Das Projekt "Untersuchung der Laser-induzierten Plasmaausbildung im Wasser beim Doppelpuls-LIBS bei einem hydrostatischen Druck von 60 MPa (LIBS60)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Das Ziel des Forschungsvorhabens liegt in der grundlegenden Untersuchung der Kavitäts-/Plasmaausbildung und der Plasmastrahlung in einer Doppelpuls-LIBS-Anwendung an metallischen Proben unter Wasser bei einem Wasserdruck von bis zu 60 MPa. Zunächst ist hierfür die Laser-induzierte Kavität zu analysieren, um daraus Informationen über die Geometrie, Lebensdauer und die entstehende Schockwelle abzuleiten. Hierbei ist von besonderem Interesse, wie sich die wesentlichen Prozessparameter auf die Kavität auswirken und wie sich die Lebensdauer der Kavität steigern lässt. Des Weiteren sind Störquellen für die Kavitäts- bzw. Plasmaerzeugung von Interesse, wie das optische Durchbruchverhalten im Wasser in Abhängigkeit vom Wasserdruck. Weiterhin gilt es, die Voraussetzungen und die zeitlichen Perioden für die Emission von Linienstrahlung im Verhältnis zur Kontinuumstrahlung, herauszuarbeiten. Für die Elementanalyse durch LIBS ist die Untersuchung der Linienprofile von Interesse, hierbei insbesondere die Absorptions- und Verbreiterungsmechanismen eines Laser-induzierten Plasmas bei hohem Wasserdruck in Hinblick auf die Auswertbarkeit von Einzellinien. Mit diesem Wissen sollen Schlussfolgerungen auf die erforderliche Technik, geeignete Auswertemethoden und die erreichbare Genauigkeit für LIBS in der Tiefsee gezogen werden.
Das Projekt "Verfahren zur Synthese von Stärkeestern und deren technische Anwendung, TP1 Experimentelle Entwicklung eines Prototyps zum Syntheseverfahren und Adaption der Stärkeester" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Robert Boyle - Thüringisches Institut für BioWasserstoff- und Umweltforschung e.V..
Das Projekt "Verfahren zur Synthese von Stärkeestern und deren technische Anwendung" wird/wurde ausgeführt durch: Robert Boyle - Thüringisches Institut für BioWasserstoff- und Umweltforschung e.V..
Das Projekt "Die Bestimmung des Einflusses anthropogener Eingriffe auf die Abflussbildung sowie auf den Abflussvorgang im Gerinne mit Hilfe von Parameterschaetzverfahren" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Hochschule Aachen, Lehrstuhl und Institut für Wasserbau und Wasserwirtschaft, Lehrgebiet für Wasser-Energie-Wirtschaft.
Das Projekt "Energetische Nutzung biogener Reststoffe mit AER-Technologie" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit. Es wird/wurde ausgeführt durch: TBM Technologieplattform Bioenergie und Methan GmbH & Co. KG.Ziel des Vorhabens der TBM Technologieplattform Bioenergie und Methan GmbH & Co. KG ist es, die wirtschaftliche und nachhaltige Erzeugung von elektrischer Energie und Wärme aus Biomasse mit Hilfe der neu entwickelten AER (Absorption Enhanced Reforming)-Vergasungstechnologie in einer Anlagengröße von 10 MW Brennstoffwärmeleistung zu demonstrieren. Das neue Verfahren wurde vom Zentrum für Sonnenenergie- und Wasserstoffforschung Baden-Württemberg (ZSW) entwickelt. Im Vergleich zu bereits existierenden Biomasseanlagen kommen ein neuartiges Bettmaterial und eine veränderte Betriebsweise zur Anwendung, bei der ein wasserstoffreiches Gas erzeugt wird. Das als Bettmaterial eingesetzte Kalziumoxid bewirkt, dass das entstehende Produktgas weniger unerwünschtes CO2 und Teer enthält. Geringere Vergasungstemperaturen erlauben außerdem den Einsatz von holzartigen Biomassereststoffen aus der Landschaftspflege. Dies trägt den hohen Anforderungen an den Standort in der Nähe des Biosphärenreservats Schwäbische Alb Rechnung. Das Produktgas soll in einem Gasmotor in elektrische Energie umgewandelt werden. Die Prozessabwärme soll zum einen in einem ORC-Prozess zur zusätzlichen Erzeugung elektrischer Energie dienen und zum anderen als Fernwärme abgegeben werden. Bei optimalem Betrieb und gleichzeitiger Wärmenutzung können insgesamt rund 26.000 Tonnen CO2 pro Jahr und Anlage eingespart werden.
Das Projekt "Reaktive Halogene in einer simulierten Vulkanfahne" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Heidelberg, Institut für Umweltphysik.Vulkanische Gasemissionen sind bedeutsam für die lokale sowie globale Atmosphärenchemie. Die Entdeckung der Halogenchemie in Vulkanfahnen brachte neue Erkenntnisse über die Dynamik von Vulkanen und gibt möglicherweise Aufschluss über deren Eruptionspotential. Mehrere Feldmessungen führten zu großen Erfolgen in der Erforschung von reaktiven Halogenspezies (z. B. BrO, OClO, ClO). Jedoch ergaben sich auch viele Unklarheiten über die zugrundeliegenden Mechanismen und Umweltparameter wie Spurengas- und Aerosolzusammensetzung der Vulkanfahne, relative Feuchte oder der Bedeutung von potentieller NOX Emission. Der Einfluss sowie die Bedeutung dieser Parameter bezüglich der Halogenaktivierung (Umwandlung von Halogeniden in reaktive Halogenspezies (RHS)) ist essentiell für die Interpretation der Messdaten, um, z.B. (1) Rückschlüsse über die magmatischen Prozesse zu ziehen und Vorhersagen über Eruptionen mithilfe des Verhältnisses BrO zu SO2 zu machen, oder (2) den Einfluss auf die Zerstörung von Ozon, die Oxidation von Quecksilber oder die Verringerung der Lebensdauer von Methan in der Atmosphäre zu quantifizieren. Dieses Projekt soll dazu dienen, anhand eines vereinfachten Modells einer Vulkanfahne (SiO2 und Schwefelaerosole, H2O, CO2, SO2, HCl, HBr) unter kontrollierten Bedingungen die vulkanische Halogenchemie besser zu verstehen. Dazu soll in einer aus Teflon bestehenden Atmosphärensimulationskammer an der Universität Bayreuth Messungen durchgeführt werden. Die zur Messung der kritischen Parameter benötigten Instrumente können leicht in das Kammersystem integriert werden. RHS (BrO, ClO, OClO) werden mittels eines White Systems (Multi-Reflektionszelle) und Cavity Enhanced-DOAS nachgewiesen. Zum Nachweis anderer Halogenspezies (Br2, Cl2, HOBr und BrCl) wird FAPA-MS (Flowing Atmospheric-Pressure Afterglow Mass Spectrometry) verwendet. SO2, CO2, NOX und O3 werden mittels standardisierter Gasanalysatoren gemessen. Die Analyse der Zusammensetzung von Aerosolen insbesondere deren aufgenommene Menge an Halogenen wird durch Filterproben sowie Ionenchromatographie und SEM-EDX (Scanning Electron Microscope - Energy Dispersive X-ray Detector) gewährleistet. Die Kombination der verschiedenen Messtechniken ermöglicht die Erforschung von bisher schlecht Verstandenen heterogenen Reaktionen, welche höchstwahrscheinlich die Halogenaktivierung beeinflussen. Insbesondere die Einflüsse von (1) NOX und O3, (2) Ausgangsverhältnis HCl zu HBr, (3) relative Feuchte sowie (4) die Zusammensetzung der Vulkanaschepartikel (in Hinblick auf komplexere, reale Vulkanasche) auf die RHS Chemie, insbesondere des Mechanismus der sog. 'Brom-Explosion', werden innerhalb des vorgeschlagenen Projektes untersucht. Die Messergebnisse werden, gestützt durch das Chemie Box Modell CAABA/MECCA, in einem größeren Kontext interpretiert und werden helfen die natürlichen Vulkanprozesse besser zu verstehen.
Das Projekt "FH-Kooperativ 1-2020: Sensorisch-optische Lösung für eine verfahrensintegrierte Kontrolle dynamischer Bodenverdichtung (Solver)" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Hochschule für Technik, Wirtschaft und Kultur Leipzig (FH), Institut für Grundbau und Verkehrsbau - IGV, Lehrgebiet Bodenmechanik, Grundbau, Fels- und Tunnelbau.
Das Projekt "Fusionsexperiment ASDEX Upgrade" wird/wurde ausgeführt durch: Max-Planck-Institut für Plasmaphysik.Das Experiment soll Kernfragen der Fusionsforschung unter Fusionsanlage kraftwerksaehnlichen Bedingungen untersuchen. Dazu sind wesentliche Plasmaeigenschaften, vor allem die Plasmadichte, der Plasmadruck und die Belastung der Waende, den Verhaeltnissen in einem spaeteren Fusionskraftwerk angepasst. Eines der wesentlichen Probleme ergibt sich aus der Wechselwirkung zwischen dem heissen Brennstoff und den umgebenden Waenden. Dabei wird einerseits die Wand der Plasmakammer beschaedigt und andererseits das Plasma unerwuenscht verunreinigt. Um dem entgegenzuwirken, untersucht ASDEX Upgrade eine spezielle Magnetfeldanordnung, einen Divertor. Der Divertor lenkt die aeussere Randschicht des Plasmas auf Prallplatten ab. Die Plasmateilchen treffen dort abgekuehlt und vom heissen Zentrum entfernt auf und werden abgepumpt. Auf diese Weise werden auch stoerende Verunreinigungen aus dem Plasma entfernt, zugleich wird die Wand des Plasmagefaesses geschont und eine gute Waermeisolation des Brennstoffes erreicht. Die durch den Divertor moegliche Modellierung des Plasmarandes erlaubt es damit, die zentralen plasmaphysikalischen Problemfelder -Plasmareinheit, Plasmaeinschluss und Plasma-Wand-Wechselwirkung - guenstig zu beeinflussen. Seit April 1997 ist ein verbesserter Divertor in Betrieb, der auf der Basis der bisherigen Experimente und numerischer Modellierungen entworfen wurde. Der neue Divertor II besitzt vertikale Prallplatten, die die auftreffende Leistung besser verteilen und die Plasmateilchen auch staerker in das Plasma zurueck reflektieren. Damit erarbeitet ASDEX Upgrade wesentliche Kenntnisse fuer den naechsten Schritt auf dem Weg zu einem Fusionskraftwerk - den Testreaktor ITER, der erstmals ein gezuendetes Plasma realisieren soll. Die an ASDEX Upgrade beobachtete starke Kopplung des Plasmainneren mit den Bedingungen am Plasmarand macht es auch moeglich, das Plasmazentrum vom Rand her zu optimieren und den Einschluss zu verbessern. Zusaetzlich wird untersucht, inwieweit Betriebsweisen, bei denen das Profil des Plasmastroms beeinflusst wird ('advanced tokamak'), mit dem Divertor vertraeglich sind. Hierzu wird mit Hochfrequenzwellen oder Teilcheneinschuss ein zusaetzlicher Plasmastrom erzeugt. Je nach Stromprofil kann eine Transportbarriere entstehen die die Plasmaverluste nach aussen stark verringert und die Werte im Plasmazentrum verbessert. ASDEX Upgrade wird versuchen, solche Bedingungen im Divertorbetrieb erstmals quasi stationaer (d.h. fuer einige Sekunden) zu erzeugen.
Das Projekt "Ausarbeitung der Deutschen Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung (DEV)" wird/wurde gefördert durch: Kuratorium für Wasserwirtschaft. Es wird/wurde ausgeführt durch: Gesellschaft Deutscher Chemiker, Fachgruppe Wasserchemie München.Ausarbeitung von Verfahren zur Wasseranalyse, Einzelstoffbestimmung, Gruppen- und Summenbestimmungen in Arbeitskreisen; Erarbeitung von Vorschlaegen fuer Deutsche Einheitsverfahren (Blaudrucke) sowie fuer fuer die Normung vorgesehene Parameter. Durchfuehrung von Ringversuchen zur statistischen Absicherung der Ergebnisse.
Das Projekt "Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Physikalische und chemische Eigenschaften von Wolkenpartikelresiduen und eisnukleierenden Partikeln in Verbindung mit Wolken in hohen geographischen Breiten vom Mischphasen- bis zum Zirrenniveau (HALO 2020, CIRRUS-HL)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Es wird vermutet, dass Zirruswolken in hohen geographischen Breiten (arktische Zirren), einen positiven „Cloud Radiative Effect“ (CRE) haben und somit zum Phänomen der "Arctic Amplification" beitragen. Das Vorzeichen und die Stärke des CRE arktischer Zirren hängt von deren mikrophysikalischen Eigenschaften, d.h. der Eispartikelkonzentration, dem effektiven Eispartikelradius und dem Eiswassergehalt (IWC), ab. Diese Parameter werden hauptsächlich durch den Eisbildungsprozess (heterogen vs. homogen) und durch den Bildungspfad (in-situ vs. flüssiger Ursprung) bestimmt. Dies impliziert insbesondere für Zirren flüssigen Ursprungs die Beteiligung von eisnukleierenden Partikeln (INP), was deren Häufigkeit, Eigenschaften und Quellen zu Schlüsselfaktoren für die Bildung, die mikrophysikalischen und Strahlungseigenschaften von Zirren in hoher Breiten macht. Informationen über INP in hohen geographischen Breiten im Allgemeinen und in größeren Höhen im Besonderen, extrem rar. Im Rahmen der HALO-Mission CIRRUS-HL wollen wir daher das Wissen hinsichtlich arktischer INP über a) die Charakterisierung von Eispartikel- (IPR) und Wolkentröpfchenresiduen (CPR, Summe aus IPR und Tröpfchenresiduen) in arktischen Zirren und Mischphasenwolken, und b) die vertikal aufgelöste Messung (Mischphase bis Zirrusniveau) von Hochtemperatur INP (> -30°C) außerhalb von Wolken, erweitern. Für die geplanten Untersuchungen werden der HALO-CVI („Counterflow Virtual Impactor“) und der Aerosolpartikelfiltersammler HERA verwendet werden. Hinter dem HALO-CVI werden Instrumente zur physikalischen (Anzahl der Konzentrationen, Partikelgrößenverteilung, BC-Konzentration) und chemischen (Einzelpartikelzusammensetzung, MPI-C) Charakterisierung der IPR und CPR betrieben. Die von HERA gesammelten Filterproben werden im Anschuss an die Kampagne in den TROPOS-Laboratorien hinsichtlich der physikalischen INP-Eigenschaften (Anzahlkonzentrationen und Gefrierspektren) sowie der chemischen Zusammensetzung der Aerosolpartikel analysiert.Bei In-Wolken-Messungen werden der HALO-CVI und HERA kombiniert werden. So können die INP, innerhalb der gesammelten IPR (Zirren) und Wolkentropfenresiduen (CPR, in Mischphasenwolken) identifiziert, quantifiziert und charakterisiert werden. Diese INP könnten potenzielle Vorläufer von Zirrus mit flüssigem Ursprung in hohen Breiten sein.In Verbindung mit den Ergebnissen der im Rahmen von CIRRUS-HL durchgeführten in-situ Messungen wolkenmikrophysikalischer Eigenschaften, sowie der Analyse von Rückwärtstrajektorien der untersuchten Luftmassen werden wir a) bzgl. der Häufigkeit und der Eigenschaften von INP ein bisher einmaliges Schließungsexperiment (innerhalb und außerhalb der Wolke) durchführen, b) das Wissen über die raumzeitliche Verteilung, die Eigenschaften und die Quellen von INP signifikant erweitern und c) tiefe Einblicke in INP-Effekte auf die Bildung und die mikrophysikalischen Eigenschaften von Zirruswolken in hohen geographischen Breiten erhalten.
Origin | Count |
---|---|
Bund | 2812 |
Land | 60 |
Wissenschaft | 13 |
Type | Count |
---|---|
Förderprogramm | 2747 |
Messwerte | 3 |
Text | 72 |
Umweltprüfung | 1 |
unbekannt | 12 |
License | Count |
---|---|
geschlossen | 76 |
offen | 2758 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 2727 |
Englisch | 261 |
Resource type | Count |
---|---|
Archiv | 5 |
Bild | 1 |
Datei | 2 |
Dokument | 16 |
Keine | 1163 |
Webseite | 1663 |
Topic | Count |
---|---|
Boden | 1969 |
Lebewesen & Lebensräume | 1895 |
Luft | 1527 |
Mensch & Umwelt | 2833 |
Wasser | 1417 |
Weitere | 2835 |