API src

Found 20 results.

Related terms

Altpapier

Altpapier Die Papierindustrie setzte im Jahr 1990 knapp 49 Prozent Altpapier ein, 2015 74 Prozent und im Jahr 2023 rund 83 Prozent. Diese Steigerung senkte den Holz-, Wasser- und Primärenergieverbrauch pro Tonne Papier. Das Mehr an Papierkonsum relativierte jedoch den Effizienzgewinn. Zudem gefährden Verunreinigungen aus Druckfarben, Kleb- und Papierhilfsstoffen inzwischen das Altpapierrecycling. Vom Papier zum Altpapier Im Jahr 2023 wurden rechnerisch in Deutschland 175,6 Kilogramm (kg) Pappe, Papier und Karton pro Kopf verbraucht. Diese Zahl bezieht neben dem Verbrauch in den privaten Haushalten auch den gesamten Verbrauch an Papier in Wirtschaft, Medien und Verwaltungen mit ein. In privaten Haushalten beträgt die jährlich verbrauchte Papiermenge ca. 105 kg pro Kopf ( INTECUS GmbH ). Dies entspricht einem rechnerischen Gesamtverbrauch von 14,9 Millionen Tonnen (Mio. t). Im gleichen Jahr haben private und kommunale Entsorger 12,7 Mio. t Altpapier gesammelt. Dies ergibt eine Altpapierrücklaufquote von 85 % (siehe Tab. „Papiererzeugung, Papierverbrauch und Altpapierverbrauch“). Die deutsche Papierindustrie Die deutsche Papierindustrie stellte im Jahr 2023 rund 18,6 Mio. t Papier, Pappe und Kartonagen her. Sie setzte dafür rund 15,5 Mio. t Altpapier ein. Die Altpapiereinsatzquote – also der Altpapieranteil an der gesamten inländischen Papierproduktion – lag damit bei rund 83 %. Diese Quote stieg seit dem Jahr 2000 um 23 Prozentpunkte (siehe Tab. „Altpapiereinsatzquoten in Prozent“). Der deutschen Papierindustrie gelang es auf diese Weise, ihre spezifischen Umweltbelastungen zu verringern. Die hohe Altpapiereinsatzquote von 83 % lässt sich kaum noch erhöhen. Dennoch ist es technisch etwa möglich, mehr Altpapier bei der Herstellung von Zeitschriften-, Büro- und Administrationspapieren und vor allem bei der Herstellung von Hygienepapieren zu nutzen. Eine Nachfragesteigerung seitens Verbraucherinnen und Verbraucher würde dies befördern. Der Altpapiereinsatz bei der Herstellung von Hygienepapieren fällt erneut auf nunmehr 40 %. Dies liegt an der Abnahme weißer Altpapiere im Markt durch den Rückgang der graphischen Papiere, bedingt durch die fortschreitende Digitalisierung, bei gleichzeitiger Zunahme von Verpackungspapieren. Der Rohstoff Altpapier ist knapp. Der Einsatz von Altpapier ist vorteilhaft, da Fasern aus Hygienepapieren nach der Nutzung nicht für ein weiteres Recycling zur Verfügung stehen. Bei der Herstellung von Zeitungsdruck- und Wellpappenrohpapieren wurde im Jahr 2023 statistisch gesehen mehr als 100 % Altpapier eingesetzt. Der Grund ist, dass bei der Aufbereitung von Altpapier Sortierreste und alle Verunreinigungen, welche die Qualität des Neupapiers beeinträchtigen, abgeschieden werden. Dabei gehen auch in geringem Umfang Papierfasern verloren, deshalb wird in der Produktion bis zu 20 % mehr Rohstoff, der aber auch papierfremde Bestandteile enthält, eingesetzt. Die Altpapierverwertungsquote, also der Altpapierverbrauch im Verhältnis zum gesamten Papierverbrauch, lag 2023 bei über 100 % (siehe Abb. „Altpapierverwertungsquoten“). Es wurde mehr Altpapier für die Herstellung von Recyclingpapier verbraucht als Papier in Deutschland verbraucht wurde. Das liegt daran, dass mehr Papier für den Export produziert wurde und weniger im Inland verbraucht wurde. Tab: Altpapiereinsatzquoten in Prozent Quelle: DIE PAPIERINDUSTRIE e. V. Diagramm als PDF Diagramm als Excel mit Daten Altpapierverwertungsquote Quelle: DIE PAPIERINDUSTRIE e. V. Diagramm als PDF Diagramm als Excel mit Daten Energieeffiziente Papierherstellung Papier, Pappe und Kartonagen wurden im Jahr 2023 energieeffizienter hergestellt als im Jahr 1990. Der mittlere Energieeinsatz bezogen auf eine Tonne erzeugtes Papier sank in diesem Zeitraum von 3,413 auf 2,789 Megawattstunden (MWh). Diese Effizienzsteigerung wurde durch die erhöhte Produktion im selben Zeitraum überkompensiert. So stellte die deutsche Papierindustrie im Jahr 2023 rund 32 % mehr Papier, Pappe und Kartonagen her als im Jahr 1990. Die Emissionen an fossilem Kohlendioxid pro Tonne Papier konnten trotzdem seit 1990 um etwa ein Drittel gesenkt werden. Sie liegen jetzt bei 526 kg Kohlendioxid pro Tonne produzierten Papiers. Das liegt vor allem am zunehmenden Einsatz von alternativen Brennstoffen und dem steigenden Anteil an erneuerbaren Strom im deutschen Strommix. Die Papierbranche bemüht sich einerseits, den Energieverbrauch weiter zu senken. Gleichzeitig investieren viele Unternehmen in zusätzliche Prozessstufen, um aus dem Rohstoff Altpapier Papiere mit höheren Weißgraden und glatterer Oberfläche herzustellen. Dafür benötigen sie mehr Energie, da mehr Fasern aussortiert und diese stärker gereinigt und gebleicht werden. Der Gesamtenergieeinsatz stieg daher von 157 Petajoule (PJ) im Jahr 1990 um gut 20 % auf 188 PJ im Jahr 2023 (Leistungsbericht Papier 2024). Tipp zum Weiterlesen: DIE PAPIERINDUSTRIE e. V., Leistungsbericht PAPIER 2024. Der Bericht kann beim Verband DIE PAPIERINDUSTRIE e. V. unter https://www.papierindustrie.de/papierindustrie/statistik bestellt werden Grafische Papiere Die grafischen Papiere sind nach den Verpackungspapieren das mengenmäßig wichtigste Papiersegment. Darunter fallen alle Papiere, die für Zeitungen, Zeitschriften, Schreib- oder Kopierpapiere verwendet werden. Für diese grafischen Papiere hat das Umweltbundesamt 2020 in einer Ökobilanz erneut überprüfen lassen, welche Umweltwirkungen während des gesamten Lebensweges der Papiere entstehen und welche Umweltentlastungspotenziale der Einsatz von Altpapieren im Produktionsprozess bietet. Demnach besitzt Recyclingpapier deutliche ökologische Vorteile gegenüber Frischfaserpapieren (Primärfaserpapieren). Der Holzverbrauch verringert sich und steht für langlebigere Nutzungen zur Verfügung. Recyclingpapier muss nicht so intensiv gebleicht werden, wie es bei der Herstellung von Frischfaserpapier der Fall ist. Für die Gewinnung von Recyclingpapier wird damit nur die Hälfte an Energie benötigt und zwischen einem Siebtel bis zu einem Drittel der Wassermenge, die bei Frischfaserpapier eingesetzt wird. Auch die ⁠ Treibhausgas ⁠-Emissionen sind bei Recyclingpapieren auf dem deutschen Markt durchschnittlich 15 % geringer als bei Frischfaserpapieren, auch wenn integrierte Zellstoff- und Papierfabriken aus Frischfaser bessere Treibhausgasbilanzen aufweisen können. Die Wälder werden durch die Verwendung von Recyclingpapier geschont und damit Verlust an ⁠ Biodiversität ⁠ durch intensive Forst- und Plantagenwirtschaft und deren soziale und ökologische Folgen weltweit verringert. Ein höheres Altpapierrecycling ist für praktisch alle betrachteten Wirkungskategorien günstiger zu bewerten: Dies betrifft die Knappheit fossiler Energieträger, Treibhauspotenzial, Sommersmog, Versauerungspotenzial und Überdüngung von Böden und Gewässern. Das heißt konkret: Wer beim Kauf von einem Paket Papier mit 500 Blatt, das etwa 2,5 Kilogramm (kg) wiegt, zu Recyclingqualität greift, spart 5,5 kg Holz. Mit den 7,5 Kilowattstunden Energie, die man bei Kauf eines Paketes Recyclingkopierpapier zusätzlich spart, kann man 525 Tassen Kaffee kochen. Der Wald wird geschont. Tipp zum Weiterlesen: Broschüre „Papier. Wald und Klima schützen“ Mögliche Schadstoffanreicherung im Papier Das Schließen von globalen Stoffkreisläufen und die hohe Zahl an Recyclingzyklen kann jedoch auch einen negativen Aspekt haben: So treten immer wieder erhöhte Gehalte unerwünschter Stoffe in den Altpapierkreisläufen auf. Es handelt sich dabei um Chemikalien, die an Papierfasern gut haften und wasserlöslich sind. Beispiele hierfür sind bestimmte Mineralölbestandteile in Druckfarben, per- und polyfluorierte Verbindungen (⁠ PFAS ⁠), Bisphenol S aus Kassenzetteln und gewisse Phthalate aus Klebstoffen. Diese Chemikalien können Altpapier verunreinigen, wenn etwa neue Papierprodukte wie Thermopapier oder neue Druckverfahren mit den dazugehörige Druckfarben, Bindungen, oder Verbundmaterialien entwickelt werden, die nicht auf ihre Auswirkungen auf die Recyclingkreisläufe geprüft werden. Dabei kommt erschwerend hinzu, dass auch Stoffe, die in Deutschland schon seit Jahren nicht mehr eingesetzt werden, wie z.B. Phthalate in Klebstoffen, in anderen Ländern noch im Einsatz sind und hier in Deutschland über den Recyclingkreislauf wieder in das Papier eingetragen werden. Diese Verunreinigungen gefährden den Einsatz von Altpapier etwa als Verpackung für Cerealien, Mehl oder Reis und anderen Lebensmittelkontaktpapieren. Denn sowohl die Bedarfsgegenständeverordnung als auch die Empfehlung „XXXVI. Papiere, Kartons und Pappen für den Lebensmittelkontakt“ des Bundesinstitutes für Risikobewertung geben für den Gehalt an Schadstoffen in Papier, Pappe und Kartons Obergrenzen vor. Einige dieser Verunreinigungen gelangen nicht bei der Papierherstellung in den Kreislauf, sondern wenn etwa Wellpappenhersteller, Drucker und Verpacker Papier nutzen und weiter verarbeiten. Diese Unternehmen sind mitunter nicht ausreichend sensibilisiert oder motiviert, nur Stoffe einzusetzen, die für das Recycling unkritisch sind. Hier gilt es, durch ein vernetztes Denken und Handeln bei allen Beteiligten die erforderliche Sensibilität zu schaffen, damit das erreichte hohe Verwertungsniveau bei Altpapier nicht gefährdet wird und durch die Verwertung von Altpapier auch zukünftig ein wichtiger Beitrag zum ressourceneffizienten Umgang mit Rohstoffen geleistet werden kann. Das Umweltbundesamt setzt sich für eine Vermeidung von Verunreinigungen möglichst an der Quelle ein.

Ammoniak-Emissionen

Ammoniak-Emissionen Die Ammoniak-Emissionen stammen im Wesentlichen aus der Tierhaltung und weiteren Quellen in der Landwirtschaft. Von 1990 bis 2022 sanken die Ammoniak-Emissionen aus der Landwirtschaft um etwa 30 Prozent. Entwicklung seit 1990 Von 1990 bis 2022 sanken die Ammoniak-Emissionen (NH 3 ) im Gesamtinventar um 222 Tausend Tonnen (Tsd. t) oder 30 %. Die Emissionen stammen hauptsächlich aus der Landwirtschaft (um die 92 % Anteil an den Gesamtemissionen). Die Emissionsreduktionen in den ersten Jahren unmittelbar nach der Wiedervereinigung lassen sich auf den strukturellen Umbau in den neuen Bundesländern zurückführen. Seit der Berichterstattung 2016 werden auch Ammoniak-Emissionen aus Lagerung und Ausbringung von Gärresten nachwachsender Rohstoffe (NAWARO) der Biogasproduktion berücksichtigt, deren Zunahme auf den Ausbau der Anlagen zurückzuführen ist. Zusätzlich werden Emissionen aus der Klärschlammausbringung betrachtet. Die Ammoniak-Emissionen aus der Landwirtschaft dominieren seit Mitte der 1990er Jahre auch die in Säure-Äquivalenten berechneten, summierten Emissionen der Säurebildner Schwefeldioxid (SO 2 ), Stickstoffoxide (NO x ) und Ammoniak (NH 3 ). Berechnet man das Versauerungspotenzial dieser drei Schadstoffe, so ergibt sich wegen der erheblich stärkeren Emissionsminderung bei SO 2 und NO x ein steigender Einfluss von NH 3 und somit der Landwirtschaft. Von 16 % im Jahre 1990 stieg der Emissionsanteil der Landwirtschaft bei den Säurebildnern bis 2022 auf 51 % (siehe Tab. „Emissionen ausgewählter Luftschadstoffe nach Quellkategorien“). Ammoniak-Emissionen nach Quellkategorien Quelle: Umweltbundesamt Diagramm als PDF Tab: Emissionen ausgewählter Luftschadstoffe nach Quellkategorien Quelle: Umweltbundesamt Tabelle als PDF zur vergrößerten Darstellung Verursacher Ammoniak (NH 3 ) entsteht vornehmlich durch Tierhaltung und in geringerem Maße durch die Düngemittelverwendung sowie die Lagerung und Ausbringung von Gärresten der Biogasproduktion in der Landwirtschaft. Von geringerer Bedeutung sind industrielle Prozesse (Herstellung von Ammoniak und stickstoffhaltigen Düngemitteln sowie von kalziniertem Soda), Feuerungsprozesse, Anlagen zur Rauchgasentstickung sowie Katalysatoren in Kraftfahrzeugen. Umweltwirkungen Ammoniak und das nach Umwandlung entstehende Ammonium schädigen Land- und Wasserökosysteme erheblich durch ⁠ Versauerung ⁠ und ⁠ Eutrophierung ⁠ (Nährstoffanreicherung). Mehr Informationen auf der Themenseite Luftschadstoffe im Überblick: Ammoniak . Erfüllungsstand der Emissionsminderungsbeschlüsse Im Göteborg-Protokoll zur ⁠ UNECE ⁠-Luftreinhaltekonvention und in der ⁠ NEC-Richtlinie ⁠ ( EU 2016/2284 ) der EU wird festgelegt, dass die jährlichen NH 3 -Emissionen ab 2020 um 5 % niedriger sein müssen als 2005. Diese Ziele wurden 2021 und 2022 eingehalten. Auf EU-Ebene legt die NEC-Richtlinie ( EU 2016/2284 ) auch fest, dass ab 2030 die jährlichen Emissionen 29 % niedriger gegenüber 2005 sein sollen. Dieses Ziel wurde bisher nicht erreicht.

Emissionen prioritärer Luftschadstoffe

Emissionen prioritärer Luftschadstoffe Seit den 1970-er Jahren führten zahlreiche politische und technische Anstrengungen zur Reduzierung der Emissionen von Schwefeldioxid, Stickstoffoxiden, flüchtigen organischen Verbindungen ohne Methan sowie von Feinstaub. Dennoch sind die Einträge in Ökosysteme nach wie vor zu hoch. Entwicklung seit 2005 Die Bundesregierung hat sich in der Deutschen Nachhaltigkeitsstrategie zum Ziel gesetzt, die Emissionen von Schwefeldioxid (SO 2 ), Stickstoffoxiden (NO x ), Ammoniak (NH 3 ), flüchtigen organischen Verbindungen ohne Methan (⁠ NMVOC ⁠) und Feinstaub (PM 2,5 ) deutlich zu reduzieren. Deutschland hat sich im Rahmen der neuen ⁠ NEC-Richtlinie ⁠ der EU (siehe weiter unten) zu nationalen Emissionsminderungen für diese Stoffe verpflichtet. Ziel der Deutschen Nachhaltigkeitsstrategie ist es, das ungewichtete, arithmetische Mittel der zugesagten Emissionsminderungen (45 %) zu erreichen. Die Verrechnung der Emissionsentwicklungen zu einem Index ermöglicht es, steigende Emissionen einzelner Schadstoffe durch stärkere Eindämmung des Ausstoßes anderer Schadstoffe zu kompensieren. Die Emissionen von Schwefeldioxid sinken am stärksten und zeigen im Jahr 2022 nur noch 54 % des Niveaus des Jahres 2005. Die Emissionen von Stickstoffoxiden und flüchtigen organischen Verbindungen ohne Methan (NMVOC) und Feinstaub zeigen ebenfalls einen stetigen Abwärtstrend und sanken bis 2022 auf etwa 60 % (Stickstoffoxide) bzw. 70 % (NMVOC) und 63 % (Feinstaub PM 2.5 ) des Niveaus von 2005. Die Emissionen von Ammoniak lagen bis 2017 über dem Niveau von 2005 und sinken seitdem sichtbar, die Emissionen im Jahr 2022 liegen aber noch auf 82 % des Jahres 2005. Dadurch fällt der Schadstoff-übergreifende Indikatorwert mit 66 % etwas höher aus (siehe Abb. „Index der Luftschadstoff-Emissionen“). Eine Sonderrolle im Trendverlauf nimmt dabei das Jahr 2009 ein, das durch die Effekte der globalen Wirtschaftskrise geprägt war. Die verminderten Aktivitäten führten zu sichtbaren Einbrüchen und Kompensationseffekten im Folgejahr 2010 bei allen Schadstoffen außer Ammoniak (NH 3 ). Die Schwefeldioxid-Emissionen konnten zwischen 2005 und 2022 deutlich gemindert werden. Wesentliche Gründe hierfür sind die Senkung des Schwefelgehaltes im Heizöl, sowie die Verbesserung der Abgasreinigung in Großfeuerungsanlagen im Zuge der Neufassung der 13. ⁠ BImSchV ⁠ aus dem Jahre 2013. Ebenfalls deutliche Minderungen konnten bei den flüchtigen organischen Verbindungen (ohne Methan) erreicht werden. Zum einen gelang dies durch den Einsatz von lösemittelärmeren Produkten und einen reduzierten Lösemittelverbrauch im industriellen und gewerblichen Bereich. Des Weiteren wirken sich hier die fortschreitende Verschärfung der Abgasgrenzwerte für Kraftfahrzeuge und mobile Maschinen sowie der starke Verbrauchsrückgang von Benzin als Kraftstoff aus. Die Minderung der Stickstoffoxid-Emissionen resultiert in Teilen ebenfalls aus einer fortschreitenden Verschärfung der Abgasgrenzwerte für Kraftfahrzeuge und mobile Maschinen. Eine wichtige Rolle kommt hier aber auch dem Einsatz von Entstickungsanlagen im Kraftwerksbereich zu. Die überwiegend landwirtschaftlich verursachten Ammoniak-Emissionen liegen mit ihren Minderungen der letzten Jahre noch nicht weit unter dem Ausgangswertes des Jahres 2005. Es bleibt abzuwarten ob verschärfte Regelungen wie z.B. die novellierte Düngeverordnung einen nachhaltigen Effekt auf das Emissionsniveau haben werden. Auch die Feinstaub-Emissionen (⁠ PM2,5 ⁠) sind seit dem Jahr 2005 deutlich gesunken. Einen wesentlichen Beitrag leistete hier der zunehmende Einsatz von Partikelfiltern in Kraftfahrzeugen. Die Novellierung der 1. BImSchV führte zu verminderten Emissionen aus Kleinfeuerungsanlagen. Im Industriebereich folgen die Emissionen der Konjunktur sowie dem technischen Fortschritt von Maßnahmen zur Emissionsminderung. Als ⁠ Indikator ⁠ für die ⁠ Versauerung ⁠ wird das Versauerungspotenzial aus den Emissionsangaben der Säurebildner Schwefeldioxid, Stickstoffoxide und Ammoniak ermittelt. Der Anteil der Landwirtschaft (Ammoniak-Emissionen, aber auch Stickstoffoxid-Emissionen aus landwirtschaftlichen Böden) stieg von gut 16 % im Jahre 1990 auf 41 % in 2005 bzw. 51 % im Jahr 2022. Er liegt damit seit Mitte der 90er Jahre höher als der jedes anderen Bereichs (siehe Tab. „Emissionen ausgewählter Luftschadstoffe nach Quellkategorien“). Index der Luftschadstoff-Emissionen Quelle: Umweltbundesamt Diagramm als PDF Diagramm als Excel mit Daten Tab: Emissionen ausgewählter Luftschadstoffe nach Quellkategorien Quelle: Umweltbundesamt Tabelle als PDF zur vergrößerten Darstellung Problematische Stoffe Obwohl der Ausstoß von Luftschadstoffen bis heute deutlich verringert wurde, ist er, gemessen an der dauerhaften Belastbarkeit der Ökosysteme, immer noch zu hoch. Dies gilt besonders für versauernde und eutrophierende Luftverunreinigungen (vor allem Stickstoffoxide und Ammoniak). Die über Jahrzehnte erfolgten Einträge von Schwefel und Stickstoff in die Böden hinterlassen noch für lange Zeit eine kritische Altlast. So haben zum Beispiel viele Waldböden erhebliche Anteile basischer Nährstoffe (zum Beispiel Calcium, Magnesium, Kalium) verloren und versauern. Damit geht auch eine Belastung des Sickerwassers einher. Ammoniak wird im Boden durch Bodenbakterien zu Nitrat oxidiert und ausgewaschen. Hohe Ammoniakdepositionen induzieren damit auch eine stärkere Nitratbelastung des Grundwassers und stellen somit eine Gefährdung unseres Trinkwassers dar. Luftverunreinigungen, insbesondere Stickstoffverbindungen, führen auch zum Rückgang der biologischen Vielfalt. Internationale Vereinbarungen zur Minderung der Emissionen Das Problem des grenzüberschreitenden sauren Regens machte deutlich, dass die Umweltprobleme nur durch internationale Anstrengungen bekämpft werden können. Der Genfer Luftreinhaltekonvention der Wirtschaftskommission für Europa der Vereinten Nationen (UNECE) über weiträumige grenzüberschreitende Luftverunreinigungen im Jahr 1979 folgten acht internationale rechtsverbindliche Vereinbarungen (Protokolle) zur Luftreinhaltung. In den 1980er und 1990er Jahren wurden Protokolle zur Minderung versauernder und eutrophierender Substanzen (1. Schwefelprotokoll, 1985; Stickoxidprotokoll, 1988; 2. Schwefelprotokoll, 1994), in den 1990er Jahren die Protokolle über flüchtige organische Verbindungen (⁠ NMVOC ⁠-Protokoll, 1991) und über die Schwermetalle und schwer abbaubare organische Stoffe (Schwermetallprotokoll und ⁠ POP ⁠-Protokoll, 1998) beschlossen. Die zunehmende Belastung der Umwelt durch bodennahes Ozon und eutrophierenden Stickstoff in den 1990er Jahren machte eine internationale Vereinbarung zur Emissionsreduktion von Ozon-Vorläufersubstanzen (NO x und ⁠ VOC ⁠) und Stickstoffverbindungen notwendig. Mit dem am 1. Dezember 1999 auch von Deutschland unterzeichneten Multikomponentenprotokoll (Göteborg-Protokoll) zur Verringerung von ⁠ Versauerung ⁠, ⁠ Eutrophierung ⁠ und bodennahem Ozon wurde ein integrierter Ansatz mit mehreren Schadstoffkomponenten (NO x , VOC, SO 2 , NH 3 ) einschließlich ihrer Wechselwirkungen eingeführt. Die Vertragsstaaten des Protokolls haben im Mai 2012 weitergehende Emissionsminderungen für das Jahr 2020 ff. sowie zahlreiche weitere Änderungen des Multikomponenten-Protokolls vereinbart. So wurden für Deutschland im Zeitraum 2005 bis 2020 folgende Emissionsminderungsverpflichtungen festgelegt: SO 2 : -21 %, NO x : -39 %, NH 3 : -5 %, NMVOC: -13 % und PM2.5: -26 %. Die Richtlinie über nationale Emissionshöchstmengen (⁠ NEC-Richtlinie ⁠ 2001/81/EG) legt für die EU-Mitgliedsstaaten (wie das Göteborg-Protokoll für UNECE-Staaten) nationale Höchstmengen für die jährlichen Emissionen der geregelten Schadstoffe fest, die seit dem Jahr 2010 nicht mehr überschritten werden dürfen. Die neue NEC-Richtlinie (EU) 2016/2284 enthält zudem relative Minderungsverpflichtungen für die Jahre 2020 und 2030, jeweils ausgedrückt als prozentuale Minderung gegenüber 2005. Für 2020 wurden dabei die Ziele des Göteborg-Protokolls (siehe oben) in den Rechtsakt übernommen. Die neuen Minderungsverpflichtungen für 2030 sind folgende: SO 2 : -58 %, NOx: -65 %, NH3: -29 %, NMVOC: -28 % und PM2.5: -43 %. Ansätze für weitere Maßnahmen Weitere Minderungen der NOx-Emissionen aus dem Straßenverkehr sind vor allem durch anspruchsvolle Abgasstandards für LKW (EURO VI), leichte Nutzfahrzeuge und PKW (EURO 6) sowie durch eine umweltverträgliche Gestaltung des Verkehrs zu erzielen. Selbstverständlich haben Abgasrichtlinien nur eine positive Wirkung, wenn sie nicht nur auf dem Prüfstand, sondern auch auf der Straße eingehalten werden. Im Bereich der Lösemittel (⁠ NMVOC ⁠) besteht die Möglichkeit der Verwendung lösemittelarmer oder freier Produkte in allen Produktbereichen, die durch zusätzliche europäische Regelungen zur Beschränkung des Lösemittelgehaltes in Produkten gefördert werden soll. Potenziale der Luftreinhaltung liegen auch in Energiesparmaßnahmen, der Steigerung der Energieeffizienz (zum Beispiel durch verbrauchsarme Motoren und neue Antriebstechnologien), dem Einsatz von emissionsfreien regenerativen Energien (beziehungsweise weitestgehender Verzicht auf Energieerzeugung aus fossilen Brennstoffen) sowie die Verwendung emissionsarmer Einsatzstoffe und Produkte. Die Reduzierung der Ammoniak-Emissionen aus der Landwirtschaft soll durch die Reform der gemeinsamen europäischen Agrarpolitik und durch verschiedene nationale Agrarumweltmaßnahmen erreicht werden (siehe „Ammoniak-Emissionen“ ).

Klimaschutz durch Kreislaufwirtschaft

in Rheinland-Pfalz [Redaktioneller Hinweis: Die folgende Beschreibung ist eine unstrukturierte Extraktion aus dem originalem PDF] KLIMASCHUTZ DURCH KREISLAUFWIRTSCHAFT in Rheinland-Pfalz IMPRESSUM Herausgeber: Landesamt für Umwelt Rheinland-Pfalz Kaiser-Friedrich-Straße 7, 55116 Mainz www.lfu.rlp.de Bearbeitung: Titelbild: Projektgruppe Klimaschutz durch Kreislaufwirtschaft Nicole Bartenschlager, Eva Bertsch, Anja Blumschein, Julia Borrmann, Timo Gensel, Nicole Herter, Martina Mattern, Dr. Reinhard Meuser, Sabine Zerle LVermGeo Rheinland-Pfalz und Pixabay Layout/Satz: Tatjana Schollmayer Nachdruck und Wiedergabe nur mit Genehmigung des Herausgebers Mainz, Juni 2022 2 INHALT VORWORT8 1ZUSAMMENFASSUNG10 2ELEKTROALTGERÄTE12 3BIOABFÄLLE18 4KUNSTSTOFFABFÄLLE24 5RESTABFÄLLE30 6BAU- UND ABBRUCHABFÄLLE36 7DEPONIEN41 8EFFCHECK46 3 Verzeichnis der Abkürzungen AP · · · · · · · Versauerungspotenzial BGK · · · · · · Bundesgütegemeinschaft Kompost BMUV · · · · · Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz CH4 · · · · · · Methan CO2 · · · · · · Kohlendioxid CO2-eq. · · · · CO2-Äquivalente DIN · · · · · · Deutsches Institut für Normung EAG · · · · · · Elektroaltgeräte EffCheck · · · · EffizienzCheck ElektroG · · · · Elektro- und Elektronikgerätegesetz FCKW · · · · · Fluorchlorkohlenwasserstoffe FID · · · · · · · Flammenionisationsdetektor GWP · · · · · · Global Warming Potential (Treibhauspotenzial) HFKW · · · · · teilhalogenierte Fluorkohlenwasserstoffe HTV · · · · · · Hochtemperaturverfahren KrWG · · · · · Kreislaufwirtschaftsgesetz KS-Recycler · · Kunststoffrecycler KW · · · · · · · Kohlenwasserstoffe LfU · · · · · · · Landesamt für Umwelt Rheinland-Pfalz LKrWG · · · · · Landeskreislaufwirtschaftsgesetz LUBW · · · · · Landesanstalt für Umwelt Baden-Württemberg MBA · · · · · · mechanisch-biologische Abfallbehandlungsanlage MHKW · · · · Müllheizkraftwerk MJ · · · · · · · Megajoule MKUEM · · · · Ministerium für Klimaschutz, Umwelt, Energie und Mobilität Rheinland-Pfalz (Klimaschutzministerium) MVA · · · · · · Müllverbrennungsanlage N2O · · · · · · Lachgas NE-Metalle · · Nichteisenmetalle NH3 · · · · · · Ammoniak o. D. · · · · · · ohne Datum örE · · · · · · · öffentlich-rechtlicher Entsorgungsträger PS · · · · · · · Polystyrol PUR · · · · · · Polyurethan RAL · · · · · · Gütezeichen des Deutschen Instituts für Gütesicherung und Kennzeichnung e. V. · · · · · · · · · (Abk. für Reichsausschuss für Lieferbedingungen) R-Beton · · · · ressourcenschonender Beton RC-Baustoffe · Recycling-Baustoffe SAM · · · · · · SAM Sonderabfall-Management-Gesellschaft Rheinland-Pfalz mbH SLF · · · · · · · Shredderleichtfraktion THG · · · · · · Treibhausgasemissionen UBA · · · · · · Umweltbundesamt VHE · · · · · · Verband Humus und Erdenwirtschaft e. V. 4 Glossar Abfallhierarchie im Kreislaufwirtschaftsgesetz (§ 6 Abs. 1) festgelegte Rangfolge mit Maßnahmen zur Vermeidung und zur Abfallbewirtschaftung: 1. Vermeidung 2. Vorbereitung zur Wiederverwendung 3. Recycling 4. sonstige Verwertung, insb. energetische Verwertung und Verfüllung 5. Beseitigung aerober Prozess mit Sauerstoff stattfindender Prozess anaerober Prozess unter Ausschluss von Sauerstoff stattfindender Prozess anthropogen durch den Menschen verursacht Biogas brennbares Gas, entsteht bei Vergärung von Biomasse CO2-Äquivalente (CO2-eq.) zur besseren Vergleichbarkeit werden die Beiträge von Treibhausgasen zum Treibhauseffekt (gemittelt über einen Zeitraum von 100 Jahren) relativ zum Beitrag des Treibhausgases CO2 angegeben (= Treib- hauspotenzial); beispielsweise wirkt sich eine bestimmte Menge einer Methanemissionen 25 Mal stärker auf den Treibhauseffekt aus, als die gleiche Menge CO2; Methanemissionen werden daher mit dem Faktor 25 multipliziert1 Cradle to Cradle englisch für „von Wiege zur Wiege“; konsequente Kreislaufwirtschaft ohne Werteverluste energetische Verwertung Einsatz von Abfällen als Brennstoff und Nutzung der in Abfällen enthaltenen Energie zur Erzeugung von Strom, Wärme und/oder Dampf fossile Energieträger nicht erneuerbare (endliche) Energieträger, die sich im Laufe von Millionen von Jahren unter Luftab- schluss, durch erhöhten Druck und Temperatur aus abgestorbener Biomasse entwickelt haben wie Erdöl, Erdgas, Braunkohle und Steinkohle 1 Vgl. Memmler et al. (2018), UBA (2021a) 5

WISE WFD Quality Elements status reported under Water Framework Directive 2016

The service contains information about the ecological status or potential of European surface water bodies, delineated for the 2nd River Basin Management Plans (RBMP) under the Water Framework Directive (WFD). The Quality Element status is the poorest of the known quality element status values per water body. For example, the nutrient conditions status (QE3-1-6) is based on the following two quality elements: Nitrogen conditions (QE3-1-6-1) and Phosphorus conditions (QE3-1-6-2). The ecological status or potential is presented for the following quality elements: QE1 - Biological quality elements; QE1-1 - Phytoplankton; QE1-2 - Other aquatic flora; QE1-2-1 - Macroalgae; QE1-2-2 - Angiosperms; QE1-2-3 - Macrophytes; QE1-2-4 - Phytobenthos; QE1-3 - Benthic invertebrates; QE1-4 - Fish; QE2 - Hydromorphological quality elements; QE2-1 - Hydrological or tidal regime; QE2-2 - River continuity conditions; QE2-3 - Morphological conditions; QE3 - Chemical and physico-chemical quality elements; QE3-1 - General parameters; QE3-1-1 - Transparency conditions; QE3-1-2 - Thermal conditions; QE3-1-3 - Oxygenation conditions; QE3-1-4 - Salinity conditions; QE3-1-5 - Acidification status; QE3-1-6 - Nutrient conditions; QE3-1-6-1 - Nitrogen conditions; QE3-1-6-2 - Phosphorus conditions; QE3-3 - River Basin Specific Pollutants. The information was reported to the European Commission under the Water Framework Directive (WFD) reporting obligations. The dataset compiles the available spatial data related to the 2nd RBMPs due in 2016 (hereafter WFD2016). See http://rod.eionet.europa.eu/obligations/715 for further information on the WFD2016 reporting. Relevant concepts: Surface water body: Body of surface water means a discrete and significant element of surface water such as a lake, a reservoir, a stream, river or canal, part of a stream, river or canal, a transitional water or a stretch of coastal water. Surface water: Inland waters, except groundwater; transitional waters and coastal waters, except in respect of chemical status for which it shall also include territorial waters. Inland water: All standing or flowing water on the surface of the land, and all groundwater on the landward side of the baseline from which the breadth of territorial waters is measured. River: Body of inland water flowing for the most part on the surface of the land but which may flow underground for part of its course. Lake: Body of standing inland surface water. Transitional waters: Bodies of surface water in the vicinity of river mouths which are partly saline in character as a result of their proximity to coastal waters but which are substantially influenced by freshwater flows. Coastal water: Surface water on the landward side of a line, every point of which is at a distance of one nautical mile on the seaward side from the nearest point of the baseline from which the breadth of territorial waters is measured, extending where appropriate up to the outer limit of transitional waters.

Optimierung der CO2-Bilanz, Ressourceneffizienz und Recyclingfähigkeit von Leichtbauteilen aus Kunststoff durch Entwicklung und Verbreitung eines datenbankgestützten Softwaretools

Das Projekt "Optimierung der CO2-Bilanz, Ressourceneffizienz und Recyclingfähigkeit von Leichtbauteilen aus Kunststoff durch Entwicklung und Verbreitung eines datenbankgestützten Softwaretools" wird vom Umweltbundesamt gefördert und von SKZ - KFE gGmbH durchgeführt. Das angestrebte Vorhaben hat das Ziel, den Entwicklungsprozess von Leichtbauprodukten im Sinne einer ganzheitlichen Performanceoptimierung zu lenken. Zu diesem Zweck soll eine Softwarelösung für die ganzheitliche Bewertung und den Vergleich der Umwelt- und Ressourcenperformance von Leichtbauprodukten aus Kunststoff entwickelt werden. Diese Software soll bereits in der Design- und Konstruktionsphase solcher Produkte zum Einsatz kommen und für die Anwender eine Entscheidungshilfe auf multikriterieller Basis bieten. Insbesondere werden so Produktdesignern und Konstrukteuren Zielkonflikte aufgezeigt, die sich aus konträren Anforderungen wie z.B. ein geringes Gewicht bei gleichzeitig angemessener Recyclingfähigkeit ergeben. Um neben der direkten Ergebnisverwertung durch die Projektpartner den wirtschaftlichen Nutzen zu maximieren, beinhaltet das beantragte Vorhaben ein adressatenspezifisches und verschiedene Formate umfassendes 'Roll-Out'-Programm zum direkten Transfer der Projektergebnisse in die Industrie allgemein und zu den assoziierten Partnern hin im Speziellen. Die angestrebte Softwarelösung soll folgende Kenngrößen bestimmbar machen: - Carbon Footprint nach DIN EN ISO 14067 - CO2-Bindung durch materialinhärenten biogenen Kohlenstoff in Anlehnung an EN 16485 - Weitere Ökobilanzgrößen wie Versauerung, Eutrophierung etc. nach DIN EN ISO 14040 und 14044 - Ökoeffizienz in Anlehnung an DIN EN ISO 14045 - Recyclingfähigkeit in Anlehnung an VDI 2243 - Ressourceneffizienzgrößen wie das Abbaupotenzial fossiler Rohstoffe und den Flächenbedarf für nachwachsende Rohstoffe in Anlehnung an ISO/TR 14062 - Energiekenngrößen wie End- und Primärenergiebedarf in Anlehnung an ISO/TR 14062 - Ökologische Potenziale bei der Substitution funktionsgleicher herkömmlicher Bauteile.

SuLiCo - Optimierung der CO2-Bilanz, Ressourceneffizienz und Recyclingfähigkeit von Leichtbauteilen aus Kunststoff durch Entwicklung und Verbreitung eines datenbankgestützten Softwaretools

Das Projekt "SuLiCo - Optimierung der CO2-Bilanz, Ressourceneffizienz und Recyclingfähigkeit von Leichtbauteilen aus Kunststoff durch Entwicklung und Verbreitung eines datenbankgestützten Softwaretools" wird vom Umweltbundesamt gefördert und von SKZ - KFE gGmbH durchgeführt. Das angestrebte Vorhaben hat das Ziel, den Entwicklungsprozess von Leichtbauprodukten im Sinne einer ganzheitlichen Performanceoptimierung zu lenken. Zu diesem Zweck soll eine Softwarelösung für die ganzheitliche Bewertung und den Vergleich der Umwelt- und Ressourcenperformance von Leichtbauprodukten aus Kunststoff entwickelt werden. Diese Software soll bereits in der Design- und Konstruktionsphase solcher Produkte zum Einsatz kommen und für die Anwender eine Entscheidungshilfe auf multikriterieller Basis bieten. Insbesondere werden so Produktdesignern und Konstrukteuren Zielkonflikte aufgezeigt, die sich aus konträren Anforderungen wie z.B. ein geringes Gewicht bei gleichzeitig angemessener Recyclingfähigkeit ergeben. Um neben der direkten Ergebnisverwertung durch die Projektpartner den wirtschaftlichen Nutzen zu maximieren, beinhaltet das beantragte Vorhaben ein adressatenspezifisches und verschiedene Formate umfassendes 'Roll-Out'-Programm zum direkten Transfer der Projektergebnisse in die Industrie allgemein und zu den assoziierten Partnern hin im Speziellen. Die angestrebte Softwarelösung soll folgende Kenngrößen bestimmbar machen: - Carbon Footprint nach DIN EN ISO 14067 - CO2-Bindung durch materialinhärenten biogenen Kohlenstoff in Anlehnung an EN 16485 - Weitere Ökobilanzgrößen wie Versauerung, Eutrophierung etc. nach DIN EN ISO 14040 und 14044 - Ökoeffizienz in Anlehnung an DIN EN ISO 14045 - Recyclingfähigkeit in Anlehnung an VDI 2243 - Ressourceneffizienzgrößen wie das Abbaupotenzial fossiler Rohstoffe und den Flächenbedarf für nachwachsende Rohstoffe in Anlehnung an ISO/TR 14062 - Energiekenngrößen wie End- und Primärenergiebedarf in Anlehnung an ISO/TR 14062 - Ökologische Potenziale bei der Substitution funktionsgleicher herkömmlicher Bauteile

SuLiCo - Optimierung der CO2-Bilanz, Ressourceneffizienz und Recyclingfähigkeit von Leichtbauteilen aus Kunststoff durch Entwicklung und Verbreitung eines datenbankgestützten Softwaretools

Das Projekt "SuLiCo - Optimierung der CO2-Bilanz, Ressourceneffizienz und Recyclingfähigkeit von Leichtbauteilen aus Kunststoff durch Entwicklung und Verbreitung eines datenbankgestützten Softwaretools" wird vom Umweltbundesamt gefördert und von va-Q-tec AG durchgeführt. Das angestrebte Vorhaben hat das Ziel, den Entwicklungsprozess von Leichtbauprodukten im Sinne einer ganzheitlichen Performanceoptimierung zu lenken. Zu diesem Zweck soll eine Softwarelösung für die ganzheitliche Bewertung und den Vergleich der Umwelt- und Ressourcenperformance von Leichtbauprodukten aus Kunststoff entwickelt werden. Diese Software soll bereits in der Design- und Konstruktionsphase solcher Produkte zum Einsatz kommen und für die Anwender eine Entscheidungshilfe auf multikriterieller Basis bieten. Insbesondere werden so Produktdesignern und Konstrukteuren Zielkonflikte aufgezeigt, die sich aus konträren Anforderungen wie z.B. ein geringes Gewicht bei gleichzeitig angemessener Recyclingfähigkeit ergeben. Um neben der direkten Ergebnisverwertung durch die Projektpartner den wirtschaftlichen Nutzen zu maximieren, beinhaltet das beantragte Vorhaben ein adressatenspezifisches und verschiedene Formate umfassendes 'Roll-Out'-Programm zum direkten Transfer der Projektergebnisse in die Industrie allgemein und zu den assoziierten Partnern hin im Speziellen. Die angestrebte Softwarelösung soll folgende Kenngrößen bestimmbar machen: - Carbon Footprint nach DIN EN ISO 14067 - CO2-Bindung durch materialinhärenten biogenen Kohlenstoff in Anlehnung an EN 16485 - Weitere Ökobilanzgrößen wie Versauerung, Eutrophierung etc. nach DIN EN ISO 14040 und 14044 - Ökoeffizienz in Anlehnung an DIN EN ISO 14045 - Recyclingfähigkeit in Anlehnung an VDI 2243 - Ressourceneffizienzgrößen wie das Abbaupotenzial fossiler Rohstoffe und den Flächenbedarf für nachwachsende Rohstoffe in Anlehnung an ISO/TR 14062 - Energiekenngrößen wie End- und Primärenergiebedarf in Anlehnung an ISO/TR 14062 - Ökologische Potenziale bei der Substitution funktionsgleicher herkömmlicher Bauteile

Teilvorhaben: Nachhaltigkeitsbewertung des entwickelten Recyclingansatzes für Lithium-Ionen-Batterien

Das Projekt "Teilvorhaben: Nachhaltigkeitsbewertung des entwickelten Recyclingansatzes für Lithium-Ionen-Batterien" wird vom Umweltbundesamt gefördert und von Technische Universität Berlin, Institut für Technischen Umweltschutz, Fachgebiet Sustainable Engineering durchgeführt. Ziel des Vorhabens ist die Entwicklung einer Kreislaufwirtschaft für Lithium-Ionen-Batterien durch eine ganzheitliche Betrachtung des Prozesses nach ökonomischen und ökologischen Gesichtspunkten. Von der Erarbeitung eins Logistikkonzepts über die Entwicklung eines Recyclings im industriellen Maßstab, bis hin zur Reintegration der Rezyklate in die Produktion von neuen Batterien. Das Vorhaben gliedert sich in folgende Arbeitspakete, die jeweils untereinander verknüpft sind - AP0: Projektkoordination und Verwertung - AP1: Virtuelle Mine inkl. 'Rückholstrategie' - AP2: Logistiknetzwerke - AP3: Aufbau Pilotanlage - AP4: Weiterentwicklung Recycling - AP5: Closed Loop - AP6: Nachhaltigkeit Dieses Teilvorhaben der TU Berlin fokussiert auf AP6: Nachhaltigkeit und beinhaltet im Kern die Nachhaltigkeitsbewertung des Verfahrens. Zur Bewertung der Umweltauswirkungen von Produkten oder Prozessen gilt es, mehrere Wirkungskategorien (z.B. Klima, Versauerung, Ressourcenverfügbarkeit) als ganzheitliches Konzept zu berücksichtigen. Im Rahmen des Forschungsprojektes soll dazu ein umfassendes Set an Kennzahlen und Indikatoren zum Einsatz kommen. Das zentrale Instrument zur Bewertung von Umweltkennzahlen ist dabei die Ökobilanz gemäß ISO 14040/44. Dabei sollen unter anderem folgende Indikatoren berücksichtigt werden: - Global Warming Potential /CO2-Emissionen - Ressourcenverbrauch /ADP (Abiotic Resource Depletion) - Water Footprint - Versauerungspotential Zur Verbesserung der Klimaauswirkungen wird eine Reduktion der CO2-Bilanz in Höhe von bis zu 70%, verglichen mit Batteriezellen aus Primärmaterial-Routen, anvisiert. Über die reine Ökobilanz hinaus wird zudem das Thema Kritikalität untersucht, indem die sozio-ökonomische Kritikalität der Batterie-Rohmaterialien mithilfe des ESSENZ-Indikators bestimmt und dessen Verbesserung quantitativ bewertet.

SuLiCo - Optimierung der CO2-Bilanz, Ressourceneffizienz und Recyclingfähigkeit von Leichtbauteilen aus Kunststoff durch Entwicklung und Verbreitung eines datenbankgestützten Softwaretools

Das Projekt "SuLiCo - Optimierung der CO2-Bilanz, Ressourceneffizienz und Recyclingfähigkeit von Leichtbauteilen aus Kunststoff durch Entwicklung und Verbreitung eines datenbankgestützten Softwaretools" wird vom Umweltbundesamt gefördert und von brands & values GmbH durchgeführt. Das angestrebte Vorhaben hat das Ziel, den Entwicklungsprozess von Leichtbauprodukten im Sinne einer ganzheitlichen Performanceoptimierung zu lenken. Zu diesem Zweck soll eine Softwarelösung für die ganzheitliche Bewertung und den Vergleich der Umwelt- und Ressourcenperformance von Leichtbauprodukten aus Kunststoff entwickelt werden. Diese Software soll bereits in der Design- und Konstruktionsphase solcher Produkte zum Einsatz kommen und für die Anwender eine Entscheidungshilfe auf multikriterieller Basis bieten. Insbesondere werden so Produktdesignern und Konstrukteuren Zielkonflikte aufgezeigt, die sich aus konträren Anforderungen wie z.B. ein geringes Gewicht bei gleichzeitig angemessener Recyclingfähigkeit ergeben. Um neben der direkten Ergebnisverwertung durch die Projektpartner den wirtschaftlichen Nutzen zu maximieren, beinhaltet das beantragte Vorhaben ein adressatenspezifisches und verschiedene Formate umfassendes 'Roll-Out'-Programm zum direkten Transfer der Projektergebnisse in die Industrie allgemein und zu den assoziierten Partnern hin im Speziellen. Die angestrebte Softwarelösung soll folgende Kenngrößen bestimmbar machen: - Carbon Footprint nach DIN EN ISO 14067 - CO2-Bindung durch materialinhärenten biogenen Kohlenstoff in Anlehnung an EN 16485 - Weitere Ökobilanzgrößen wie Versauerung, Eutrophierung etc. nach DIN EN ISO 14040 und 14044 - Ökoeffizienz in Anlehnung an DIN EN ISO 14045 - Recyclingfähigkeit in Anlehnung an VDI 2243 - Ressourceneffizienzgrößen wie das Abbaupotenzial fossiler Rohstoffe und den Flächenbedarf für nachwachsende Rohstoffe in Anlehnung an ISO/TR 14062 - Energiekenngrößen wie End- und Primärenergiebedarf in Anlehnung an ISO/TR 14062 - Ökologische Potenziale bei der Substitution funktionsgleicher herkömmlicher Bauteile

1 2