist (Metallstatistik 1995). Aus diesem Grund wurde für die Zusammensetzung des Primäraluminiumdispatchers in GEMIS ein anderes Vorgehen gewählt. Neben der Berücksichtigung der Eigenproduktion der BRD (33 %) werden die Staaten bzw. Staatengruppen herangezogen, welche die wichtigsten Nettoexporteure von Primäraluminium auf dem Weltmarkt sind. Es sind dies mit den folgenden Nettoexporten im Jahr 1994 (nach Abzug der Primäralumiumimporte der Staaten): Norwegen 0,66 Mio t GUS 2,40 Mio t Australien 0,94 Mio t Tropen 1,35 Mio t Unter Tropen sind Brasilien, Venezuela sowie Schwarzafrika zusammengefaßt. Kanada wurde als Nettoexporteur nicht berücksichtigt, da es im wesentlichen die Unterversorgung der USA bei Primäraluminium deckt. Die durch Eigenproduktion ungedeckte Nachfrage der BRD nach Primäraluminium von 67 % wird im Dispatcher entspechend dem Gewicht der oben aufgeführten Weltnettoexporteure ausgedrückt. Der Dispatcher für die Primäraluminiumproduktion setzt sich wie folgt zusammmen: BRD 33% GUS 30% Australien 12% Tropen 17% Norwegen 8%
Mix zur Aufteilung der Primäraluminiumherstellung bezgl. Nachfrage BRD. Allokation: keine Genese der Daten: Aus #1 geht hervor, daß im Jahr 1994 die Primäraluminiumproduktion der Bundesrepublik (ca. 0,5 Mio t) nur ein Drittel des inländischen Verbrauchs (ca. 1,5 Mio t) abdeckte. Die Statistik zeigt ferner, daß die Direktimporte der BRD von Primäraluminium auf mehrere Dutzend Länder verteilt sind, wobei ein Schwerpunkt auf West- und Osteuropa liegt. Von einer Berücksichtigung der Primärproduktion dieser Staaten wurde Abstand genommen, da Europa (ohne östliche Staaten) als Ganzes ca. 2 Mio t weniger Primäraluminium produziert als selbst verbraucht, d.h. Nettoimportregion für Primäraluminium ist (Metallstatistik 1995). Aus diesem Grund wurde für die Zusammensetzung des Primäraluminiumdispatchers in GEMIS ein anderes Vorgehen gewählt. Neben der Berücksichtigung der Eigenproduktion der BRD (33 %) werden die Staaten bzw. Staatengruppen herangezogen, welche die wichtigsten Nettoexporteure von Primäraluminium auf dem Weltmarkt sind. Es sind dies mit den folgenden Nettoexporten im Jahr 1994 (nach Abzug der Primäralumiumimporte der Staaten): Norwegen 0,66 Mio t GUS 2,40 Mio t Australien 0,94 Mio t Tropen 1,35 Mio t Unter Tropen sind Brasilien, Venezuela sowie Schwarzafrika zusammengefaßt. Kanada wurde als Nettoexporteur nicht berücksichtigt, da es im wesentlichen die Unterversorgung der USA bei Primäraluminium deckt. Die durch Eigenproduktion ungedeckte Nachfrage der BRD nach Primäraluminium von 67 % wird im Dispatcher entspechend dem Gewicht der oben aufgeführten Weltnettoexporteure ausgedrückt. Der Dispatcher für die Primäraluminiumproduktion setzt sich wie folgt zusammmen: BRD 33% GUS 30% Australien 12% Tropen 17% Norwegen 8%
Mix zur Aufteilung der Primäraluminiumherstellung bezgl. Nachfrage BRD. Allokation: keine Genese der Daten: Aus #1 geht hervor, daß im Jahr 1994 die Primäraluminiumproduktion der Bundesrepublik (ca. 0,5 Mio t) nur ein Drittel des inländischen Verbrauchs (ca. 1,5 Mio t) abdeckte. Die Statistik zeigt ferner, daß die Direktimporte der BRD von Primäraluminium auf mehrere Dutzend Länder verteilt sind, wobei ein Schwerpunkt auf West- und Osteuropa liegt. Von einer Berücksichtigung der Primärproduktion dieser Staaten wurde Abstand genommen, da Europa (ohne östliche Staaten) als Ganzes ca. 2 Mio t weniger Primäraluminium produziert als selbst verbraucht, d.h. Nettoimportregion für Primäraluminium ist (Metallstatistik 1995). Aus diesem Grund wurde für die Zusammensetzung des Primäraluminiumdispatchers in GEMIS ein anderes Vorgehen gewählt. Neben der Berücksichtigung der Eigenproduktion der BRD (33 %) werden die Staaten bzw. Staatengruppen herangezogen, welche die wichtigsten Nettoexporteure von Primäraluminium auf dem Weltmarkt sind. Es sind dies mit den folgenden Nettoexporten im Jahr 1994 (nach Abzug der Primäralumiumimporte der Staaten): Norwegen 0,66 Mio t GUS 2,40 Mio t Australien 0,94 Mio t Tropen 1,35 Mio t Unter Tropen sind Brasilien, Venezuela sowie Schwarzafrika zusammengefaßt. Kanada wurde als Nettoexporteur nicht berücksichtigt, da es im wesentlichen die Unterversorgung der USA bei Primäraluminium deckt. Die durch Eigenproduktion ungedeckte Nachfrage der BRD nach Primäraluminium von 67 % wird im Dispatcher entspechend dem Gewicht der oben aufgeführten Weltnettoexporteure ausgedrückt. Der Dispatcher für die Primäraluminiumproduktion setzt sich wie folgt zusammmen: BRD 33% GUS 30% Australien 12% Tropen 17% Norwegen 8%