API src

Found 1641 results.

Related terms

Kohlendioxid-Emissionen

<p>Seit 1990 gehen die Kohlendioxid-Emissionen in Deutschland nahezu kontinuierlich zurück. Ursachen waren in den ersten Jahren vor allem die wirtschaftliche Umstrukturierung in den neuen Ländern. Seitdem ist es die aktive Klimaschutzpolitik der Bundesregierung, die in Einzeljahren jedoch auch von witterungsbedingten Effekten überlagert werden kann.</p><p>Kohlendioxid-Emissionen im Vergleich zu anderen Treibhausgasen</p><p>Kohlendioxid ist das bei weitem bedeutendste <a href="https://www.umweltbundesamt.de/themen/klima-energie/treibhausgas-emissionen/die-treibhausgase">Klimagas</a>. Laut einer ersten Berechnung des Umweltbundesamtes betrug 2024 der Kohlendioxid-Anteil an den gesamten ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>⁠-Emissionen 88,2 % (siehe Abb. „Anteile der Treibhausgase an den Emissionen“). Der Anteil hat gegenüber 1990 um über 4 Prozentpunkte zugenommen. Der Grund: Die Emissionen von Methan und Distickstoffoxid wurden im Vergleich zu Kohlendioxid erheblich stärker gemindert.</p><p>___<br> Umweltbundesamt, Nationale Treibhausgas-Inventare 1990 bis 2023 (Stand 03/2025), für 2024 vorläufige Daten (Stand 15.03.2025)</p><p>Herkunft und Minderung von Kohlendioxid-Emissionen</p><p>Kohlendioxid entsteht fast ausschließlich bei den Verbrennungsvorgängen in Anlagen und Motoren. Weitere Emissionen entstehen im Bereich Steine und Erden, wenn Kalk zur Zement- und Baustoffherstellung gebrannt wird. Bezogen auf die Einheit der eingesetzten Energie sind die Emissionen für feste Brennstoffe, die überwiegend aus Kohlenstoff bestehen, am höchsten. Für gasförmige Brennstoffe sind sie wegen ihres beträchtlichen Gehalts an Wasserstoff am niedrigsten. Eine Zwischenstellung nehmen die flüssigen Brennstoffe ein.</p><p>Seit 1990 gehen die Kohlendioxid-Emissionen nahezu kontinuierlich zurück. Zwischen 1990 und 1995 ist dies vor allem auf den verminderten Braunkohleeinsatz in den neuen Ländern zurückzuführen. Ab Mitte der 90er-Jahre wirkt sich insbesondere die aktive Klimaschutzpolitik der Bundesregierung emissionsmindernd aus. Durch kalte Winter and durch konjunkturelle Aufschwünge stiegen die Emissionen zwischenzeitlich immer wieder leicht an, zum Beispiel in den Jahren 1996, 2001, 2008, 2010, 2013 und 2015, 2021&nbsp;(siehe Abb. „Emissionen von Kohlendioxid nach Kategorien“ und Tab. „Emissionen ausgewählter Treibhausgase nach Kategorien“). Im Jahr 2009 wirkte die ökonomische Krise emissionsmindernd. 2010 stiegen die Emissionen hauptsächlich durch die konjunkturelle Erholung der Wirtschaft und die kühle ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Witterung#alphabar">Witterung</a>⁠ wieder an. In den Folgejahren hatte die Witterung den größten Einfluss auf die Emissionsentwicklung, zusätzlich drückt der stetige Rückgang der Emissionen aus der Energiewirtschaft das Emissionsniveau ab dem Jahr 2014 deutlich. Im Jahr 2020 dominieren die komplexen Sondereffekte der Corona-Pandemie das Emissionsgeschehen, während 2021 von Wiederanstiegen dominiert wird. Der Russische Angriffskrieg gegen die Ukraine wirkte sich in unterschiedlicher Weise auf die Entwicklung der Emissionen im Jahr 2022 aus (vgl. <a href="https://www.umweltbundesamt.de/presse/pressemitteilungen/uba-prognose-treibhausgasemissionen-sanken-2022-um">UBA/BMWK: Gemeinsame Pressemitteilung 11/2023</a>).</p><p>Kohlendioxid-Emissionen 2024</p><p>2024 sanken die Kohlendioxid-Emissionen gegenüber 2023 um 21,3 Millionen Tonnen bzw. rund 3,6 % auf 572 Millionen Tonnen Kohlendioxid. Gegenüber 1990 sind die Kohlendioxid-Emissionen demnach um 48,2 % gesunken. Die größten Rückgänge gab es in der Energiewirtschaft. Weitere Nennenswerte Rückgänge der Emissionen gab es im Straßenverkehr, und bei den Haushalten und&nbsp; Kleinverbrauchern.</p><p>Den größten Anteil an den Kohlendioxid-Emissionen hatte 2024, wie in den letzten Jahren, die Kategorie Energiewirtschaft mit 30,8 %. Aus diesem Bereich wurden im Jahr 2024 rund 177 Millionen Tonnen Kohlendioxid freigesetzt. Die Kategorien Haushalte/Kleinverbraucher (18,6 %) und Straßenverkehr/übriger Verkehr (24,9 %) sowie Verarbeitendes Gewerbe/Industrieprozesse (zusammen 24,8 %) besitzen hinsichtlich der Kohlendioxid-Emissionen derzeit eine etwas geringere Bedeutung.</p><p>Die gesamtwirtschaftliche Emissionsintensität (Emissionen bezogen auf das Bruttoinlandsprodukt) sank zwischen 1991 und 2024 um 62 % (siehe Abb. „Kohlendioxid-Emissionsintensität in Deutschland“).</p>

CO2-Bilanz Schenker

Bau eines neuartigen Transport- und Umschlaggerätes (Port Feeder Barge) für Container

Die Port Feeder Barge ist ein Ponton, der mit einem eigenen Antrieb und einem vollwertigen Containerkran, wie er auf Seeschiffen installiert ist, ausgerüstet sein wird. Durch den Einsatz dieses neuartigen Gerätes wird die Carl Robert Eckelmann Transport & Logistik GmbH die umweltverträgliche Verlagerung eines Teils der Containerumfuhren innerhalb des Hamburger Hafens von der Straße auf das Wasser durchführen können. Der Hamburger Hafen ist mit 4,2 Mio. TEU1 umgeschlagener Container (2000) nach Rotterdam der zweitgrößte Containerhafen Europas. Der Umschlag erfolgt im wesentlichen an vier (künftig fünf) reinen Containerterminals und mehreren Mehrzweckterminals, die über das ganze Hafengebiet verteilt sind. Sowohl zwischen diesen Terminals als auch zwischen den Terminals und einigen wasserseitigen Containerpackstationen (z.B. Überseezentrum) sowie Containerdepots müssen in erheblichem Umfang Container hafenintern umgefahren werden. Dies erfolgt derzeit fast ausschließlich per Lkw - mit der Folge der Überlastung des Straßennetzes im Bereich des Hamburger Hafens sowie der resultierenden verkehrsbedingten Umweltbelastungen. Die von der Carl Robert Eckelmann Transport & Logistik GmbH in Zukunft betriebene Port Feeder Barge wird in einer täglichen Rundreise die Container- und Mehrzweckterminals im Hamburger Hafen anlaufen. Mit einer Ladekapazität von 150 TEU wird sie dabei die hafenintern umzuschlagenden Container an den Umschlagsbetrieben selbständig aufnehmen und absetzen. Die Verlagerung des Containerumschlages von der Straße auf das Wasser mittels der Port Feeder Barge wird zu einer deutlichen Verringerung des Lkw-Verkehrs im Hamburger Hafen führen und somit auch zu einer Reduzierung verkehrsbedingter Kohlendioxid-, Luftschadstoff- und Lärmemissionen beitragen. Nach erfolgreichem Abschluss des Pilotprojektes ist an den Einsatz weiterer Port Feeder Barges in anderen Häfen gedacht. Dieses in Deutschland gewonnene know-how kann weltweit exportiert werden.

Heizen mit Holz

Holz wird häufig als Brennstoff eingesetzt. Neben dem rein praktischen Nutzen des Erwärmens von Räumen tragen holzbetriebene Feuerstätten zu einer gemütlichen und entspannten Atmosphäre bei und strahlen Behaglichkeit aus. Dennoch belasten die Schadstoffe insbesondere aus händisch mit Holz beschickten Öfen und Kaminen die Atemluft in Wohngebieten. Das betrifft besonders den Feinstaub. In NRW gelangen etwa 2300 Tonnen Feinstaub pro Jahr aus Feststoffheizungen und -öfen in die Luft. Daran haben mit Scheitholz handbeschickte Einzelöfen maßgeblichen Anteil. Insbesondere bei unsachgemäßem Betrieb der Holzöfen entstehen auch vermehrt unerwünschte Stoffe wie Stickoxide, Kohlenmonoxid und Krebs erzeugende Polyzyklische Aromatische Kohlenwasserstoffe. Die Anforderungen zur Begrenzung von Emissionen aus Feststoffheizungen und -öfen sind in der Ersten Bundes-Immissionsschutzverordnung festgeschrieben. Für Scheitholz befeuerte Einzelöfen, auf deren Typenschild ein Zulassungsdatum vor dem 22.03.2010 verzeichnet ist, ist darin ein Grenzwert für Staub von 0,15 Gramm pro Kubikmeter und für Kohlenmonoxid von 4 Gramm pro Kubikmeter festgelegt. Für Anlagen, welche die Einhaltung dieser Grenzwerte nicht nachgewiesen haben, gab es Übergangsfristen für die Nutzung. Diese galten bis zum Ende des Jahres 2024. Ohne Nachrüstung dürfen diese Anlagen seit dem 01.01.2025 nicht mehr betrieben werden. Zu Beginn der Heizperiode sollte unbedingt geprüft werden, ob der Schornstein und das Rauchrohr des Ofens frei sind. Wenn der Kamin länger nicht benutzt wurde, könnte sich beispielsweise ein Vogelnest darin befinden. Wenn Abgase nicht ungehindert durch den Schornstein abziehen können, dringen sie in den Wohnraum ein und können schwere Vergiftungen verursachen. Auch die Dichtungen des Ofens müssen deshalb überprüft werden. Die Auskleidung des Feuerraums darf nicht beschädigt sein, damit es nicht zu Überhitzungen kommt. Wichtig ist, dass der Schornstein vor der Inbetriebnahme fachkundig überprüft wird. Der Landesfachverband des Schornsteinfegerhandwerks weist in diesem Zusammenhang auf die Gefahren von Schornsteinbränden hin. Schornsteinbrände sind sehr gefährlich, denn durch Funkenflug und Wärmestrahlung besteht die Gefahr der Brandausbreitung. So können beispielsweise Funken durch Undichtigkeiten in der Dachhaut den Dachstuhl in Brand setzen. Durch die Wärmeentwicklung kann der Schornstein einstürzen und das Rauchrohr durch Ausglühen zerstört werden. Die Wärmestrahlung kann Möbel in der Nähe des Schornsteines entzünden. Eine weitere Gefahr liegt in der Quellfähigkeit: Da Ruß sehr stark aufquellen kann, besteht die Gefahr, dass der Schornstein die heißen Gase und Dämpfe nicht mehr ungehindert abführen kann. Dann können die Abgase durch Reinigungsklappen oder durch die Feuerstätte austreten. Schlimmstenfalls wird der gesamte Schornstein zerstört, wodurch sich das Feuer weiter ausbreiten kann. Ein Rußbrand im Schornstein kann in der Regel nicht gelöscht werden. Deshalb ist es so wichtig, dass eine Fachkraft des Schornsteinfegerhandwerks diesen vor der Inbetriebnahme prüft und freigibt. Wenn die Feuerstätte sauber und intakt ist, kommt es darauf an, sie korrekt entsprechend der Bedienungsanleitung zu betreiben. Dazu darf ausschließlich trockenes, unbehandeltes Holz verwendet werden. Unter ausreichender Luftzufuhr wird das Holz von oben angezündet. So ist das Feuer nach kurzer Zeit rauchfrei. Brennt der Ofen optimal, entstehen weniger Schadstoffe. Das Verbrennen anderer brennbarer Stoffe stellt einen Verstoß gegen die Erste Bundes-Immissionsschutzverordnung dar, die nur die Verbrennung der in der Verordnung genannten Brennstoffe in jeweils dafür geeigneten Feuerungsanlagen zulässt. So dürfen zum Beispiel. keinesfalls feuchtes oder behandeltes (imprägniertes, lasiertes, lackiertes, beschichtetes) Holz, Holzfaser- oder Pressplatten sowie fossile Brennstoffe in Holzfeuerungsanlagen verbrannt werden. Auch Papierbriketts oder die Verbrennung von Altpapier sind nicht erlaubt. „Private Müllverbrennung“ ist nicht erlaubt und darüber hinaus gesundheitsschädlich. Sie verursacht eine enorme Geruchsbelästigung, die häufig zu berechtigten Nachbarschaftsbeschwerden führt. Außerdem können Schäden an den Schamotte- und Metallteilen des Kaminofens sowie am Schornstein entstehen. In den Wintermonaten kommt es häufiger zu austauscharmen Wetterlagen. Bei diesen so genannten Inversionswetterlagen befindet sich über der kalten Luft in Bodennähe eine wärmere Luftschicht in der Höhe. Das verhindert eine gute Luftdurchmischung. Die Schadstoffe, die in Bodennähe entstehen, reichern sich an und sorgen für hohe Konzentrationen. Vor allem in Städten tragen verkehrsbedingte Emissionen, aber auch Feuerungsanlagen zur Schadstoffbelastung bei. Das LANUK empfiehlt deshalb, an solchen Tagen aus Gründen der Luftreinhaltung wenn möglich auf das zusätzliche Heizen mit Holz ganz zu verzichten. Zum Thema „Heizen mit Holz“ informiert das LANUK mit einer Broschüre über die aktuellen gesetzlichen Regelungen. Die Broschüre enthält weiterführende Informationen und hilfreiche Tipps für den möglichst schadstoffarmen Betrieb von Holzfeuerstätten. Zur Online-Ausgabe der Broschüre: https://www.lanuk.nrw.de/publikationen/publikation/heizen-mit-holz zurück

Mikroskalische Simulation der Partikelemissionen im realem Verkehr

Zur Simulation von PKW-Emissionen im realen Verkehr wurde am Institut das Modell PHEM entwickelt. Dabei werden aus den dynamischen Messungen am Rollenprüfstand die sekündlichen Messwerte der gasförmigen Emissionen in Emissionskennfelder gerastert. Aus diesen Kennfeldern können die Emissionen in beliebigen anderen Fahrsituationen dann interpoliert werden. Diese Methode versagt bei den Partikelmasseemissionen grundsätzlich, da man je dynamischen Test nur einen Partikelmassewert aus der gravimetris u.s.w.

Straßenverkehr - Emissionen und Immissionen 2015

Erklärung zur Barrierefreiheit Kontakt zur Ansprechperson Landesbeauftragte für digitale Barrierefreiheit Die vom Kfz-Verkehr als größter Einzelquelle der Luftbelastung ausgehenden Emissionen werden hinsichtlich der Immissionswirkung im Straßenraum berücksichtigt. Für rund 12.000 Abschnitte werden die - bezogen auf die Jahre 2015 und 2020 - berechneten Jahresmittelwerte für NO2 und Feinstaub dargestellt und für 2015 mit einem Index zusammenfassend bewertet. 03.11.2 Verkehrsbedingte Luftbelastung im Straßenraum 2015 Weitere Informationen

Emissionen 1989 – 2015

Erklärung zur Barrierefreiheit Kontakt zur Ansprechperson Landesbeauftragte für digitale Barrierefreiheit Die Emissionen wurden für die lufthygienisch relevanten Schadstoffe NOx, PM10 und PM2,5 neu berechnet und den vorrangigen Verursachern ‚Hausbrand‘, ‚Industrie‘ und ‚Kfz-Verkehr‘ zugeordnet. Es lassen sich somit Verursacheranteile pro dargestelltem Raster von 1 x 1 km² ablesen. 03.12.2 Emissionen 2015 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.02.1 NOx-Gesamtemissionen 1989 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.02.2 NOx-Gesamtemissionen 1994 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.02.3 NOx-Gesamtemissionen 2002 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.02.4 NOx-Gesamtemissionen 2005 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.02.5 NOx-Gesamtemissionen 2008/2009 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.03.1 NOx-Emissionen Hausbrand 1989 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.03.2 NOx-Emissionen Hausbrand 1994 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.03.3 NOx-Emissionen Hausbrand 2002 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.03.4 NOx-Emissionen Hausbrand 2005 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.03.5 NOx-Emissionen Hausbrand 2009 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Industrie‘, zu der die genehmigungsbedürftigen Anlagen und die Heizkraftwerke Berlins gehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich auf die Industrie- und Gewerbegebiete der Stadt. 03.12.04.1 NOx-Emissionen Industrie 1989 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Industrie‘, zu der die genehmigungsbedürftigen Anlagen und die Heizkraftwerke Berlins gehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich auf die Industrie- und Gewerbegebiete der Stadt. 03.12.04.2 NOx-Emissionen Industrie 1994 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Industrie‘, zu der die genehmigungsbedürftigen Anlagen und die Heizkraftwerke Berlins gehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich auf die Industrie- und Gewerbegebiete der Stadt. 03.12.04.3 NOx-Emissionen Industrie 2002 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Industrie‘, zu der die genehmigungsbedürftigen Anlagen und die Heizkraftwerke Berlins gehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich auf die Industrie- und Gewerbegebiete der Stadt. 03.12.04.4 NOx-Emissionen Industrie 2004 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Industrie‘, zu der die genehmigungsbedürftigen Anlagen und die Heizkraftwerke Berlins gehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich auf die Industrie- und Gewerbegebiete der Stadt. 03.12.04.5 NOx-Emissionen Industrie 2008 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Verkehr‘, der neben den PKW auch LKW, Busse und Motorräder angehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich beinahe flächendeckend über die Stadt. 03.12.05.1 NOx-Emissionen Kfz-Verkehr Gesamtnetz 1989 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Verkehr‘, der neben den PKW auch LKW, Busse und Motorräder angehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich beinahe flächendeckend über die Stadt. 03.12.05.2 NOx-Emissionen Kfz-Verkehr Gesamtnetz 1994 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Verkehr‘, der neben den PKW auch LKW, Busse und Motorräder angehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich beinahe flächendeckend über die Stadt. 03.12.05.3 NOx-Emissionen Kfz-Verkehr Gesamtnetz 2002 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Verkehr‘, der neben den PKW auch LKW, Busse und Motorräder angehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich beinahe flächendeckend über die Stadt. 03.12.05.4 NOx-Emissionen Kfz-Verkehr Gesamtnetz 2005 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Verkehr‘, der neben den PKW auch LKW, Busse und Motorräder angehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich beinahe flächendeckend über die Stadt. 03.12.05.5 NOx-Emissionen Kfz-Verkehr Gesamtnetz 2009 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Verkehr‘, der neben den PKW auch LKW, Busse und Motorräder angehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich beinahe flächendeckend über die Stadt. 03.12.05.5.1 NOx-Emissionen Kfz-Verkehr Hauptnetz 2009 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Verkehr‘, der neben den PKW auch LKW, Busse und Motorräder angehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich beinahe flächendeckend über die Stadt. 03.12.05.5.2 NOx-Emissionen Kfz-Verkehr Nebennetz 2009 Weitere Informationen Berechnete Emissionen an Schwefeldioxid als Summenwert in Tonnen pro dargestelltem 1 km²-Raster für alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.06.1 SO2-Gesamtemissionen 1989 Weitere Informationen Berechnete Emissionen an Schwefeldioxid als Summenwert in Tonnen pro dargestelltem 1 km²-Raster für alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.06.2 SO2-Gesamtemissionen 1994 Weitere Informationen Berechnete Emissionen an Schwefeldioxid als Summenwert in Tonnen pro dargestelltem 1 km²-Raster für alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.06.3 SO2-Gesamtemissionen 2002 Weitere Informationen Berechnete Emissionen an Schwefeldioxid als Summenwert in Tonnen pro dargestelltem 1 km²-Raster für alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.06.4 SO2-Gesamtemissionen 2005 Weitere Informationen Berechnete Emissionen an Schwefeldioxid als Summenwert in Tonnen pro dargestelltem 1 km²-Raster für die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.07.1 SO2-Emissionen Hausbrand 1989 Weitere Informationen Berechnete Emissionen an Schwefeldioxid als Summenwert in Tonnen pro dargestelltem 1 km²-Raster für die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.07.2 SO2-Emissionen Hausbrand 1994 Weitere Informationen Berechnete Emissionen an Schwefeldioxid als Summenwert in Tonnen pro dargestelltem 1 km²-Raster für die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.07.3 SO2-Emissionen Hausbrand 2002 Weitere Informationen

BMVI-Expertennetzwerk Wissen - Können - Handeln, Minderung verkehrsbedingter stofflicher Belastungen in Luft, Wasser und Boden - Betriebliche und technische Optimierungen in der Binnenschifffahrt

In dem Forschungsprojekt soll aufgezeigt werden, in welchem Umfang Emissionen aus Binnenschiffen durch optimierte Fahrweise sowie schiffbauliche Innovationen bei Aufrechterhaltung der Wirtschaftlichkeit minimiert werden können. Dies soll am Beispiel typischer Randbedingungen auf dem Rhein in ausgewählten Musterstrecken geschehen. Aufgabenstellung und Ziel Im BMDV-Expertennetzwerk greifen sieben Ressortforschungseinrichtungen und Fachbehörden des Bundesministeriums für Digitales und Verkehr (BMDV) gemeinsam drängende Probleme der Verkehrsinfrastrukturen auf. Es beinhaltet Forschungsarbeiten zur Anpassung an den Klimawandel, zur umweltgerechten Gestaltung sowie zur Erhöhung der Zuverlässigkeit von Verkehr und Infrastruktur. Das Themenfeld 2 des BMDV-Expertennetzwerkes hat das Ziel, Verkehr und Infrastruktur umweltgerecht zu gestalten. In einem Schwerpunktthema werden stoffliche Belastungen durch die einzelnen Verkehrsträger Straße, Schiene und Wasserstraße erfasst und mögliche Maßnahmen zur Reduktion der Emissionen untersucht. Die BAW entwickelt Modelle und führt temporäre Onboard-Messungen an Binnenschiffen durch, um den Treibstoffverbrauch und den Ausstoß von Luftschadstoffen zu bestimmen. Darauf aufbauend soll gezeigt werden, inwieweit Treibstoffbedarf und Emissionen durch eine optimierte Fahrweise sowie technische Innovationen reduziert werden können. Bedeutung für die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) Die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV), das Verkehrsministerium und die schifffahrtstreibende Wirtschaft werden Informationen über die Luftschadstoffemissionen der Binnenschifffahrt erhalten. Es werden Möglichkeiten aufgezeigt, wie durch betriebliche und technische Maßnahmen Reduktionen des Treibstoffbedarfs und der Emissionen erreicht werden können. Auf dieser Grundlage lassen sich die wirtschaftlichen Auswirkungen einzelner Maßnahmen auf den Verkehrsträger Binnenschifffahrt hinsichtlich seiner Wettbewerbsfähigkeit bewerten und Handlungsempfehlungen ableiten. Untersuchungsmethoden Zur Bestimmung des Treibstoffbedarfs und der Emissionen von Binnenschiffen werden Modelle mit einer hohen zeitlichen und räumlichen Auflösung entwickelt (BMDV 2023). Sie verknüpfen beobachtete bzw. modellierte Schiffsbewegungen mit Emissionsfaktoren. Zur Beschreibung des Schiffsverkehrs stehen Daten des automatischen Identifikationssystems (AIS) zur Verfügung, die über Empfängerstationen der Generaldirektion Wasserstraßen und Schifffahrt (GDWS) entlang der meisten Bundeswasserstraßen erfasst und aufgezeichnet werden. Sie enthalten genaue Positionen, Geschwindigkeiten und Abmessungen der Binnenschiffe. Zu den Wasserstraßen liefern zum einen Datenbanken der WSV Breiten, Tiefen und Profilformen der Kanäle. Zum anderen werden Bathymetrie und Strömungsbedingungen der Flüsse aus hydrodynamischen, numerischen Modellen genutzt, die zu den beobachteten Pegelständen Wassertiefen und Fließgeschwindigkeiten berechnen. Diese beeinflussen die auf ein im Flachwasser fahrendes Schiff wirkenden Kräfte und hydromechanischen Effekte, wie z. B. den Schiffstiefgang (Squat) oder die vom Schiff induzierte Rückströmung. Aus der Bewegung eines Schiffs durch das Wasser wird zunächst der Widerstand an jedem Punkt der gefahrenen Trajektorie bestimmt. Aus diesem werden mit Effizienzbeiwerten, u. a. zur Propulsion, die aufgebrachte Motorleistung und letztlich mit leistungsabhängigen Emissionsfaktoren die schiffsspezifischen Emissionsraten berechnet. Die ursprünglich für den Fast-Time-Simulator FaRAO (Fahrdynamische Routen-Analyse und -Optimierung, Schwarz-Beutel 2024) entwickelten fahrdynamischen Ansätze zur Widerstandsberechnung berücksichtigen explizit Flachwasserbedingungen und Querkräfte in Kurvenfahrten. Dies ermöglicht es, Emissionen möglichst präzise zu bestimmen, aber auch Einflüsse der Bathymetrie auf die Emissionsraten zu analysieren.

Kohlendioxid-Emissionen: Kommunale CO2 Bilanzen Stadt Konstanz

<p>Die Angaben über CO2-Emissionen nach Sektoren beruhen auf den Energiebilanzen für Baden-Württemberg, die zunächst nur auf Landesebene vorliegen. Bei der Berechnung der Emissionswerte auf Kreis- und Gemeindeebene wird notwendigerweise auf modellhafte und damit in den verschiedenen Sektoren zum Teil verallgemeinernde Annahmen zurückgegriffen. Insbesondere wird aufgrund fehlender primärstatistischer Angaben im Sektor Haushalte, Gewerbe, Handel, Dienstleistungen und übrige Verbraucher mit einem durchschnittlichen Energieverbrauch je Wohnung bzw. je sozialversicherungspflichtig Beschäftigtem gerechnet. Regionale Minderungsmaßnahmen in diesem Sektor werden deshalb in der Modellrechnung nicht vollständig berücksichtigt.</p> <p><strong>Jahr:</strong></p> <p>Die Jahreszahl 2011a bezieht sich auf Bevölkerungsstand zum 31.12., Fortschreibung des Zensus 1987 (VZ1987)</p> <p>Die Jahreszahl 2011b auf Bevölkerungsstand zum 31.12., Fortschreibung des Zensus 2011 (VZ2011)</p> <p><strong>Gemeindekennung: </strong>335043, Konstanz</p> <p><strong>Private Haushalte, GHD und übrige Verbraucher</strong>: damit sind Gewerbe, Handel, Dienstleistungen (GHD) und übrige Verbraucher wie öffentliche Einrichtungen, Landwirtschaft und militärische Einrichtungen gemeint.</p> <p><strong>Verkehr</strong>: bezeichnet den Straßenverkehr und sonstiger Verkehr wie Schienen-, nationaler Luftverkehr, Binnenschifffahrt und Off-Road-Verkehr (landwirtschaftl. Zugmaschinen, Baumaschinen, Militär, Industriegeräte,Garten/Hobby).</p> <p><strong>Wohnbevölkerung</strong>:</p> <p>-Bevölkerungsstand zum 31.12., Fortschreibung der Volkszählung 2011 (VZ2011).</p> <p>-Bevölkerungsstand zum 31.12., Fortschreibung der Volkszählung 1987 (VZ1987).</p> <p><strong>Tonnen</strong>: Menge an CO2 Emissionen in Tonnen nach Sektoren</p> <p><strong>EW</strong>: Einwohnerzahl im jeweiligen Jahr</p> <p><strong>Tonnen Je Einwohner</strong>: Menge der CO2 Emissionen in Tonnen je Einwohner nach Sektoren</p> <p><strong>Mengenanteile der Sektoren in %:</strong> CO2 Emissionen nach Sektoren in Prozenten.</p> <p><strong>Methodische Hinweise</strong>: Änderungen Allgemein/ Methodisch CO2-Berechnung regional/ Revision ab Herbst 2019:</p> <p>- Umstellung auf die endgültige Energiebilanz 2016</p> <p>- Die Emissionsfaktoren für feuerungsbedingte CO2-Emissionen ab dem Berichtsjahr 2016 wurden mit den Daten des Umweltbundesamtes gemäß NIR 2019 aktualisiert.</p> <p>- Die bundesweiten Anteile Nationalflug an Gesamtflug wurden seitens des Umweltbundesamtes in NIR 2019 ab 1990 um durchschnittlich 10 % gesenkt. Dadurch Ändern sich alle Emissionen des nationalen Luftverkehrs und somit die Emissionen des Sektors Verkehr.</p> <p>- Die Regionalisierungsdaten aus weiteren amtlichen und nichtamtlichen Quellen wurden hinsichtlich Datenverfügbarkeit zum jeweiligen Berichtsjahr überprüft und aktualisiert, sowie die Detailberechnungen methodisch vereinheitlicht.</p> <p>- Die den regionalen Straßenverkehrsemissionen zugrundeliegenden Jahresfahrleistungen wurden ab dem Jahr 2010 einer grundlegenden Revision unterzogen. Das Verkehrszählungsjahr 2010, das die Basis für die Fortschreibung der Jahre 2011 bis 2014 bildet, greift auf deutlich veränderte Zählergebnisse nach dem neuen Verkehrsmonitoring zurück. Die Verkehrszählung 2015 bildet bis zur nächsten Zählung die Basis für künftige Fortschreibungen ab 2016. Details hierzu finden Sie im Glossar des Internetauftritts des Statistischen Landesamtes unter dem Thema "Verkehr", Unterthema "KFZ und Verkehrsbelastung", Jahresfahrleistungen im Straßenverkehr (<a href="https://www.statistik-bw.de/Glossar/456">https://www.statistik-bw.de/Glossar/456</a>)</p> <p>- Aus methodischen Gründen werden die regionalen Straßenverkehrsemissionen aus Strom erst ab Berichtsjahr 2016 ausgewiesen.</p> <p>-Die Vergleichbarkeit der Ergebnisse mit früheren Berechnungsjahren sind eingeschränkt.</p> <p>[statistisches Landesamt Baden-Württemberg]: <a href="https://www.statistik-bw.de/">https://www.statistik-bw.de/</a></p> <p><strong>Quelle der Daten</strong>: <a href="https://www.statistik-bw.de/">Statistisches Landesamt Baden-Württemberg</a></p>

Indikator: Vermiedene THG-Emissionen durch erneuerbare Energien

<p>Die wichtigsten Fakten</p><p><ul><li>In den Bereichen Strom, Wärme und Verkehr werden fossile Energieträger zunehmend durch erneuerbare Energien ersetzt.</li><li>Etwa vier Fünftel der vermiedenen Emissionen wurden 2024 durch erneuerbaren Strom vermieden.</li><li>Die Bundesregierung will den Anteil erneuerbarer Energien deutlich ausbauen und die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>⁠-Emissionen damit weiter senken.</li></ul></p><p>Welche Bedeutung hat der Indikator?</p><p>Jeder Wirtschaftsprozess ist mit dem Einsatz von Energie verbunden. Derzeit sind sowohl in Deutschland als auch weltweit fossile Energieträger wie Kohle, Erdöl oder Erdgas die wichtigsten Energiequellen. Bei der Verbrennung fossiler Brennstoffe werden Treibhausgase ausgestoßen. Dies ist der wichtigste Treiber des globalen Klimawandels.</p><p>Ein wesentlicher Ansatz für den ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimaschutz#alphabar">Klimaschutz</a>⁠ ist deshalb, die Volkswirtschaft auf saubere Energieformen umzustellen, insbesondere auf erneuerbare Energien. Der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a>⁠ zeigt den Beitrag der erneuerbaren Energien zur Vermeidung von ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>⁠-Emissionen und damit zur Erreichung der Klimaschutzziele an.</p><p>Auch der effizientere Einsatz von Energie (Energieeffizienz) spielt eine wichtige Rolle bei der Erreichung der Klimaziele. Jedoch kann Energieeffizienz nur schwer direkt gemessen werden. Mit dem Indikator <a href="https://www.umweltbundesamt.de/daten/umweltindikatoren/indikator-endenergieproduktivitaet">"Energieproduktivität"</a> liegt ein allgemeines Maß für die Energieeffizienz einer Volkswirtschaft vor.</p><p>Wie ist die Entwicklung zu bewerten?</p><p>In den letzten Jahrzehnten wurden die erneuerbaren Energien in Deutschland stark ausgebaut. Im Jahr 2024 konnten durch ihre Nutzung 259 Millionen Tonnen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Kohlendioxid-quivalente#alphabar">Kohlendioxid-Äquivalente</a>⁠ vermieden werden, welche sonst zusätzlich durch die Nutzung fossiler Energieträger entstanden wären. Die Stromerzeugung aus erneuerbaren Energien trug im Jahr 2024 ungefähr 80 % zu der durch erneuerbare Energien insgesamt vermiedenen Menge an Treibhausgasen bei. Der Wärmebereich war für 15 % verantwortlich und die Nutzung von Biokraftstoffen und Strom im Verkehr für etwa 5 %.</p><p>Die Bundesregierung strebt mit dem „<a href="https://www.bundesregierung.de/breg-de/schwerpunkte/klimaschutz/massnahmenprogramm-klima-1679498">Klimaschutzprogramm 2030</a>“ von 2019 an, den Ausstoß von Treibhausgasen bis 2030 um 55 % unter den Wert von 1990 zu senken. Bis 2045 soll der Ausstoß laut dem <a href="https://www.bundesregierung.de/breg-de/themen/klimaschutz/klimaschutzgesetz-2021-1913672">Klimaschutzgesetz 2021</a> von 2021 auf Null sinken. Zur Erreichung dieser Ziele sollen insbesondere die erneuerbaren Energien einen wichtigen Beitrag leisten. Eine Bewertung des deutschen Erneuerbaren-Anteils und der Erneuerbaren-Ziele finden sich in den Indikatoren „<a href="https://www.umweltbundesamt.de/daten/umweltindikatoren/indikator-erneuerbare-energien">Anteil Erneuerbare am Bruttoendenergieverbrauch</a>“ und „<a href="https://www.umweltbundesamt.de/indikator-anteil-erneuerbare-am">Anteil Erneuerbare am Bruttostromverbrauch</a>“. Mit dem Ausbau der Erneuerbaren werden auch die durch sie vermiedenen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>⁠-Emissionen weiter deutlich zunehmen.</p><p>Wie wird der Indikator berechnet?</p><p>Für die Berechnung des Indikators wird angenommen, dass Energie, die heute aus erneuerbaren Energiequellen gewonnen wird, nicht mehr durch einen fossilen Energiemix bereitgestellt werden muss. Die für diese Energiemenge eingesparten Emissionen werden im ⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a>⁠ veranschaulicht. Dabei deckt der Indikator auch die Emissionen erneuerbarer Energieträger ab, welche während Produktion, Installation oder Wartung anfallen (sogenannte Vorkettenemissionen). Die detaillierte Methodik zur Berechnung des Indikators wird in der Publikation „<a href="https://www.umweltbundesamt.de/publikationen/emissionsbilanz-erneuerbarer-energietraeger-2023">Emissionsbilanz erneuerbarer Energieträger 2023"</a> beschrieben .</p><p><strong>Ausführliche Informationen zum Thema finden Sie im Daten-Artikel: <a href="https://www.umweltbundesamt.de/daten/energie/erneuerbare-energien-vermiedene-treibhausgase">"Erneuerbare Energien - Vermiedene Treibhausgase"</a>.</strong></p>

1 2 3 4 5163 164 165