Es gibt wenige grundlegende Prozesse in der Umwelt, die zur Exposition von Menschen mit radioaktiven Stoffen führen. Ein Grundverständnis dieser Prozesse hilft dabei, sich richtig zu verhalten. Schadstoffe können aus einer Vielzahl von verschiedenen Quellen in die Atmosphäre freigesetzt werden. Diese Emission kann durch normale natürliche oder zivilisatorische Prozesse (z.B. Waldbrände, Vulkanausbrüche, Hausfeuerung, Industrie) verursacht werden oder durch Unfälle bedingt sein (z.B. in Industrieanlagen oder (Kern-)Kraftwerken). Nach der Emission wird die „Schadstofffahne“ mit dem Wind transportiert. Durch die Turbulenzen der Luft findet eine Durchmischung mit der Umgebungsluft statt und die Schadstofffahne fächert sich mit zunehmender Entfernung immer stärker auf. Dadurch nimmt die Schadstoffkonzentration ab. Die Belastung der Luft an einem bestimmten Ort mit Schadstoffen hängt daher von der freigesetzten Schadstoffmenge, den meteorologischen Bedingungen und der Entfernung von der Quelle ab. Jeder Schadstoff besitzt physikalisch-chemische Eigenschaften, z. B. Wasserlöslichkeit oder Flüchtigkeit. Diese beeinflussen sein Umweltverhalten sehr stark. Zum Beispiel können Substanzen, die in der Atmosphäre gasförmig vorliegen, über weite Entfernungen transportiert werden, wenn sie weder lichtempfindlich noch leicht wasserlöslich sind. Sie werden dann in der Luft nämlich weder abgebaut noch durch Regen ausgewaschen. Durch chemische Umwandlungen verringert sich die Konzentration des ursprünglichen Schadstoffs. Dabei entstehen neue Substanzen, und diese können andere physikalisch-chemische Eigenschaften als der Ausgangsstoff haben. Ein gutes Beispiel dafür ist Ozon. Es wird bei Sonneneinstrahlung durch Reaktionen von „Vorläufersubstanzen“ gebildet, in diesem Fall Sauerstoff, Stickstoff und flüchtige Kohlenwasserstoffe. Schadstoffe können trocken oder nass aus der Luft entfernt werden. Große Partikel haben eine hohe Sedimentationsgeschwindigkeit und daher nur kurze Verweilzeiten in der Atmosphäre. Kleine Partikel und die mit ihnen assoziierten Schadstoffe werden dagegen durch Kontakt mit Oberflächen aus der Atmosphäre entfernt und gasförmige Substanzen werden durch physikalisch-chemische Wechselwirkungen auf Oberflächen abgeschieden. Darüber hinaus können Schadstoffe auch durch Niederschläge (Regen, Nebel, Schnee) aus der Luft ausgewaschen werden, wenn sie selbst wasserlöslich sind oder an Partikel gebunden vorliegen. Diese Prozesse des Eintrags von Stoffen aus der Luft auf die Erdoberfläche werden trockene bzw. nasse Deposition genannt. Sie führen dazu, dass die Schadstoffe in natürliche Ökosysteme und landwirtschaftliche Nutzflächen gelangen und auf Oberflächen aller Art abgelagert werden. Damit kann es auch zu einer Aufnahme dieser Schadstoffe durch Mensch und Tier kommen. Die beschriebenen Grundmechanismen gelten für alle Schadstoffe, die in die Luft freigesetzt werden. Sie sind die Ursache dafür, dass nach dem Unfall in Tschernobyl im Jahr 1986 die Radioaktivität so weiträumig verbreitet wurde. Und sie erklären auch, warum sich chlororganische Substanzen wie Polychlorierte Biphenyle (PCB) und Dioxine sogar in der Antarktis nachweisen lassen. Radioaktivität ist allgegenwärtig und findet sich damit auch in unseren Nahrungsmitteln. Doch woher stammen die radioaktiven Stoffe, und wie gelangen sie in unser Essen? Dieser Film gibt Antworten hierauf. Radioaktive Stoffe in der Luft oder auf Oberflächen können dazu führen, dass Menschen mit ionisierender Strahlung belastet werden. Generell unterscheidet man zwei Wege, auf denen dies erfolgen kann: Äußere und innere Strahlenbelastung. Bei der äußeren Strahlenbelastung wirken die von radioaktiven Stoffen in Materialien, in der Luft oder auf Oberflächen (Boden, Pflanzen, Gebäude, …) abgegebene ionisierende Strahlung von außen auf den menschlichen Körper ein. Eine innere Strahlenbelastung erfolgt nach der Aufnahme von radioaktiven Substanzen über die Atemluft, durch kontaminierte Nahrungsmittel oder kontaminiertes Wasser. Weitere Informationen dazu, wie man sich persönlich schützen kann, finden Sie auf der Seite Schutzmaßnahmen .
Wasserbasierte Formulierungen zeigen eine Anfälligkeit für mikrobielle Verkeimung, die aktuell nur über den Einsatz geeigneter Biozide unterbunden werden kann. Bedingt durch die gesetzliche Limitierung der Methylisothiazolinon-Einsatzmenge (MIT) auf maximal 15 ppm für die Begrenzung des bakteriellen Wachstums, steht kein weiteres biozides Mittel mit einem solchen Wirkspektrum zur Verfügung. Alternative Ansätze wie ein hoher pH-Wert, z.B.bei Silikatfarben, können bei Hydro-Lacken und wässrigen Beizen nicht verfolgt werden. Dieses Defizit soll zur Vervollständigung einer ökologischeren, wasserbasierten Strategie für Lacke und Beizen durch den Einsatz geeigneter natürlicher Substanzen wie ätherischen Ölen und anderen Pflanzenextrakten ausgeglichen werden. Diese aus biogenen Rohstoffen isolierten biobasierten Feinchemikalien besitzen oft ein nachgewiesener-maßen breites Wirkspektrum. Besondere Herausforderungen beim Einsatz ätherischer Öle ergeben sich jedoch aus ihrem oftmals intensiven Geruch, der schlechten Wasserlöslichkeit und ihrer hohen Flüchtigkeit. Kompensiert werden sollen diese Nachteile durch die Mikroverkapselung dieser Biorohstoffe mit Hilfe der ebenfalls biobasierten Cyclodextrine. Damit wird gleichzeitig die Abhängigkeit von erdölbasierten Bioziden als Beitrag zur Ressourcenschonung reduziert.
Wasserbasierte Formulierungen zeigen eine Anfälligkeit für mikrobielle Verkeimung, die aktuell nur über den Einsatz geeigneter Biozide unterbunden werden kann. Bedingt durch die gesetzliche Limitierung der Methylisothiazolinon-Einsatzmenge (MIT) auf maximal 15 ppm für die Begrenzung des bakteriellen Wachstums, steht kein weiteres biozides Mittel mit einem solchen Wirkspektrum zur Verfügung. Alternative Ansätze wie ein hoher pH-Wert, z.B.bei Silikatfarben, können bei Hydro-Lacken und wässrigen Beizen nicht verfolgt werden. Dieses Defizit soll zur Vervollständigung einer ökologischeren, wasserbasierten Strategie für Lacke und Beizen durch den Einsatz geeigneter natürlicher Substanzen wie ätherischen Ölen und anderen Pflanzenextrakten ausgeglichen werden. Diese aus biogenen Rohstoffen isolierten biobasierten Feinchemikalien besitzen oft ein nachgewiesenermaßen breites Wirkspektrum. Besondere Herausforderungen beim Einsatz ätherischer Öle ergeben sich jedoch aus ihrem oftmals intensiven Geruch, der schlechten Wasserlöslichkeit und ihrer hohen Flüchtigkeit. Kompensiert werden sollen diese Nachteile durch die Mikroverkapselung dieser Biorohstoffe mit Hilfe der ebenfalls biobasierten Cyclodextrine. Damit wird gleichzeitig die Abhängigkeit von erdölbasierten Bioziden als Beitrag zur Ressourcenschonung reduziert.
Wasserbasierte Formulierungen zeigen eine Anfälligkeit für mikrobielle Verkeimung, die aktuell nur über den Einsatz geeigneter Biozide unterbunden werden kann. Bedingt durch die gesetzliche Limitierung der Methylisothiazolinon-Einsatzmenge (MIT) auf maximal 15 ppm für die Begrenzung des bakteriellen Wachstums, steht kein weiteres biozides Mittel mit einem solchen Wirkspektrum zur Verfügung. Alternative Ansätze wie ein hoher pH-Wert, z.B.bei Silikatfarben, können bei Hydro-Lacken und wässrigen Beizen nicht verfolgt werden. Dieses Defizit soll zur Vervollständigung einer ökologischeren, wasserbasierten Strategie für Lacke und Beizen durch den Einsatz geeigneter natürlicher Substanzen wie ätherischen Ölen und anderen Pflanzenextrakten ausgeglichen werden. Diese aus biogenen Rohstoffen isolierten biobasierten Feinchemikalien besitzen oft ein nachgewiesener-maßen breites Wirkspektrum. Besondere Herausforderungen beim Einsatz ätherischer Öle ergeben sich jedoch aus ihrem oftmals intensiven Geruch, der schlechten Wasserlöslichkeit und ihrer hohen Flüchtigkeit. Kompensiert werden sollen diese Nachteile durch die Mikroverkapselung dieser Biorohstoffe mit Hilfe der ebenfalls biobasierten Cyclodextrine. Damit wird gleichzeitig die Abhängigkeit von erdölbasierten Bioziden als Beitrag zur Ressourcenschonung reduziert.
Die Stromerzeuger bieten an der Strombörse einen Erzeugungspreis an, der die variablen Kosten des Kraftwerksbetriebs widerspiegelt. Anhand dieser Grenzkosten wird nach dem Merit-Order Prinzip schließlich der Strompreis ermittelt. Es ist jedoch zu hinterfragen, ob das Bieten nach Grenzkosten heute wie auch in einem zukünftig deutlich heterogener aufgestellten Kraftwerksportfolio, das an der Börse Handel treibt, weiterhin Bestand hat. So verändert die aktuelle Situation an den Energiemärkten durch die unvorhergesehenen starken Preisanstiege der Rohstoffe das gewohnte Handelsbild, denn bei einem gleichgebliebenen Kraftwerkspark sind die Beschaffungskosten bspw. für Gaskraftwerke überproportional gestiegen. Auch der europaweite Ausbau der erneuerbaren Energien kann Einfluss auf das Bietverhalten der Marktteilnehmer haben. Da die Grenzkosten der erneuerbaren Energien Anlagen nahezu null sind, kann deren zunehmender Handel an den Märkten zu großen Differenzen zwischen den Grenzkosten der bietenden Kraftwerke führen. Gleichzeitig können besonders die zu erwartenden Volatilitäten bei der Erzeugung aus erneuerbaren Energien zu sehr geringen Strompreisen führen und damit Refinanzierungen erschweren. Zusätzlich verbindet die europäische Marktkopplung unterschiedliche Erzeugungsparks miteinander und verändert damit ebenfalls die bestehenden Märkte und deren Handelseigenschaften. So kann es finanziell attraktiv erscheinen, einen Aufschlag auf die Grenzkosten oder eine strategisch platzierte Stromnachfrage zu nutzen. Im Rahmen des Vorhabens sollen daher die an der EPEX SPOT vorhandenen Gebotsdaten in den Preiskurven auf strategische Muster hin analysiert werden. Gefundene Strategien werden in einem zweiten Schritt in die Zukunft getestet. Dazu wird deren Einfluss auf den Strompreis und Investitionen in flexible Erzeugungstechnologien in Deutschland unter Berücksichtigung der in Zukunft stark unterschiedlichen nationalen Stromerzeugungssysteme in Europa untersucht.
Zielsetzung: Die Volatilität globaler Lieferketten in den letzten Jahren, steigende Erzeugerpreise für Verpackungsmaterialien und eine Ressourcenverschwendung durch Einwegverpackungen in der Industrielogistik erfordern neue, resiliente Produktionsansätze. Industrieunternehmen in Deutschland sehen sich besonders mit wachsendem Kostendruck und regulatorischen Anforderungen an nachhaltige Verpackungslösungen konfrontiert - bei gleichzeitigem Mangel an flexiblen, ökologischen Alternativen. PALPRINT adressiert dieses Defizit mit einem innovativen Systemansatz: einer modularen, vor Ort installierten Produktionslösung, die industriellen Kunden maßgeschneiderte Mehrwegverpackungen aus recycelten Kunststoffen ermöglicht - direkt am Bedarfsort, ohne Werkzeugkosten, ohne Lieferkettenrisiken. Der Lösungsansatz lautet 3D-Druck für die automatisierte Herstellung zirkulärer Mehrweg-Verpackungen für die Industrielogistik. Ziel des durch die DBU geförderten Vorhabens ist die technologische und betriebliche Entwicklung eines skalierbaren „System-as-a-Service“-Modells für die zirkuläre Verpackungsproduktion. Die Kombination aus generativem Design, lokalem Fused Granulate Fabrication (FGF)-3D-Druck und einem regional geschlossenen Materialkreislauf (DRAM-Ansatz) reduziert Ressourcenverbrauch, CO2-Emissionen und Abfallmengen entlang der gesamten Wertschöpfungskette. Konkret zielt das Vorhaben auf: - die Stabilisierung der Prozessparameter bei der automatisierten Herstellung von Verpackungen aus Rezyklaten, - die Weiterentwicklung der bestehenden generativen Designsoftware für Verpackungen, - die Erprobung eines lokalen Materialkreislaufs durch Rückführung und Wiederverwertung des Materials alter Ladungsträger für den exakt selben Produktionsprozess, - die Erprobung einer Pilotanlage zur dezentralen Produktion direkt bei Kundenunternehmen. Die Fördermittel der DBU unterstützen PALPRINT in der risikoreichen Vorentwicklungsphase bei der Etablierung eines nachhaltigen Produktionssystems, das ökologische Wirkung mit wirtschaftlicher Skalierbarkeit vereint. Die Wirkung erstreckt sich auf mehrere Nachhaltigkeitsziele: Ressourcenschonung und Abfallvermeidung (SDG 12), Klimaschutz durch CO2-Einsparung und regionale Produktion (SDG 13), Innovation und resiliente Industrie (SDG 9), sowie die Schaffung qualifizierter Arbeitsplätze im Bereich GreenTech (SDG 8).
| Origin | Count |
|---|---|
| Bund | 220 |
| Land | 6 |
| Type | Count |
|---|---|
| Förderprogramm | 197 |
| Kartendienst | 1 |
| Text | 23 |
| unbekannt | 5 |
| License | Count |
|---|---|
| geschlossen | 16 |
| offen | 196 |
| unbekannt | 14 |
| Language | Count |
|---|---|
| Deutsch | 213 |
| Englisch | 36 |
| Resource type | Count |
|---|---|
| Archiv | 14 |
| Bild | 1 |
| Datei | 14 |
| Dokument | 19 |
| Keine | 154 |
| Unbekannt | 1 |
| Webdienst | 1 |
| Webseite | 52 |
| Topic | Count |
|---|---|
| Boden | 157 |
| Lebewesen und Lebensräume | 172 |
| Luft | 150 |
| Mensch und Umwelt | 225 |
| Wasser | 132 |
| Weitere | 226 |