Das Projekt "Molten Aluminium Purification - purification by formation and removal of inter-metallics (MAP)" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Institut und Lehrstuhl für metallurgische Prozesstechnik und Metallrecycling durchgeführt. Aluminium is the second most used material world-wide. The European aluminium industry has managed to grow with industries like automotive, aerospace and packaging. Aluminium also has a strong position within the building industry in windows, doors, facades and bathrooms, as well as a range of other daily life products. It is not feasible to increase the production of primary metal to meet the annual increased need of 5 percent for aluminium in Europe. Current EU countries produce approximately 5.7m tonnes pa of aluminium, employing about 200,000 people related to 31 primary aluminium smelters, 200 secondary plants, 2500 foundaries, 60 rolling mills, 200 extrusion plants and 85 foil mills plus converters. This production results in large amounts of run-around scrap, production scrap and consumer scrap. Together with primary aluminium, this run-around scrap forms the raw material input to the casthouse. However, the casthouse is producing high added value products with increasingly stringent demands on product specifications. Hence it becomes more and more difficult to match input and output qualities. This project will be, if successful, a breakthrough in the treatment of molten aluminium arising from scrap routes. Where currently less efficient and costly techniques such as sweetening by primary aluminium are used, MAP will provide the control of the concentration of single and difficult to remove contaminants. Not only the basic technology elements such as thermodynamics, chemistry or material research are employed but also it will be brought to pilot-scale level. In view of the massive experimentation and complexity of research, this project can only be performed successfully in close collaboration between the major industrial players and research centres on a European level. Good housekeeping, logistics and advanced sorting technologies can only partially salve the problem. In many input materials the elemental contaminants, such as Fe, Si, Mn, etc are dissolved or appear in coatings; metals are tightly connected. No technology is available which separates the contaminants economically. Therefore, the final objective of this proposal is the development of an economic purification technology with the target of a lew cast, deeper 200 US dollar/ton purification of iron (Fe), silicon (Si) and manganese (Mn) from molten aluminium in the casthouse by in-line treatment. The project will have a direct and indirect impact on the environment, resources and on overall energy consumption in support of EU policies. As re-melting of aluminium scrap consumes only about 5 percent of the energy which is necessary to produce primary metal, the increase of scrap intake from 30 percent to 45 percent will result in substantial energy savings. ... Prime Contractor: Remi Claeys Aluminium N.V., Lichterfelde, Belgium.