API src

Found 6 results.

Infrasound records of Stromboli eruptions on July 3 and August 28 2019

Two strong eruptions of Stromboli Volcano (38.789°N 15.213°E, 920 m) occurred on July 3rd and August 28th 2019. This data set provides the infrasound records in terms of raw pressure data in Pascal of both eruptions available at BGR’s infrasound array I26DE in Germany as well as infrasound arrays OHP and CEA in France. The publication “Using dense seismo-acoustic network to provide timely warning of the 2019 paroxysmal Stromboli eruptions” (Le Pichon et al., 2021, Scientific Reports) provides further details on this data set and its scientific application. Data format: The data are provided as ASCII files (separate file for each infrasound sensor and hour of measurement, plus a README file).

Very low frequency data products of the International Monitoring System’s infrasound stations

This dataset consists of data products derived from broadband signal detection lists that have been processed for the certified infrasound stations of the International Monitoring System. More specifically, this dataset, called the ‘maw’ product, covers a very low frequency range of infrasound (0.02-0.07 Hz). The temporal resolution (time step and window length) is 30 min. For processing the infrasound data, the Progressive Multi-Channel Correlation (PMCC) array processing algorithm with a one-third octave frequency band configuration between 0.01 and 4 Hz has been used. The detected signals from the most dominant directions in terms of number of arrivals within a time window and the product-specific frequency range are summarized at predefined time steps. Along with several detection parameters such as the back azimuth, apparent velocity, or mean frequency, additional quantities for assessing the relative quality of the detection parameters are provided. The dataset is available as a compressed .zip file containing the yearly data products (.nc files, NetCDF format) of all certified stations (since 2003). Further information on the processing and details about the open-access data products can be found in: Hupe et al. (2022), IMS infrasound data products for atmospheric studies and civilian applications, Earth System Science Data, doi:10.5194/essd-14-4201-2022.

Higher frequency data products of the International Monitoring System’s infrasound stations

This dataset consists of data products derived from broadband signal detection lists that have been processed for the certified infrasound stations of the International Monitoring System. More specifically, within the CTBT-relevant infrasound range (around 0.01-4 Hz), this dataset covers higher frequencies (1-3 Hz) and is therefore called the ‘hf’ product. The temporal resolution (time step and window length) is 5 min. For processing the infrasound data, the Progressive Multi-Channel Correlation (PMCC) array processing algorithm with a one-third octave frequency band configuration between 0.01 and 4 Hz has been used. The detected signals from the most dominant directions in terms of number of arrivals within a time window and the product-specific frequency range are summarized at predefined time steps. Along with several detection parameters such as the back azimuth, apparent velocity, or mean frequency, additional quantities for assessing the relative quality of the detection parameters are provided. The dataset is available as a compressed .zip file containing the yearly data products (.nc files, NetCDF format) of all certified stations (since 2003). Further information on the processing and details about the open-access data products can be found in: Hupe et al. (2022), IMS infrasound data products for atmospheric studies and civilian applications, Earth System Science Data, doi:10.5194/essd-14-4201-2022

Microbarom low-frequency data products of the International Monitoring System’s infrasound stations

This dataset consists of data products derived from broadband signal detection lists that have been processed for the certified infrasound stations of the International Monitoring System. More specifically, this dataset covers the dominant frequency range of microbaroms (0.15-0.35 Hz) and is therefore called the ‘mb_lf’ product. The temporal resolution (time step and window length) is 15 min. For processing the infrasound data, the Progressive Multi-Channel Correlation (PMCC) array processing algorithm with a one-third octave frequency band configuration between 0.01 and 4 Hz has been used. The detected signals from the most dominant directions in terms of number of arrivals within a time window and the product-specific frequency range are summarized at predefined time steps. Along with several detection parameters such as the back azimuth, apparent velocity, or mean frequency, additional quantities for assessing the relative quality of the detection parameters are provided. The dataset is available as a compressed .zip file containing the yearly data products (.nc files, NetCDF format) of all certified stations (since 2003). Further information on the processing and details about the open-access data products can be found in: Hupe et al. (2022), IMS infrasound data products for atmospheric studies and civilian applications, Earth System Science Data, doi:10.5194/essd-14-4201-2022

Microbarom high-frequency data products of the International Monitoring System’s infrasound stations

This dataset consists of data products derived from broadband signal detection lists that have been processed for the certified infrasound stations of the International Monitoring System. More specifically, this dataset covers, among other phenomena, the upper frequency range of microbaroms (0.45-0.65 Hz) and is therefore called the ‘mb_hf’ product. The temporal resolution (time step and window length) is 15 min. For processing the infrasound data, the Progressive Multi-Channel Correlation (PMCC) array processing algorithm with a one-third octave frequency band configuration between 0.01 and 4 Hz has been used. The detected signals from the most dominant directions in terms of number of arrivals within a time window and the product-specific frequency range are summarized at predefined time steps. Along with several detection parameters such as the back azimuth, apparent velocity, or mean frequency, additional quantities for assessing the relative quality of the detection parameters are provided. The dataset is available as a compressed .zip file containing the yearly data products (.nc files, NetCDF format) of all certified stations (since 2003). Further information on the processing and details about the open-access data products can be found in: Hupe et al. (2022), IMS infrasound data products for atmospheric studies and civilian applications, Earth System Science Data, doi:10.5194/essd-14-4201-2022

Die Bedeutung volatiler Arsen-Emissionen aus vulkanischen Gebieten

Das Projekt "Die Bedeutung volatiler Arsen-Emissionen aus vulkanischen Gebieten" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Fakultät für Biologie, Chemie und Geowissenschaften - Umweltgeochemie durchgeführt. Arsen ist durch sein ubiquitäres Vorkommen eines der bestuntersuchten Elemente in Gestein, Boden und Wasser. Über Arsen in der Atmosphäre ist dagegen wenig bekannt. Die größten Freisetzungen stammen aus Punktquellen, wobei vulkanische Gebiete die wichtigsten natürlichen Quellen sind. Meist wird angenommen, dass die atmosphärische Ausbreitung von partikulärem Arsen abhängt, während volatile Arsenspezies ignoriert wurden trotz hoher Toxizität schon bei geringen Konzentrationen. Sie wurden als exotisch und zu kurzlebig, um umweltrelevant zu sein, eingestuft. Neuere Untersuchungen zeigen aber, dass die Stabilität volatilen Arsens bislang unterschätzt wurde. Ein Mangel an Probenahme-, Stabilisierungs- und Analysetechniken verhinderte auch, dass speziesselektive Massenbilanzen für atmosphärisches Arsen aufgestellt und abiotische von biotischen Bildungsmechanismen unterschieden werden konnten. Die Hypothese des vorliegenden Antrags ist, dass volatile Arsenspezies mehr zum globalen biogeochemischen Kreislauf beitragen und über größere Distanzen transportiert werden als bisher angenommen. Desweiteren wird postuliert, dass neben primärer abiotischer Freisetzung mikrobielle Gemeinschaften sekundär Arsen volatilisieren und die Speziierung bestimmen. Ein erstes Ziel ist die Entwicklung einer neuen, feldtauglichen Methode zur Beprobung volatiler Arsenspezies. Dafür werden Extraktionsfallen aus Stahlnadeln gefüllt mit Polymersorbenten verwendet (Needle Trap Devices, NTDs). NTDs werden durch aktives Pumpen beladen, was die Quantifizierung der Flussrate und Berechnung absoluter Konzentrationen ermöglicht. NTDs werden in der organischen Chemie routinemäßig eingesetzt. Ihr Potential, volatiles Arsen quantitativ und spezieserhaltend zu sorbieren, ist unbekannt. Sorptionsmaterial, Pumpraten, Lagerbedingungen müssen optimiert und Konkurrenzsorption anderer volatiler Metall(oid)e oder vulkanischer Gase (H2O, SO2, H2S) eliminiert werden. Zur Analyse wird eine moderne Kopplungstechnik verwendet (GC-MS split ICP-MS): Nach gaschromatographischer Trennung wird der Probenfluss gesplittet; ein Massenspektrometer ermöglicht die molekulare Identifikation unbekannter Spezies, ein induktiv-gekoppeltes Plasma-MS die Element-Quantifizierung. Das zweite Ziel ist die Erfassung der Bedeutung volatiler Arsenfreisetzung und -verteilung in drei Gebieten unterschiedlicher vulkanischer Aktivität (Mt.Etna - Vulcano - Yellowstone National Park). Messungen entlang von Transekten sollen die Veränderung der volatilen Arsenmenge und -speziierung während des Transports aufzeigen. On-site Inkubationstests mit extremophilen Bakterien sollen zeigen, ob es zu mikrobieller Volatilisierung methylierter Arsenate und Methylierung von Arsin in der Gasphase kommt. Gesamtziel ist, durch das Bereitstellen einer Methode und den Nachweis der Rolle von volatilem Arsen exemplarisch in vulkanischen Gebieten eine neue Bewertung der Bedeutung volatiler Metall(oid)e für globale Stoffkreisläufe anzustoßen

1