API src

Found 12 results.

Related terms

Global reference histograms of the IMS infrasound broadband detection lists

This data set builds upon the broadband detection lists of the International Monitoring System (IMS)’s infrasound stations. The infrasound data of these stations are regularly (re-)processed at the German National Data Centre at BGR (e.g., Ceranna et al., 2019; https://doi.org/10.1007/978-3-319-75140-5_13) using the Progressive Multi-Channel Correlation (PMCC) array processing method (Cansi, 1995; https://doi.org/10.1029/95GL00468). The latest reprocessing with 26 one-third octave spaced frequency bands in the IMS band of interest (0.01 to 4 Hz) included all 53 stations that were certified within the period 2003 to 2020. Based on the resulting broadband detection lists, this data set expands on former analyses of the coherent ambient noise. For each station with a data availability of at least one year (by the end of 2020), monthly reference histograms for the detection parameters back azimuth, apparent speed, and root-mean-squared amplitude are provided. The histograms provide a means to determine the deviation from nominal monthly behaviour and thus enable assessing the plausibility of detections and potential anomalies – without determining their cause – in the detected parameters. Overall, these quality metrics will be, among other applications, a useful supplement to the open-access IMS infrasound data products provided by Hupe et al., which are also available in BGR’s product centre. Further details of the reference histograms are described in the following publication by Kristoffersen et al.: "Updated global reference models of broadband coherent infrasound signals for atmospheric studies and civilian applications" (https://doi.org/10.1029/2022EA002222).

Infrasonic Signatures of 1001 Rocket Launches for Space Missions

Rocket launches for space missions are well-defined ground-truth events generating strong infrasonic signatures. This data set covers ground-truth information for 1001 rocket launches from 27 global spaceports between 2009 and mid-2020. Infrasound signatures from up to 73% of the launches were identified at infrasound arrays of the International Monitoring System. The detection parameters were obtained using the Progressive Multi-Channel Correlation (PMCC) algorithm. Propagation and quality parameters supplement the PMCC detection parameters in this dataset. The results are provided for further use as a ground-truth reference in geophysical and atmospheric research. The open-access publication “1001 Rocket Launches for Space Missions and their Infrasonic Signature” (Pilger et al., 2021, Geophys. Res. Letters, doi:10.1029/2020GL092262) provides further details on this data set. Data format: The data are provided both as ASCII files (separate lists of infrasound signatures and rocket launch events, plus README files) and as a comprehensive netCDF file.

Very low frequency data products of the International Monitoring System’s infrasound stations

This dataset consists of data products derived from broadband signal detection lists that have been processed for the certified infrasound stations of the International Monitoring System. More specifically, this dataset, called the ‘maw’ product, covers a very low frequency range of infrasound (0.02-0.07 Hz). The temporal resolution (time step and window length) is 30 min. For processing the infrasound data, the Progressive Multi-Channel Correlation (PMCC) array processing algorithm with a one-third octave frequency band configuration between 0.01 and 4 Hz has been used. The detected signals from the most dominant directions in terms of number of arrivals within a time window and the product-specific frequency range are summarized at predefined time steps. Along with several detection parameters such as the back azimuth, apparent velocity, or mean frequency, additional quantities for assessing the relative quality of the detection parameters are provided. The dataset is available as a compressed .zip file containing the yearly data products (.nc files, NetCDF format) of all certified stations (since 2003). Further information on the processing and details about the open-access data products can be found in: Hupe et al. (2022), IMS infrasound data products for atmospheric studies and civilian applications, Earth System Science Data, doi:10.5194/essd-14-4201-2022.

Higher frequency data products of the International Monitoring System’s infrasound stations

This dataset consists of data products derived from broadband signal detection lists that have been processed for the certified infrasound stations of the International Monitoring System. More specifically, within the CTBT-relevant infrasound range (around 0.01-4 Hz), this dataset covers higher frequencies (1-3 Hz) and is therefore called the ‘hf’ product. The temporal resolution (time step and window length) is 5 min. For processing the infrasound data, the Progressive Multi-Channel Correlation (PMCC) array processing algorithm with a one-third octave frequency band configuration between 0.01 and 4 Hz has been used. The detected signals from the most dominant directions in terms of number of arrivals within a time window and the product-specific frequency range are summarized at predefined time steps. Along with several detection parameters such as the back azimuth, apparent velocity, or mean frequency, additional quantities for assessing the relative quality of the detection parameters are provided. The dataset is available as a compressed .zip file containing the yearly data products (.nc files, NetCDF format) of all certified stations (since 2003). Further information on the processing and details about the open-access data products can be found in: Hupe et al. (2022), IMS infrasound data products for atmospheric studies and civilian applications, Earth System Science Data, doi:10.5194/essd-14-4201-2022

Microbarom low-frequency data products of the International Monitoring System’s infrasound stations

This dataset consists of data products derived from broadband signal detection lists that have been processed for the certified infrasound stations of the International Monitoring System. More specifically, this dataset covers the dominant frequency range of microbaroms (0.15-0.35 Hz) and is therefore called the ‘mb_lf’ product. The temporal resolution (time step and window length) is 15 min. For processing the infrasound data, the Progressive Multi-Channel Correlation (PMCC) array processing algorithm with a one-third octave frequency band configuration between 0.01 and 4 Hz has been used. The detected signals from the most dominant directions in terms of number of arrivals within a time window and the product-specific frequency range are summarized at predefined time steps. Along with several detection parameters such as the back azimuth, apparent velocity, or mean frequency, additional quantities for assessing the relative quality of the detection parameters are provided. The dataset is available as a compressed .zip file containing the yearly data products (.nc files, NetCDF format) of all certified stations (since 2003). Further information on the processing and details about the open-access data products can be found in: Hupe et al. (2022), IMS infrasound data products for atmospheric studies and civilian applications, Earth System Science Data, doi:10.5194/essd-14-4201-2022

Microbarom high-frequency data products of the International Monitoring System’s infrasound stations

This dataset consists of data products derived from broadband signal detection lists that have been processed for the certified infrasound stations of the International Monitoring System. More specifically, this dataset covers, among other phenomena, the upper frequency range of microbaroms (0.45-0.65 Hz) and is therefore called the ‘mb_hf’ product. The temporal resolution (time step and window length) is 15 min. For processing the infrasound data, the Progressive Multi-Channel Correlation (PMCC) array processing algorithm with a one-third octave frequency band configuration between 0.01 and 4 Hz has been used. The detected signals from the most dominant directions in terms of number of arrivals within a time window and the product-specific frequency range are summarized at predefined time steps. Along with several detection parameters such as the back azimuth, apparent velocity, or mean frequency, additional quantities for assessing the relative quality of the detection parameters are provided. The dataset is available as a compressed .zip file containing the yearly data products (.nc files, NetCDF format) of all certified stations (since 2003). Further information on the processing and details about the open-access data products can be found in: Hupe et al. (2022), IMS infrasound data products for atmospheric studies and civilian applications, Earth System Science Data, doi:10.5194/essd-14-4201-2022

Enhancement of the REACH requirements for (imported) articles

The EU might introduce an authorization scheme for imported goods such as clothing, sports gear and toys in the REACH Regulation, to aim at a better protection of humans and the environment against Substances of Very High Concern in articles. An UBA study claims that the necessary amendment of the EU chemicals regulation REACH would not breach international trade law. Another simple improvement could be achieved by introducing a standardized communication format to oblige manufacturers to indicate not only the name of the Substances of Very High Concern, but also the concentrations, total volumes and information about hazardous properties and safe use and disposal through the production chain.<BR>Quelle: https://www.umweltbundesamt.de/

Stärkung der Regelungen für (Import-)Erzeugnisse in der Chemikalienverordnung REACH

Die EU könnte eine Zulassungspflicht für Importerzeugnisse wie Kleidung, Sportartikel und Spielzeug einführen, um Mensch und Umwelt besser vor dort enthaltenen "besonders besorgniserregenden Stoffen" zu schützen. Eine entsprechend Anpassung der europäischen ChemikalienverordnungREACHwürde nicht gegen Welthandelsrecht verstoßen, so diesesUBA-Rechtsgutachten. Eine weitere, einfache Verbesserung wäre, ein verbindliches, standardisiertes Kommunikationsformat einzuführen, in dem Hersteller für ihre Erzeugnisse neben dem Namen der enthaltenen besonders besorgniserregenden Stoffe auch deren Konzentration und die Gesamtmenge sowie Hinweise zu gefährlichen Eigenschaften und zur sicheren Verwendung und Entsorgung angeben müssen.<BR>Quelle: www.umweltbundesamt.de<BR>

BfS trauert um Wolfgang Weiss

BfS trauert um Wolfgang Weiss Früherer Leiter des Fachbereichs "Strahlenschutz und Gesundheit" überraschend verstorben Am 4. Juni 2021 ist der frühere Leiter des Fachbereichs " Strahlenschutz und Gesundheit", Dr. Wolfgang Weiss, überraschend verstorben. Das BfS trauert um einen äußerst geschätzten und wertvollen Kollegen. Mit Wolfgang Weiss verliert der Strahlenschutz einen seiner weltweit am höchsten geachteten Experten, der den Strahlenschutz und Notfallschutz national und international über Jahrzehnte geprägt und vorangebracht hat wie kaum ein anderer. Wolfgang Weiss hat an der Universität Heidelberg in Physik promoviert und war seit 1982 im Institut für Atmosphärische Radioaktivität und ab 1989 im Bundesamt für Strahlenschutz tätig. Bis zu seinem Eintritt in den Ruhestand 2012 war er Leiter des Fachbereichs „Strahlenschutz und Gesundheit“. Die Schwerpunkte seiner Arbeit waren Notfallvorsorge und -management, Strahlenwirkung und Strahlenrisikoanalyse, Risikokommunikation , beruflicher Strahlenschutz , medizinische Strahlenhygiene und Dosimetrie , nicht- ionisierende Strahlung sowie Techniken und Systeme der Umweltüberwachung ( IMIS ). Neben seiner Arbeit im BfS war Wolfgang Weiss - auch noch nach seinem Eintritt in den Ruhestand – mit unermüdlichem Engagement in einer Vielzahl von nationalen und internationalen Fachgremien als überaus angesehener Berater und Experte tätig, unter anderem in der Strahlenschutzkommission ( SSK ), in der Schutzkommission beim Bundesministerium des Innern, im United Nations Scientific Committee on the Effects of Atomic Radiation ( UNSCEAR , unter anderem als Vorsitzender), in der Internationalen Strahlenschutzkommission ( ICRP ), in der Nuclear Energy Agency (NEA) bei der Organisation für wirtschaftliche Zusammenarbeit und Entwicklung ( OECD/NEA ) in der International Radiation Protection Association ( IRPA ) in der Organisation des Vertrages über das umfassende Verbot von Nuklearversuchen ( CTBTO ). Wolfgang Weiss war zudem maßgeblich an der Entwicklung der europäischen Forschungsplattformen MELODI und NERIS sowie der Zusammenführung und Strukturierung der gesamten Strahlenschutzforschung in Europa beteiligt. Seine kompetente und sachliche Art und sein immer freundliches und lächelndes Auftreten werden fehlen, ebenso wie seine Fähigkeit, Probleme systematisch zu analysieren und diese mit enormem Einsatz zu lösen oder anderen dafür den Weg zu weisen. Wolfgang Weiss hinterlässt eine Lücke, die nicht zu füllen ist. Das Mitgefühl der BfS -Mitarbeiter*innen gilt seiner Frau und seiner Familie. Stand: 09.06.2021

Der Vertrag über das umfassende Verbot von Nuklearversuchen (Kernwaffenteststopp-Vertrag: CTBT) und seine Überwachung

Der Vertrag über das umfassende Verbot von Nuklearversuchen (Kernwaffenteststopp-Vertrag: CTBT) und seine Überwachung Der Vertrag über das umfassende Verbot von Nuklearversuchen ( CTBT ) ist eines der zentralen internationalen Abkommen zur Verhinderung der Weiterverbreitung von Kernwaffen. Der CTBT wurde 1996 zur Unterzeichnung ausgelegt. Von den 44 Staaten ( sog. Annex 2-Staaten), die den Vertrag ratifizieren müssen, bevor er in Kraft treten kann, fehlen bis heute drei Länder, die den Vertrag noch unterzeichnen und ratifizieren müssen. Mit der De-Ratifizierung des Vertrages durch Russland Ende 2023 sind es nunmehr sechs Länder, die den Kernwaffenteststopp-Vertrag zwar unterschrieben, jedoch nicht ratifiziert haben. Die Organisation zur Überwachung des Kernwaffenteststopp-Vertrags ( CTBTO ) überwacht die Einhaltung des Vertrags mit seismischen Messungen, Radioaktivitätsmessungen und Spezialmikrophonen in den Ozeanen und der Atmosphäre. Mehrere Dutzend untereinander vernetzte Messstationen weltweit können geringste Spuren von Radioaktivität in der Luft erfassen. Das BfS beteiligt sich mit Radioaktivitätsüberwachungen an der Kontrolle und betreibt die einzige Station für hochempfindliche Radioaktivitätsmessungen in Mitteleuropa auf dem Schauinsland bei Freiburg. Der umfassende Kernwaffenteststopp-Vertrag ( engl. Comprehensive Nuclear-Test-Ban Treaty , CTBT ) ist eines der zentralen internationalen Abkommen zur Verhinderung der Weiterverbreitung von Kernwaffen. Obwohl er noch nicht in Kraft getreten ist, wird seit rund 2 Jahrzehnten ein weltweites Messnetz zu Überwachung des Teststopps aufgebaut und erfolgreich betrieben. Der Kernwaffenteststopp-Vertrag Überwachung des Kernwaffenteststopp-Vertrags Der Kernwaffenteststopp-Vertrag Anzahl der weltweit durchgeführten Kernwaffen-Versuche bis 2022 Beginn der Kernwaffentests Mit dem sogenannten "Trinity"-Test am 16. Juli 1945 in den USA wurde zum ersten Mal in der Menschheitsgeschichte eine Nuklearwaffe gezündet. Einen Monat später erfolgte der erste militärische Einsatz durch die Abwürfe der Nuklearwaffen über Hiroshima und Nagasaki am Ende des zweiten Weltkrieges. Trotz früher Überlegungen zu einer internationalen Kontrolle von spaltbarem Material für den Bau von Kernwaffen erlangten weitere Nationen die Fähigkeit zur Herstellung dieser Waffen (Sowjetunion: 1949, Vereinigtes Königreich: 1952). In den 1950er Jahren begannen die USA und die Sowjetunion mit dem Testen sogenannter thermonuklearer Waffen (umgangssprachlich "Wasserstoffbomben"), die eine höhere Sprengkraft besitzen und entsprechend größere Mengen an radioaktivem Fallout produzieren. Partieller Teststopp-Vertrag Unter anderem führte die Kritik an diesen Tests dazu, dass sich 1963 die USA , die Sowjetunion und das Vereinigte Königreich über ein Verbot von Tests in der Atmosphäre, unter Wasser und im Weltraum verständigten. Dies wurde in einem internationalen Vertrag, dem partiellen Teststopp-Vertrag niedergelegt ( engl. Partial Nuclear Test-Ban Treaty , PTBT). Frankreich (erster Test 1960) und China (erster Test 1964) unterschrieben diesen Vertrag jedoch nicht und führten noch bis 1980 Kernwaffentests in der Atmosphäre durch. Vom partiellen zum umfassenden Teststopp Das Internationale Messnetz IMS Quelle: CTBTO https://www.ctbto.org/map/ Die Unterzeichnerstaaten des PTBT hielten sich an die Vertragsregeln, wodurch die Zahl der atmosphärischen (oberirdischen) Tests, und der damit verbundene radioaktive Fallout verringert werden konnte. Die Gesamtzahl aller Atomwaffen-Tests verringerte sich jedoch nicht, sie wurden jetzt nur mehrheitlich unter der Erdoberfläche durchgeführt. Bis heute wurden über 2.000 Kernwaffentests gezählt. Auf diplomatischer Ebene wurde nach dem Inkrafttreten des PTBT über einen umfassenden Teststopp-Vertrag diskutiert und 1976 die sogenannte " Group of Scientific Experts " (GSE) eingerichtet. Ihre Aufgabe war es zu klären, ob und wie die Einhaltung eines solchen Vertrags geprüft werden kann, denn ein verlässliches Verifikationssystem ist eine entscheidende Voraussetzung dafür, dass sich Staaten völkerrechtlich an ein Verbot binden. Über die Möglichkeiten und Grenzen der Verifikation (wissenschaftliche Nachweisführung) liefen die Meinungen zunächst weit auseinander. Umfassender Kernwaffenteststopp-Vertrag Es dauerte bis zum Ende des Kalten Krieges, bis formelle Verhandlungen bei den Vereinten Nationen in der Genfer Abrüstungskonferenz aufgenommen wurde. Die Beratungen, an denen auch Experten des BfS maßgeblich beteiligt waren, konnten bereits zwei Jahre später abgeschlossen und der umfassende Kernwaffenteststopp-Vertrag (Comprehensive Nuclear-Test-Ban Treaty, CTBT ) 1996 zur Unterzeichnung ausgelegt werden. Die Verhandlungsparteien wollten sicherstellen, dass die Unterzeichner des Vertrags erst dann bindende Verpflichtungen eingehen, wenn alle Staaten mit nukleartechnischen Einrichtungen – und damit der theoretischen Fähigkeit zum Kernwaffenbau - beigetreten sind. Daher enthält das Dokument eine Liste mit 44 Staaten ( sog. Annex 2-Staaten), die den Vertrag ratifizieren müssen, bevor er in Kraft tritt. Bis heute fehlen von diesen 44 Staaten drei, die den Vertrag vor Inkrafttreten unterzeichnen und ratifizieren müssen (Indien, Nordkorea, Pakistan) sowie seit 2023, mit der De-Ratifizierung des Vertrages in Russland, sechs Länder, die den Vertrag zwar unterschrieben, jedoch noch nicht ratifiziert haben (Ägypten, China, Iran, Israel, USA, Russland). Umsetzung des Kernwaffenteststopp-Vertrags Wenn der Zeitpunkt des Inkrafttretens erreicht wird, muss die Verifikation der Verbotsnorm sofort möglich sein. Daher wurde in Wien die sogenannte Vorbereitende Kommission für den CTBT gegründet, deren Aufgabe insbesondere der Aufbau eines internationalen Monitoring-Netzwerks mit 337 Messstationen ist. Mit Hilfe dieses Messnetzes kann die Vertragseinhaltung verlässlich überwacht werden. Daneben bereitet die Organisation zur Überwachung des Internationalen Kernwaffenteststopp-Vertrags ( CTBTO ) Vor-Ort-Inspektionen konzeptionell vor, entwickelt dafür Messmethoden und führt Übungen durch. Überwachung des Kernwaffenteststopp-Vertrags Die Organisation zur Überwachung des Internationalen Kernwaffenteststopp-Vertrags ( CTBTO ) überwacht die Einhaltung des Vertrages mit seismischen Messungen, Radioaktivitätsmessungen und Spezialmikrophonen in den Ozeanen und der Atmosphäre. Das Bundesamt für Strahlenschutz ( BfS ) beteiligt sich mit Radioaktivitätsüberwachungen an der Kontrolle und unterstützt das Auswärtige Amt durch fachliche Auswertung und Bewertung der Daten. Überwachung des Internationalen Kernwaffenteststopp-Vertrags Die CTBTO ist als internationales Netzwerk darauf ausgerichtet, weltweit geheime Kernwaffentests aufzuspüren. Mehrere Dutzend untereinander vernetzte Messstationen weltweit können geringste Spuren von Radioaktivität in der Luft erfassen. Das Bundesamt für Strahlenschutz betreibt die einzige Station für hochempfindliche Radioaktivitätsmessungen in Mitteleuropa auf dem Schauinsland bei Freiburg. Seismische Messungen können einen ersten Hinweis auf einen unterirdischen Atomwaffentest geben. Mit einer zeitlichen Verzögerung können bei einem Atomwaffentest entstehende radioaktive Edelgase durch das Erdreich in die Atmosphäre gelangen. Wenn dies geschieht, lassen sich diese Gase mit den hoch empfindlichen Radioaktivitätsmessstationen der CTBTO nachweisen und auf einen Atomwaffentest zurückführen. Weltweites Überwachungssystem Die Vertragsorganisation mit Sitz in Wien baut zurzeit mit Hilfe der Signatarstaaten ein weltweites Überwachungssystem mit einem Netz von 321 Messstationen und 16 Laboren auf. Es ist in der Lage, eine nukleare Explosion an jedem Ort der Erde mit hoher Wahrscheinlichkeit zu entdecken, zu identifizieren und auch zu lokalisieren. Dieses System beruht auf 170 Seismographen in der Erde, 11 Unterwassermikrophonen in den Ozeanen, 60 Infraschallmikrophonen in der Atmosphäre und 80 Spurenmessstationen für Radioaktivität in der Luft Eine dieser Spurenmessstationen ist die Station Schauinsland des BfS (Radionuklidstation RN33). Zur Qualitätssicherung werden die 80 Radionuklidstationen durch 16 Radionuklidlaboratorien ergänzt. Die Bedeutung von Radioaktivitätsmessungen Die drei geophysikalischen Techniken - Seismik , Infraschall und Hydroakustik - können zeitnah Explosionen mit einer Stärke über 1 Kilotonne Trinitrotoluol (TNT) Äquivalent (Maßeinheit für die bei einer Explosion freiwerdende Energie) registrieren und lokalisieren. Die Radionuklid -Messtechnik hat anschließend die Aufgabe, den nuklearen Charakter einer Explosion zweifelsfrei nachzuweisen. Detoniert ein nuklearer Sprengkörper, dann entsteht eine Vielzahl radioaktiver Spaltprodukte . Die meisten so gebildeten Radionuklide kommen in der Natur nicht vor und unterscheiden sich auch deutlich in ihrer Zusammensetzung von Radioaktivität aus Kernkraftwerken. Eine Eingrenzung von Freisetzungsort und Freisetzungszeit ist zusätzlich mit Hilfe von atmosphärischen Ausbreitungsrechnungen möglich. Was wird gemessen? An allen im Endausbau des Messnetzes vorgesehenen 80 Radionuklidmessstationen wird die Luft auf Spuren von an Luftstaub gebundenen Gammastrahlern untersucht. An 40 der 80 Stationen, darunter auch auf der Station Schauinsland, wird zusätzlich nach radioaktiven Isotopen des Edelgases Xenon (Xenon-131m, Xenon-133, Xenon-133m und Xenon-135) gefahndet. Mindestanforderungen an die technische Ausstattung der Messstationen Aerosole Edelgase (radioaktives Xenon) Messtechnik Reinstgermaniumdetektor Reinstgermaniumdetektor oder Beta-/Gamma-Koinzidenz Luftdurchsatz mindestens 500 Kubikmeter pro Stunde mindestens 0,4 Kubikmeter pro Stunde Nachweisgrenze 10 bis 30 Microbecquerel pro Kubikmeter Luft bezogen auf Barium-140 1 Millibecquerel pro Kubikmeter Luft bezogen auf Xenon-133 Radioaktive Edelgase wurden in das Messnetz einbezogen, weil diese auch bei unterirdischen und verdeckten Kernwaffentests in die Atmosphäre entweichen können und damit das Risiko für einen potentiellen Vertragsbrecher erhöhen, entdeckt zu werden. Wichtig ist hierbei, dass anhand der isotopenspezifischen Messungen zwischen Radioaktivität aus zivilen Quellen und aus eventuellen Kernwaffentests - die eine Vertragsverletzung darstellen würden - unterschieden werden kann. Auswertung der Daten Sämtliche Messdaten werden über VPN oder ein satellitengestütztes Kommunikationssystem an das Internationale Datenzentrum ( IDC ) der CTBTO in Wien übermittelt. Dort werden sie ausgewertet, an die Unterzeichnerstaaten verteilt und archiviert. Stand: 31.07.2024

1 2