Das Projekt "Palaeo-Evo-Devo of Malacostraca - a key to the evolutionary history of 'higher' crustaceans" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Greifswald, Zoologisches Institut und Museum, Abteilung Cytologie und Evolutionsbiologie.In my project I aim at a better understanding of the evolution of malacostracan crustaceans, which includes very different groups such as mantis shrimps, krill and lobsters. Previous studies on Malacostraca, on extant as well as on fossil representatives, focussed on adult morphology.In contrast to such approaches, I will apply a Palaeo-Evo-Devo approach to shed new light on the evolution of Malacostraca. Palaeo-Evo-Devo uses data of different developmental stages of fossil malacostracan crustaceans, such as larval and juvenile stages. With this approach I aim at bridging morphological gaps between the different diverse lineages of modern malacostracans by providing new insights into the character evolution in these lineages.An extensive number of larval and juvenile malacostracans is present in the fossil record, but which have only scarcely been studied. The backbone of this project will be on malacostracans from the Solnhofen Lithographic Limestones (ca. 150 million years old), which are especially well preserved and exhibit minute details. During previous studies, I developed new documentation methods for tiny fossils from these deposits, e.g., fluorescence composite microscopy, and also discovered the first fossil mantis shrimp larvae. For malcostracan groups that do not occur in Solnhofen, I will investigate fossils from other lagerstätten, e.g., Mazon Creek and Bear Gulch (USA), or Montceaules- Mines and La-Voulte-sur-Rhône (France). The main groups in focus are mantis shrimps and certain other shrimps (e.g., mysids, caridoids), as well as the bottom-living ten-footed crustaceans (reptantians). Examples for studied structures are leg details, including the feeding apparatus, but also eyes. The results will contribute to the reconstruction of 3D computer models.The data collected in this project will be used for evaluating the relationships within Malacostraca, but mainly for providing plausible evolutionary scenarios, how the modern malacostracan diversity evolved. With the Palaeo-Evo-Devo approach, I am also able to detect shifts in developmental timing, called heterochrony, which is interpreted as one of the major driving forces of evolution. Finally, the reconstructed evolutionary patterns can be compared between the different lineages for convergencies. These comparisons might help to explain the convergent adaptation to similar ecological niches in different malacostracan groups, e.g., life in the deep sea, life on the sea bottom, evolution of metamorphosis or of predatory larvae.As the project requires the investigation of a large number of specimens in different groups, I will assign distinct sub-projects to three doctoral researchers. The results of this project will not only be published in peer-reviewed journals, but will also be presented to the non-scientific public, e.g., during fossil fairs or museum exhibitions with 3D models engraved in glass blocks.
Das Projekt "Strukturelle Entwicklung und Geochronologie des Altkristallins Ostkretas" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Institut für Geologie und Mineralogie.Das Altkristallin Ostkretas stellt eine Besonderheit im kretischen Deckenstapel dar. Im Zuge der alpidischen Subduktion wurde es auf lediglich ca. 300 Grad C aufgeheizt, so dass die alpidische Deformation auf diskrete Scherzonen beschränkt ist. Infolgedessen ist das präalpidische strukturelle Inventar im Altkristallin noch weitgehend vorhanden. Detaillierte strukturelle und mikrogefügekundliche Untersuchungen der Altkristallineinheiten (Gneise, Glimmerschiefer, Amphibolite etc.) sollen dazu beitragen, die bisher kaum verstandene präalpidische Kinematik sowie die beteiligten Deformationsmechanismen und -bedingungen zu entschlüsseln. Erste U-Th-Pb-Datierungen von Monaziten mit der EMP-Methode belegen, dass die präalpidische Metamorphose im Perm stattgefunden haben muß. Weitere geochronologische Untersuchungen sollen helfen, die noch fehlenden Zeitmarken im Altkristallin festzulegen. Konventionelle U-Pb-Datierungen von Monazit und Zirkon werden es erlauben, das Alter der präalpidischen Metamorphose erstmals sehr exakt zu datieren. Darüber hinaus sollte sich mit dieser Methode auch das Protolithalter zweier neu aufgefundener Orthogneiskomplexe bestimmen lassen. Im Hinblick auf eine ICDP-Bohrung in der Mesara-Ebene Mittelkretas kommt der Untersuchung des Altkristallins keine unbedeutende Rolle zu, da nicht ausgeschlossen werden kann, dass Altkristallin auch von der Bohrung angetroffen werden wird.
Das Projekt "Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Felsische Intrusionen in von IODP erbohrten Gabbros von der Atlantis Bank am Südwestindischen Rücken: Entstehung, Metamorphose und Rolle als multifunktionale Pfade für Fluide und Massen-Transfer" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Leibniz Universität Hannover, Institut für Mineralogie.Typische tiefe Kruste von langsam-spreizenden Rücken besteht aus Gabbro, der von zahllosen, cm- bis dm-mächtigen, evolvierten sog. felsischen Gängen intrudiert wird. Ihre Entstehung sowie ihre Rolle bei der hydrothermalen Alteration der Kruste ist weitgehend unbekannt. Eine IODP Expedition bohrte am Site 1473 auf der Atlantis Bank (Südwestindischer Rücken) ca. 790 m tief in massive Gabbros, die von fast 400 felsischen Gängen durchschlagen werden (ca. 1.5 Prozent des Kernes). Diese bieten die einzigartige Möglichkeit zu einer umfassenden und tiefgreifenden Untersuchung von felsischen Gänge in langsam-spreizender ozeanischer Kruste. Das Projekt untergliedert sich in 3 Themen:(1) Thema 1 zielt auf eine Untersuchung der magmatischen Entstehung der felsischen Gänge. Sind sie durch extreme Fraktionierung von MORB entstanden, oder durch partielles Aufschmelzen von Gabbro durch perkolierende hydrothermale Fluide, oder durch liquide Entmischung in einem evolvierten MORB System? Geprüft werden diese Hypothesen durch Gesamtgesteinsgeochemie in Verbindung mit geochemischer Modellierungen sowie durch eine experimentelle Simulation.(2) Thema 2 fokussiert auf die Natur des Übergangs zwischen den finalen magmatischen Prozessen und dem initialen Auftreten von hydrothermaler Aktivität in dem gerade gefrorenen Gabbro, die ebenfalls magmatische Prozesse triggern kann. Dieses Thema schließt auch die wichtige Frage ein, wie tief hydrothermale Wässer in die Detachement Fault eindringen können, und wie sich das auf die Rheologie der frisch akkreditierten Kruste auswirkt. Der Schlüssel zum Verständnis in diesem kaum untersuchten Thema im Übergang vom magmatischen zum metamorphen Regime, liegt in der sorgfältigen stofflichen Untersuchung von Hoch-Temperatur-Amphibolen, ihre inhärentes Potential zur Bestimmung von Entstehungstemperaturen, sowie auch in der genauen Bestimmung der Solidus-Temperatur bei Wassersättigung dieser speziellen, oft sehr evolvierten Gabbros vom Hole U1473.(3) Grundlage für Thema 3 ist die Beobachtung, dass die felsischen Gänge immer signifikant stärker als das gabbroide Nebengestein alteriert sind, und dass die metamorphen Mineral-Assoziationen in den felsischen Gängen typischerweise wechselnde metamorphe Bedingungen anzeigen, z.B. von höchsten Temperaturen nahe am Gesteins-Solidus bis hinunter zu sehr niedrigen Temperaturen (Sub-Grünschieferfazies). Diese Beobachtungen werfen die Frage nach der Rolle der felsischen Gänge für die metamorphe Entwicklung bei der hydrothermalen Abkühlung der Kruste auf, und nach der Menge der Fluide, die über solche Pfade umgesetzt wurden. Der methodische Ansatz hierfür ist die sorgfältige Analyse von fluid-haltigen Mineralen (Amphibole, Apatit), die genaue Erfassung der Gleichgewichtstemperatur über Geothermometrie in Kombination mit der Analyse von lokalen metamorphen Gleichgewichten, Abschätzung des Fluxes an meerwasser-abgeleiteten Fluiden über Sr- und Sauerstoff-Isotopie, sowie thermodynamische Berechnungen.
Das Projekt "Feld- und Laboruntersuchungen deformativer und metamorpher Prozesse im Zusammenhang mit tertiärer Indentertektonik und der Exhumierung von Hochdruckgesteinen in den Westalpen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Berlin, Fachbereich Geowissenschaften, Institut für Geologische Wissenschaften, Fachbereich Geochemie, Hydrogeologie, Mineralogie, FR Ökonomische und Ökologische Geologie.Große Störungszonen vor dem apulischen orogenen Indenter im internen Bereich des Westalpenbogens haben sowohl eine NW-SE Verkürzung als auch einen vertikalen Versatz akkommodiert. Diese Störungen deformieren auch Gesteine mit alpidischen Hochdruckparagenesen. Das Hauptziel des Vorhaben ist festzustellen, wie diese Störungszonen zur Exhumierung der Hochdruckgesteine in der Sesia Zone beigetragen haben. Das vorgesehene Arbeitsgebiet eignet sich besonders gut zur Untersuchung von transpressiver Tektonik bei der Exhumierung subduzierter kontinentaler Kruste. Um die Kinematik und thermobarometrische Geschichte der Exhumierung zu rekonstruieren, sieht unser Projekt eine Kombination von strukturgeologischer Feldarbeit und mikrostrukturellen, petrologischen und geochronologischen Laborarbeiten vor. Das vorgesehene Projekt soll zwei wissenschaftliche Mitarbeiter für die Durchführung von struktur-petrologischen und strukturgeochronologischen Studien beschäftigen.
Die Internationale Geologische Karte von Europa im Maßstab 1:5.000.000 zeigt die präquartäre Geologie Europas auf dem Festland und in den Meeresgebieten. Neben der Geologie, gegliedert nach Alter und Gesteinsart, werden auch magnetische Anomalien, tektonische Strukturen, der Kontinentalrand, Metamorphosen und – in den Meeresgebieten – Krusteneigenschaften gezeigt. Die Karte entstand unter der Leitung der BGR und der Schirmherrschaft der Weltkartenkommission (CGMW) mit Beiträgen von 48 europäischen geologischen Diensten und mehr als 20 wissenschaftlichen Institutionen. Ausführliche Informationen zur "IGME 5000: More than just a map – A multinational GIS Project" erhalten Sie auf der IGME-Webseite.
Das Projekt "Verbesserung von Schneemodellierung durch den Einsatz von Fernerkundung auf Einzugsgebietsmaßstab" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Thüringer Landesamt für Umwelt, Bergbau und Naturschutz.
Blatt Freiburg-Nord zeigt den südlichen Oberrheingraben mit seinen beiden Flanken: den Vogesen im Westen und dem Schwarzwald im Osten. Der Schwarzwald, an der Ostflanke des Oberrheingrabens, wird von variszischen Graniten, Gneisen und Anatexiten aufgebaut. Bei der variszischen Faltung kam es zur Metamorphose präkambrischer Sedimentgesteine; zudem drangen im Oberkarbon granitische Tiefengesteinsplutone auf. Permische Rhyolithe (Quarzporphyre), die an mehreren Stellen des mittleren und nördlichen Schwarzwald zu finden sind, werden als Ignimbrite interpretiert. Nach Norden und Osten tauchen die Kristallingesteine des Schwarzwaldes unter das permo-mesozoische Deckgebirge. Am Westrand des Kartenblattes ist ein kleiner Teil der Nordvogesen angeschnitten. Der ebenfalls variszisch geprägte Gebirgszug ist von Struktur und Gesteinsaufbau dem Schwarzwald sehr ähnlich, jedoch sind größere Vorkommen paläozoischer Sedimente erhalten geblieben. So sind im Kartenausschnitt neben Graniten, Dioriten und Paragneisen auch kambrische bis silurische Schiefer sowie Schuttsedimente des Rotliegenden erfasst. Der Oberrheingraben durchzieht das Blatt von Südsüdwest nach Nordnordost. Die Grabenstruktur ist mit tertiären Sedimenten verfüllt. Das Tertiär tritt jedoch nur vereinzelt unter der quartären Deckschicht aus Löss- und Flugsanden, fluviatilen bzw. glazifluviatilen Ablagerungen, Verwitterungs- und Schwemmlehm zu Tage. Der Grabenrandbereich wird von den äußeren Randverwerfungen, an denen der vertikale Hauptversatz der Grabenstruktur stattfand, und Bruchfeldern mit Staffelbrüchen geringerer Verwurfshöhe gebildet. In den sogenannten Vorberg-Zonen sind Grundgebirge und permo-mesozoische Bedeckung staffelförmig gegen das Grabeninnere abgesunken und somit, vor Abtragung geschützt, erhalten geblieben. Am Westrand des Oberrheingrabens ist das Bruchfeld von Ribeauvillé, südlich der Vogesen, und das Bruchfeld von Zabern, in der Nordwest-Ecke des Kartenblattes, angeschnitten. Am Ostrand des Grabens sind die Vorbergzone von Emmendingen-Lahr und die Freiburger Bucht erfasst. Mit der Grabenbildung im Tertiär ging ein verstärkter Vulkanismus einher, der seinen Höhepunkt in der Förderung Olivin-nephelinitischer Schmelzen im Vulkangebiet des Kaiserstuhls fand. Die heute stark abgetragene Vulkanruine aus miozänen Vulkaniten und Tuffen ist von pleistozänem Löss ummantelt und teilweise überlagert. Neben der Legende, die über Alter, Genese und Petrographie der dargestellten Einheiten informiert, verdeutlicht eine tektonische Übersichtskarte die geologischen Großeinheiten im Kartenausschnitt. Ein geologischer Schnitt gewährt zusätzliche Einblick in den Aufbau des Untergrundes. Das West-Ost-Profil kreuzt den Oberrheingraben mit dem Kaiserstuhl und der Freiburger Bucht sowie die Kristallingesteine des Schwarzwaldes.
Blatt Freiburg-Süd erfasst den südlichen Oberrheingraben mit dem Schwarzwald als seine östliche Begrenzung sowie Teile des Schweizer Faltenjuras, Tafeljuras und des subalpinen Molassebeckens. Im Nordwesten des Kartenausschnitts ist der südliche Oberrheingraben abgebildet, dessen Trog mit Lockersedimenten des Tertiärs verfüllt ist. Die tertiäre Grabenfüllung tritt nur sehr vereinzelt unter der quartären Deckschicht aus fluviatilen bzw. glazifluviatilen Ablagerungen sowie pleistozänem Löss zu Tage. Der Randbereich des Grabens wird von den Vorberg-Zonen und der äußeren Randverwerfung gebildet. Im Kartenausschnitt sind die Müllheim-Kanderner Vorbergzone sowie die Freiburger Bucht erfasst. In diesen Bruchfeldern ist das Grund- und Deckgebirge staffelförmig gegen das Grabeninnere abgesunken und die permo-mesozoischen Deckschichten sind, vor Abtragung geschützt, erhalten geblieben. Der Schwarzwald, im Osten des Oberrheingrabens, wird von variszischen Graniten, Gneisen und Anatexiten aufgebaut. Bei der variszischen Faltung kam es zur Metamorphose präkambrischer Sedimentgesteine. Zudem drangen im Oberkarbon verstärkt granitische Tiefengesteine auf. Am Nordrand des Kartenblattes ist die Zentralschwarzwälder Gneismasse aufgeschlossen, der sich südlich die Badenweiler-Lenzkirch-Zone (altpaläozoische Schiefer, Konglomerate und Vulkanite) sowie der Südschwarzwälder Granit- und Gneiskomplex anschließen. Nach Osten und Süden tauchen die Kristallingesteine des Schwarzwaldes unter das permo-mesozoische Deckgebirge. Die Südhälfte des Kartenblattes wird vom Tafeljura, Schweizer Faltenjura sowie den känozoischen Molassesedimenten des Alpenvorlandes dominiert. Neben der Legende, die über Alter, Genese und Petrographie der Einheiten informiert, stellt eine tektonische Übersichtskarte die geologischen Großeinheiten im Kartenausschnitt anschaulich dar. Ein geologisches Profil gewährt zusätzliche Einblicke in den Aufbau des Untergrundes. Der Nord-Süd-Schnittt kreuzt die Vorbergzone, den Schwarzwald, das Juragebirge (Tafeljura und Schweizer Faltenjura) sowie das subalpine Molassebecken.
Auf Blatt Zwickau sind im Norden das Thüringer Becken und die Leipziger Tieflandsbucht angeschnitten, im Süden das Thüringisch-Fränkische und Vogtländische Schiefergebirge, das Erzgebirge sowie die Vorerzgebirgssenke. Die Südwest-Nordost-streichenden Sattel- und Muldenstrukturen des Thüringisch-Fränkischen und Vogtländischen Schiefergebirges entstanden im Zuge der variszischen Gebirgsbildung. Von West nach Ost sind aufgeschlossen: Ostthüringisches Synklinorium, Bergaer Antiklinorium und Vogtländisches Synklinorium. Das Ostthüringische Synklinorium kann durch die Nordwest-Südost-verlaufende Frankenwald-Querzone in ein südwestliches (Teuschnitzer) und nordöstliches (Ziegenrücker) Synklinorium untergliedert werden. Entlang der horstartigen Bruchschollen der Frankenwald-Querzone sind präkarbonische Schichten herausgehoben und kleinere Granitstöcke stiegen postkinematisch auf. Das Ostthüringische Synklinorium ist mit über 1000 m mächtigen Sedimenten des Unterkarbons in Kulm-Flysch-Fazies verfüllt, die nach Norden unter die Zechstein- und Triasbedeckung des Thüringer Beckens abtauchen. Im Kern des Bergaer Antiklinorium sind Schichten der ordovizischen Frauenbach- und Phycoden-Gruppe aufgeschlossen, denen im Randbereich jüngere Sedimente der Gräfenthal-Gruppe (Ordovizium), des Silurs und Devons folgen. In der sich nach Südosten anschließenden Vogtländischen Synklinalzone treten vorwiegend unmetamorphe (im Nordost-Teil schwach metamorphe) Schichten des Ordoviziums bis Unterkarbons auf. Ein ausgeprägter Vulkanismus im Frasne (Basalt, Spilit, Keratophyr) ist für die Synklinalzone charakteristisch. Die östliche Grenze zum Erzgebirgsantiklinorium wird mit dem Einsetzen einer deutlichen Metamorphose (Phyllitstockwerk) gezogen, die annähernd der Grenze zwischen Phycoden- und Frauenbach-Formation entspricht. Die synvariszisch intrudierten Granitmassive (Kirchberg, Bergen) greifen vom Erzgebirge auf die Randbereiche des Vogtländischen Synklinoriums über. Der Eibenstock-Granit des Erzgebirges drang postvariszisch auf. Nach Norden bzw. Nordosten wird das Grundgebirge des Saxothuringikums von den Molassesedimenten der Vorerzgebirgssenke (Rotliegendes) überlagert. Weiter nördlich schließt sich die mit känozoischen Sedimenten verfüllte Leipziger Tieflandsbucht an. Neben der Legende, die über Alter, Genese und Petrographie der dargestellten Einheiten informiert, gewährt ein geologisches Profil zusätzliche Einblicke in den Aufbau des Untergrundes. Der Nordwest-Südost-Schnitt verläuft vom Thüringer Becken, über das Thüringisch-Fränkische und Vogtländische Schiefergebirge bis zum Eibenstock-Granitmassiv des Erzgebirges.
Beitrag im Rahmen der FKTG: Görlitzer Schiefergebirge (Teilgebiet 009_00TG_194_00IG_K_g_SO): Das Görlitzer Schiefergebirge besteht aus stark deformierten sedimentären Einheiten des Kambriums, Ordoviziums, Silurs, Devons und Unterkarbons mit eingeschalteten Vulkaniten. Diese Gesteine wurden grünschieferfaziell metamorph überprägt. Belegt sind verschuppte Einheiten des Paläozoikums bis in eine Tiefe von über 800 m in der Bohrung B10/1961 mit einer Endteufe von 809 m (Abb. 11). Eine tektonische Interpretation des Görlitzer Schiefergebirges als Akkretionskeil vor dem Lausitzer Block (Göthel, 2001) legt nahe, dass die Einheiten des Görlitzer Schiefergebirges strukturell neben den Gesteinen der Lausitz liegen. Die Bohrungsdaten stimmen mit dieser Interpretation überein. Nördlich der Innerlausitzer Störung, welche die Grenze des Schiefergebirges zum Lausitzer Granodioritkomplex bildet, wurden keine Kristallingesteine erbohrt. // Im Bereich des Görlitzer Schiefergebirges kann weder kristallines Wirtsgestein nachgewiesen noch aufgrund des tektonischen Settings der Einheit erwartet werden. Die Ausweisung der Region als Teilgebiet ist nicht nachvollziehbar. Stellungnahme der BGE: Fachliche Einordnung: Fachlich nachvollziehbare Hinweise, die durch die angewendete Methodik für den ZBTG erklärt werden können. Begründung: Die Anwendung der Mindestanforderungen erfolgte im Rahmen von § 13 StandAG über einen stratigraphischen Ansatz, d. h. das Wirtsgestein nimmt nur einen Teil der betrachteten Einheit, hier der großstrukturellen Einheit des Saxothuringikums, ein. Die aus dieser Methodik resultierenden Ergebnisse sind damit generell überschätzend, weisen also zu große identifizierte Gebiete aus. // Die detaillierte Auswertung des LfULG enthält wertvolle Anmerkungen und Hinweise, die im weiteren Standortauswahlverfahren Berücksichtigung finden werden. Um an diesem Punkt exemplarisch die Aussagen des LfULG Sachsens nachzuvollziehen, dass im Bereich des Görlitzer Schiefergebirges weder kristallines Wirtsgestein nachgewiesen, noch aufgrund des tektonischen Settings der Einheit erwartet werden kann, wurde eine Detailbetrachtung der Bohrungsdaten und der GK400 des LfULG Sachsens vorgenommen. Dabei handelt es sich um einen Arbeitsstand, der hier exemplarisch dargestellt ist, jedoch keine abschließende Bewertung darstellt. // Die Abbildung 1 zeigt einen Ausschnitt der GK400 des LfULG im Bereich des Görlitzer Schiefergebirges. Die Lage des Teilgebiets 009_00TG_194_00IG_K_g_SO ist grau schraffiert dargestellt. Südlich der Innerlausitzer Störung stehen Granodiorite und Granite, nördlich davon hauptsächlich paläozoische Gesteine des Görlitzer Schiefergebirges an. Weiter nördlich treten die mesozoischen sedimentären Abfolgen der Nordsudetischen Senke auf. // [ABBILDUNG] Abbildung 1: Geologischer Ausschnitt aus der GK400 (LfULG, DokID_11839344_5) im Bereich des Görlitzer Schiefergebirges; geologische Einheiten und Legende wurden stark vereinfacht und schematisiert; grüne Punkte zeigen Bohrungsdaten, in denen keine kristallinen Wirtsgesteine im Sinne der Begriffsbestimmung der BGE vorkommen (BGE 2020j) Die BGE hat die Schichtenverzeichnisse aus Bohrungen im Bereich des Görlitzer Schiefergebirges vorläufig ausgewertet. Die Bohrungen im digitalen Datenbestand der BGE nördlich der Innerlausitzer Störung haben eine Mindestteufe von 300 m u. GOK MD (measured depth); die größte Endteufe liegt bei 819,7 m u. GOK MD (Bohrung B4/1963). Die digitalen Schichtenverzeichnisse wurden auf kristalline Wirtsgesteine gemäß Begriffsbestimmung (BGE 2020j) durchsucht. Die Filterung ergab, dass lediglich eine Bohrung, B16/1962, am westlichen Rand des Görlitzer Schiefergebirges in der Endteufe von 500 m u. GOK MD das potentielle kristalline Wirtsgestein Quarzit angetroffen hat. Nach der aktuellen Begriffsbestimmung (BGE 2020j) würden regionalmetamorphe Quarzite in der Amphibolit-Fazies grundsätzlich endlagerrelevante kristalline Wirtsgesteine darstellen. Die petrographische Bezeichnung „Quarzit“ in den verkürzten Schichtenverzeichnissen sagt jedoch nur aus, dass das Gestein überwiegend aus Quarz besteht und beschreibt im Regelfall ein metamorphes Gestein. Als „Quarzite“ können jedoch auch silifizierte Sandsteine, also hydrothermal veränderte Sedimentgesteine, beschrieben worden sein. Der Metamorphosegrad lässt sich in diesem Zusammenhang nur im Kontext der Nebengesteine und der Genese der geologischen Einheit ableiten. Bei genauerer Betrachtung des verkürzten Schichtenverzeichnisses der Bohrung B16/1962 wird klar, dass es sich hierbei um eine geringmächtige Einheit in einer (niedrigmetamorphen) Abfolge sedimentärer Gesteine (Quarzit und Quarzit-Tonschiefer) handelt. // Zusammenfassend können wir den Anmerkungen und Interpretationen des LfULG zum Görlitzer Schiefergebirge daher sehr gut folgen. Dieser Arbeitsstand wird im Rahmen der Arbeiten von Schritt 2 der Phase I weiterentwickelt. Seite 12-13: Die genutzten Datengrundlagen zur Ermittlung des identifizierten Gebietes innerhalb des kristallinen Grundgebirges des Saxothuringikum in Sachsen ergab sich aus den methodischen Anwendungsprinzipien der BGE zur Anwendung der Mindestanforderungen im Rahmen von § 13 StandAG für das gesamte Bundesgebiet (vgl. Tabelle 2). Zur Anwendung der Mindestanforderungen wurden die vom LfULG gelieferten 3D-Modelle verwendet und Bereiche zwischen diesen 3D-Modellen wurden durch ein Tiefenmodell, das aus der Karte zur Tiefenlage des Grundgebirges von Reinhold (2005) abgeleitet wurde, sowie der GÜK 250 (BGR 2019), ergänzt. Zusätzlich wurden die vom LfULG gelieferten Schichtenverzeichnisse auf Vorkommen von kristallinem Wirtsgestein entsprechend der Begriffsbestimmung der BGE gefiltert (BGE 2020j). Im nun anstehenden Schritt 2 der Phase I erfolgt auf Basis der ermittelten Teilgebiete die Ermittlung von Standortregionen für die übertägige Erkundung. Dafür werden auch bereits gelieferte Kartenwerke, Daten oder Veröffentlichungen, die im Schritt 1 der Phase I für den ZBTG methodisch noch keine Berücksichtigung fanden, sowie Hinweise aus den Stellungnahmen der Bundes- und Landesbehörden, herangezogen und geprüft. Zudem werden im Augenblick die Bohrakten von einigen Tausend Tiefbohrungen (> 300 m u. GOK), die noch nicht im Datenbestand der BGE sind, durch die Wismut GmbH gescannt und durch Dienstleister die ausführlichen Schichtenverzeichnisse in digitale Bohrdatenbanken überführt. Ausgewählte bohrlochgeophysikalische Messungen an interessanten und repräsentativen Tiefbohrungen in kristallinen Wirtsgesteinen sollen in diesem Zuge in LAS-Dateien konvertiert werden. Diese Daten sind eine wichtige Grundlage für die Bewertung von Teilgebieten in kristallinem Wirtsgestein in den mitteldeutschen Bundesländern Sachsen, Sachsen-Anhalt, Thüringen und Brandenburg. // Für die weitere fachliche Auseinandersetzung des seitens der BGE ermittelten Teilgebiets 009_00TG_194_00IG_K_g_SO wurde dieses durch das LfULG in regionalgeologische Einheiten mit einheitlichen lithologischen und strukturellen Eigenschaften untergliedert. Dabei hat das LfULG folgende Einheiten differenziert: Westerzgebirgische und vogtländische Granite, Chemnitzbecken, Granulitgebirge, Erzgebirge, Ostthüringische-Nordsächsische Einheit, Nordsächsischer Block, Wurzen-Caldera, Frankenberger Zwischengebirge, Meißener Pluton, Lausitzer Granodiorit-Komplex, Lausitzer Grauwacken-Einheit und Görlitzer Schiefergebirge. [...] Die regionalgeologischen Einheiten Görlitzer Schiefergebirge, Lausitzer Grauwacken-Einheit, Ostthüringisch-Nordsächsische Einheit und Chemnitzbecken wurde als nicht plausibel identifiziert, weil die Gesteine dort nach Aussage des LfULG die Wirtsgesteinsdefinition für kristallines Wirtsgestein nicht erfüllen (Sächsisches Landesamt für Umwelt Landwirtschaft und Geologie (LfULG) 2021, S. 32). // Die Hinweise des LfULG werden aktuell seitens der BGE detailliert überprüft. An dieser Stelle gehen wir daher nur exemplarisch auf die Einheiten „Görlitzer Schiefergebirge“ und den „Lausitzer Granodiorit-Komplex“ und dessen Abgrenzung zur „Lausitzer Grauwacke-Einheit“ ein. Initiale Rückmeldung im Rahmen der FKTG: nicht vorhanden. Stellungnahme einer externen Prüfstelle:nicht vorhanden.
Origin | Count |
---|---|
Bund | 44 |
Land | 12 |
Type | Count |
---|---|
Förderprogramm | 30 |
Text | 13 |
unbekannt | 6 |
License | Count |
---|---|
geschlossen | 15 |
offen | 34 |
Language | Count |
---|---|
Deutsch | 42 |
Englisch | 15 |
Resource type | Count |
---|---|
Archiv | 4 |
Bild | 2 |
Dokument | 3 |
Keine | 25 |
Webdienst | 2 |
Webseite | 21 |
Topic | Count |
---|---|
Boden | 32 |
Lebewesen & Lebensräume | 48 |
Luft | 15 |
Mensch & Umwelt | 49 |
Wasser | 26 |
Weitere | 48 |