API src

Found 24 results.

Sub-seabed CO2 Storage: Impact on Marine Ecosystems (ECO2)

Das Projekt "Sub-seabed CO2 Storage: Impact on Marine Ecosystems (ECO2)" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR) durchgeführt. Objective: The ECO2 project sets out to assess the risks associated with the storage of CO2 below the seabed. Carbon Capture and Storage (CCS) is regarded as a key technology for the reduction of CO2 emissions from power plants and other sources at the European and international level. The EU will hence support a selected portfolio of demonstration projects to promote, at industrial scale, the implementation of CCS in Europe. Several of these projects aim to store CO2 below the seabed. However, little is known about the short-term and long-term impacts of CO2 storage on marine ecosystems even though CO2 has been stored sub-seabed in the North Sea (Sleipner) for over 13 years and for one year in the Barents Sea (Snhvit). Against this background, the proposed ECO2 project will assess the likelihood of leakage and impact of leakage on marine ecosystems. In order to do so ECO2 will study a sub-seabed storage site in operation since 1996 (Sleipner, 90 m water depth), a recently opened site (Snhvit, 2008, 330 m water depth), and a potential storage site located in the Polish sector of the Baltic Sea (B3 field site, 80 m water depth) covering the major geological settings to be used for the storage of CO2. Novel monitoring techniques will be applied to detect and quantify the fluxes of formation fluids, natural gas, and CO2 from storage sites and to develop appropriate and effective monitoring strategies. Field work at storage sites will be supported by modelling and laboratory experiments and complemented by process and monitoring studies at natural CO2 seeps that serve as analogues for potential CO2 leaks at storage sites. ECO2 will also investigate the perception of marine CCS in the public and develop effective means to disseminate the project results to stakeholders and policymakers. Finally, a best practice guide for the management of sub-seabed CO2 storage sites will be developed applying the precautionary principle and valuing the costs for monitoring and remediation.

Integrated non-CO2 Greenhouse gas Observing System (INGOS)

Das Projekt "Integrated non-CO2 Greenhouse gas Observing System (INGOS)" wird vom Umweltbundesamt gefördert und von Netherlands Energy Research Foundation , Stichting Energie-onderzoek Centrum Nederland durchgeführt. InGOS will support and integrate the observing capacity of Europe for non-CO2 greenhouse gases (NCGHG: CH4, N2O, SF6, H2 and halocarbons). The emissions of these gases are very uncertain and it is unknown how future climate change will feedback into the land use coupled emissions of CH4 and N2O. The NCGHG atmospheric abundances will increase further in the future and the emissions of these gases are an attractive target for climate change mitigation policies. InGOS aims to improve the existing European observation system so that this will provide us insight into the concentration levels and European and extra-European emissions of the NCGHGs. The data from the network will enable to better constrain the emissions of NCGHGs within the EU and show whether emission reduction policies are effective. The data from the network is designed to allow to detect the spatial and temporal distribution (hotspots) of the sources and to detect changes in emissions due to mitigation and feedbacks with climate change. To strengthen the European observation system, the project has several objectives: - Harmonize and standardize the measurements. - Provide capacity building in new member states and countries with inadequate existing infrastructure. - Support existing observation sites and transfer of selected sites into supersites. - Integrate and further integrate marine observations of the NCGHGs with land-based observations - Improve measurement methods by testing new innovative techniques and strategies. - Test advanced isotope techniques for application in the network to enable attribution of the atmospheric fractions to source categories - Integrate data for network evaluation by using inverse modeling and data-assimilation methods and developments in bottom up inventories - Link the network to remote sensing data of column abundances from in-situ and satellite observations - Prepare for the integration of the NCGHG network with the Integrated Carbon Observation System.

ROBIN - Die Rolle von Biodiversität und Ökosysteme für die Reduktion von Klimawandelfolgen

Das Projekt "ROBIN - Die Rolle von Biodiversität und Ökosysteme für die Reduktion von Klimawandelfolgen" wird vom Umweltbundesamt gefördert und von Natural Environment Research Council durchgeführt. Um das volle Potential von tropischen Wäldern für die Reduktion von Klimawandelfolgen (CCM) und das Angebot von anderen Ökosystemleistungen unter Bedingungen des globalen Wandels zu verstehen, müssen wir unser Verständnis der Beziehungen zwischen Biodiversität (BD) und sozio-ökologischen Prozessen, durch die wir auf Veränderung reagieren und uns anpassen, verbessern. ROBIN bietet Informationen für Politik- und Ressourcennutzungsoptionen mittels Szenarien des sozio-ökonomischen und klimabezogenem Wandels durch: Quantifizierung von Interaktionen zwischen terrestrischer Biodiversität, Landnutzung und CCM Potential im tropischen Lateinamerika; Entwicklung von Szenarien für CCM Optionen durch eine Evaluation ihrer Effektivität, ihrer unbeabsichtigten Auswirkungen auf andere ökosystemare Leistungen (z.B. Verringerung von Krankheitsfällen) und ihrer sozio-ökologischen Konsequenzen. Erreichen wollen wir das durch die Kombination von neuen Techniken (inkl. Fernerkundung) für Biodiversitätsmessungen in komplexen multi-funktionalen Landschaften, durch datenbasierte Analyse, und durch integrierte Modellierung und partizipative Ansätze auf lokaler und regionaler Ebene. Anhand einer Reihe von Fallbeispielen in Mesoamerika und in Amazonien versuchen wir die Beziehungen zwischen Biodiversität und CCM Optionen und Entwicklungen in der Ernährungspolitik zu verstehen. Diese Studien verbessern unser Wissen zu CCM Optionen, die der von Stakeholdern favorisiert werden, und unser Verständnis für Faktoren, die die Einführung von Ressourcenmanagementstrategien behindern oder fördern.

Prüfung der Pfade für die Verringerung des Klimawandels und Bewertung der Belastbarkeit von Schätzungen der Kosten dieser Verringerung

Das Projekt "Prüfung der Pfade für die Verringerung des Klimawandels und Bewertung der Belastbarkeit von Schätzungen der Kosten dieser Verringerung" wird vom Umweltbundesamt gefördert und von Potsdam-Institut für Klimafolgenforschung e.V. durchgeführt. Die Kosten von Klimaschutz sollen besser abschätzbar werden. Zu diesem Zweck lassen Forscherteams aus zwölf Ländern ihre Computermodelle von Energie-Wirtschaft-Klima gegeneinander antreten. Deren Prognosen sollen tauglicher gemacht werden für Entscheidungen der Politik über Emissionsreduktionen oder Technologieförderung; sie fließen auch in den nächsten Report des Weltklimarats IPCC ein. Vier Herausforderungen für die Klimapolitik soll das Projekt angehen. (1.) Rückkopplungseffekte in der Reaktion des Klimas auf die Treibhausgasemissionen - beispielsweise durch das Entweichen von Methan beim Tauen des sibirischen Permafrostbodens - können erhebliche Auswirkungen auf den Klimaschutz haben. Das soll genauer untersucht werden. Analysiert wird (2.) die Bedeutung der Verfügbarkeit von Technologien zur Emissionsvermeidung und die Bedeutung des Planungshorizonts in Politik und Energiewirtschaft. Hier geht es um die Schwierigkeit, langfristige Klimaschutzziele mit begrenzten Mitteln und Planungshorizonten zu erreichen. Geklärt werden soll (3.) die Relevanz von fragmentierter Klimapolitik, wenn etwa nicht alle Regionen oder Wirtschaftszweige mitmachen. Bislang ist genau das die Realität - die Entscheider befürchten lässt, dass in den einen Ländern oder Branchen eine sinkende Nachfrage nach fossilen Brennstoffen deren Preis drückt, wodurch in anderen Ländern oder Branchen die Nachfrage steigt. Dieser Effekt soll in dem Forschungsprojekt nun quantifiziert werden. Und schließlich (4.) geht es um die Konsequenzen hieraus für die Klimapolitik in der EU. Projektpartner sind: 21 Partner aus China, Indien, Japan und neun europäischen Ländern von Griechenland bis Großbritannien.

Roadmaps towards Sustainable Energy Futures (RoSE)

Das Projekt "Roadmaps towards Sustainable Energy Futures (RoSE)" wird vom Umweltbundesamt gefördert und von Potsdam-Institut für Klimafolgenforschung e.V. durchgeführt. In cooperation with FEEM in Italy and JGCR Institute in the USA PIK scientists set up a model-based analysis of the economy of climate policies targeting at carbon dioxid stabilization at 450 and 550 ppm. The aim of this project is to provide a portfolio of roadmaps for establishing sustainable energy systems that also shows options for ambitious aims in climate policy.

CO2 Site Closure Assessment Research (CO2CARE)

Das Projekt "CO2 Site Closure Assessment Research (CO2CARE)" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. CO2CARE aims to support the large scale demonstration of CCS technology by addressing the research requirements of CO2 storage site abandonment. It will deliver technologies and procedures for abandonment and post-closure safety, satisfying the regulatory requirements for transfer of responsibility. The project will focus on three key areas: well abandonment and long-term integrity; reservoir management and prediction from closure to the long-term; risk management methodologies for long-term safety. Objectives will be achieved via integrated laboratory research, field experiments and state-of-the-art numerical modelling, supported by literature review and data from a rich portfolio of real storage sites, covering a wide range of geological and geographical settings. CO2CARE will develop plugging techniques to ensure long-term well integrity; study the factors critical to long-term site safety; develop monitoring methods for leakage detection; investigate and develop remediation technologies. Predictive modelling approaches will be assessed for their ability to help define acceptance criteria. Risk management procedures and tools to assess post-closure system performance will be developed. Integrating these, the technical criteria necessary to assess whether a site meets the high level requirements for transfer of responsibility defined by the EU Directive will be established. The technologies developed will be implemented at the Ketzin site and dry-run applications for site abandonment will be developed for hypothetical closure scenarios at Sleipner and K12-B. Participation of partners from the US, Canada, Japan and Australia and data obtained from current and closed sites will add to the field monitoring database and place the results of CO2CARE in a world-wide perspective. Research findings will be presented as best-practice guidelines. Dissemination strategy will deliver results to a wide range of international stakeholders and the general public.

Greenhouse gas management in European land use systems (GHG Europe)

Das Projekt "Greenhouse gas management in European land use systems (GHG Europe)" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Department für Biologie, Zentrum Holzwirtschaft des Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei durchgeführt. Objective: The GHG-Europe project aims to improve our understanding and capacity for predicting the European terrestrial carbon and greenhouse gas (GHG) budget by applying a systematic, comprehensive and integrative approach. GHG-Europe quantifies the annual to decadal variability of the carbon and GHG budgets of terrestrial ecosystems in EU27 plus Switzerland and in six data-rich European regions via data-model integration, diagnostic and predictive modelling. Models are calibrated by multi-site observations. Research includes CO2, CH4 and N2O in forests, croplands, grasslands, shrublands, peatlands and soils. Via an integrated approach, GHG Europe scales up consistently from local to regional and continental scale via scale dependent error propagation and systematic quantification of uncertainties, model validation at different scales and top-down verification by atmospheric inversion models. At regional and European scale lateral C transport by land use, trade and rivers are included. Variability in C and GHG budgets is attributed to natural (climate) and anthropogenic drivers (N deposition, land use, past and present management) by synthesis of past and emerging experiments, targeted observations in hot spots and hot moments and model sensitivity analyses. For this purpose, observations are extended to under-sampled regions and ecosystems with likely high importance for the European C budget: forests and land use change in Eastern Europe and Mediterranen shrublands. The future vulnerability of carbon pools and risks of positive feedbacks in the climate-carbon system are assessed by scenario analyses with biophysical models and by integrating feedbacks with socio-economic changes and EU climate and land use policies. GHG-Europe uses a bidirectional interaction with stakeholders to provide regular and timely scientific advice targeted to the emerging needs of the UNFCCC process and for implementing post-2012 climate commitments in Europe.

Climate change predictions in Sub-Saharan Africa: impacts and adaptations (CLIMAFRICA)

Das Projekt "Climate change predictions in Sub-Saharan Africa: impacts and adaptations (CLIMAFRICA)" wird vom Umweltbundesamt gefördert und von CMCC - Euro-Mediterranean Centre for Climate Change Ltd. durchgeführt. Objective: Africa is probably the most vulnerable continent to climate change and climate variability and shows diverse range of agro-ecological and geographical features. Thus the impacts of climate change can be very high and will greatly differ across the continent, and even within countries. There is a urgent need for the most appropriate and up-to-date tools to better understand and predict climate change, assess its impact on African ecosystems and population, and develop the correct adaptation strategies. In particular the current proposal will focus on the following specific objectives: 1- Develop improved climate predictions on seasonal to decadal climatic scales, especially relevant to SSA; 2- Assess climate impacts in key sectors of SSA livelihood and economy, especially water resources and agriculture; 3- Evaluate the vulnerability of ecosystems and civil population to inter-annual variations and longer trends (10 years) in climate; 4- Suggest and analyse new suited adaptation strategies, focused on local needs; 5- Develop a new concept of 10 years monitoring and forecasting warning system, useful for food security, risk management and civil protection in SSA; 6- Analyse the economic impacts of climate change on agriculture and water resources in SSA and the cost-effectiveness of potential adaptation measures. These objectives will be achieved by an integrated working approach that involves 9 European, 8 African and 1 International Organization.

MEDiterranean Sea Acidification in a changing climate (MEDSEA)

Das Projekt "MEDiterranean Sea Acidification in a changing climate (MEDSEA)" wird vom Umweltbundesamt gefördert und von Universitat Autonoma de Barcelona durchgeführt. Objective: Increases of atmospheric CO2 and associated decreases in seawater pH and carbonate ion concentration this century and beyond are likely to have wide impacts on marine ecosystems including those of the Mediterranean Sea. Consequences of this process, ocean acidification, threaten the health of the Mediterranean, adding to other anthropogenic pressures, including those from climate change. Yet in comparison to other areas of the world ocean, there has been no concerted effort to study Mediterranean acidification, which is fundamental to the social and economic conditions of more than 400 million people living along its coastlines and another 175 million who visit the region each year. The MedSeA project addresses ecologic and economic impacts from the combined influences of anthropogenic acidification and warming, while accounting for the unique characteristics of this key region. MedSeA will forecast chemical, climatic, ecological-biological, and socio-economical changes of the Mediterranean driven by increases in CO2 and other greenhouse gases, while focusing on the combined impacts of acidification and warming on marine shell and skeletal building, productivity, and food webs. We will use an interdisciplinary approach involving biologists, earth scientists, and economists, through observations, experiments, and modelling. These experts will provide science-based projections of Mediterranean acidification under the influence of climate change as well as associated economic impacts. Projections will be based on new observations of chemical conditions as well as new observational and experimental data on the responses of key organisms and ecosystems to acidification, which will be fed into existing ocean models that have been improved to account for the Mediterranean's fine-scale features. These scientific advances will allow us to provide the best advice to policymakers who must develop regional strategies for adaptation and mitigation.

Forest fires under climate, social and economic changes in Europe, the Mediterranean and other fire-affected areas of the world (FUME)

Das Projekt "Forest fires under climate, social and economic changes in Europe, the Mediterranean and other fire-affected areas of the world (FUME)" wird vom Umweltbundesamt gefördert und von Universidad Ciudad Real durchgeführt. Objective: Fire regimes result from interactions between climate, land-use and land-cover (LULC), and socioeconomic factors, among other. These changed during the last decades, particularly around the Mediterranean. Our understanding of how they affected fire regime in the past is limited. During this century temperatures, drought and heat waves will very likely increase, and rainfall decrease. These and further socioeconomic change will affect LULC. Additional areas will be abandoned due to being unsuitable for agriculture or other uses. Fire danger and fire hazard are very likely to increase, affecting fire regimes. FUME will learn from the past to understand future impacts. Mod. 1 we will study how LULC and socioeconomics changed and how climate and weather affected fire in dynamically changing landscapes. Fires will be mapped throughout Europe to determine hazard burning functions for LULC types. Since climate has changed, an attempt to attribute (sensu IPCC) fire regime change to climate, differentiating it from socioeconomic change, will be made. Mod. 2 will produce scenarios of change (climate, including extremes, land-use land-cover, socioeconomics, vegetation) for various emissions pathways and three time-slices during this century. With these and results from Mod.1, models and field experiments projected impacts on fire-regime and vegetation vulnerabilities will be calculated, including climate extremes (drought, heat-waves). Mod. 3 will investigate adaptation options in fire- and land-management, including restoration. Fire prevention and fire fighting protocols will be tested/developed under the new conditions to mitigating fire risks. A company managing fire will be a key player. Costs and policy impacts of changes in fire will be studied. Research will focus on old and new fire areas, the rural interface, whole Europe and the Mediterranean, including all Mediterranean countries of the world. Users will be involved in training and other activities.

1 2 3