Die Quellgruppe Hausbrand beschreibt die Emissionen aus nicht genehmigungsbedürftigen Feuerungsanlagen für Berlin. Zu den nicht genehmigungsbedürftigen Feuerungsanlagen zählen alle Feuerungsanlagen entsprechend der Verordnung über kleinere und mittlere Feuerungsanlagen der 1. Bundes-Immissionsschutzverordnung (1. BImSchV). Den Hauptteil der nicht genehmigungsbedürftigen Feuerungsanlagen bilden die Haushalte, aber auch Feuerungsanlagen öffentlicher Einrichtungen und gewerblicher Unternehmen werden dazugezählt. Die Emissionen aus Kleinfeuerungsanlagen werden anhand des Endenergieeinsatzes berechnet, wobei der Heizwärmebedarf in Wohn- und Nichtwohngebäuden bestimmt wird, der durch unterschiedliche Energieträger gedeckt wird. Die Emissionen ergeben sich dann aus dem Produkt des Endenergieeinsatzes der einzelnen Energieträger in den Kleinfeuerungsanlagen mit entsprechenden Emissionsfaktoren. Als Basis wurden die Emissionsfaktoren der Bund/Länder-Arbeitsgemeinschaft Immissionsschutz von 2013 verwendet. Zudem wurden neuere Erkenntnisse zu Emissionseigenschaften aus der Erstellung des Emissionskatasters “Kleinfeuerungsanlagen für Brandenburg” mit Stand 2015 berücksichtigt. Die Berechnung der Emissionen beruht auf Daten zum Gebäudebestand mit beheizbarer Fläche, Angaben zu den Anteilen verschiedener Beheizungsarten und dem Brennstoffverbrauch. Bei der Berechnung der Emissionen der Quellgruppe Hausbrand werden Fernwärmeheizungen nicht berücksichtigt, da die mit der Produktion von Fernwärme verbundenen Emissionen in der Quellgruppe der genehmigungsbedürftigen Anlagen enthalten sind. Die Datengrundlage ist vielfältig: Es wurden Daten, die im Rahmen des Zensus 2011 zum Gebäudebestand und zur vorwiegenden Heizungsart verwendet. Zudem wurden aktuelle Gebäudedaten aus dem Allgemeinen Liegenschaftskataster mit Stand 2014, Daten zur Gebäudenutzung, Daten zu den Gas- und Fernwärmeversorgten Gebieten mit Stand 2011 bzw. 2007, Daten der Schornsteinfeger mit Stand 2012 sowie Daten zum Absatz von Kohle und Öl mit Stand 2014 verwendet. Der durch Fernwärme beheizte Anteil wurde bei der Berechnung des Endenergieeinsatzes subtrahiert, übrig blieb der lokal zu deckende Heizwärmebedarf. Gas ist mit einem Beitrag von knapp 80 % der dominierende Energieträger in Berlin, gefolgt von Heizöl mit einem Beitrag von knapp 17 %. Die Beiträge der Festbrennstoffe (Kohle, Holz und Pellets) tragen mit Werten unter 3 % nur gering zum Endenergieeinsatz bei. Beim Verbrauch von Kohle ist eine starke Abnahme festzustellen. Seit 2000 ist in Deutschland jedoch ein starker Anstieg von Holz- sowie von Holzpelletheizungen registriert worden. In Berlin ist dieser Trend auch vorhanden. Obwohl die Verkaufszahlen von Brennholz in Berlin seit Jahren relativ konstant liegen, ist damit zu rechnen, dass deutlich mehr Holz aus Wäldern Berlins und Brandenburgs in Feuerstätten verbrannt wird, dies aber in den offiziellen Verkaufszahlen nicht erfasst wird. Bei der Betrachtung der aus den Endenergieeinsätzen für alle Gebäude Berlins berechneten Emissionen wird deutlich, dass Festbrennstoffe besonders hohe spezifische Emissionen von Feinstaub (PM 10 und EC) und Benzo[a]pyren (BaP) pro Energieeinsatz aufweisen. Obwohl nur ca. 3,4 % der Wärmeenergie durch Kohle, Holz und Pellets gedeckt wird, stammen die Staubemissionen fast ausschließlich von diesem Energieträger, weil bei der Verbrennung von Festbrennstoffen pro Tonne etwa 1 kg Staub, bei der Verbrennung von einer Tonne Heizöl aber nur etwa 0,064 kg Staub entsteht. Die Verbrennung von Festbrennstoffen ist außerdem in Berlin die mit Abstand wichtigste Quelle für Benzo[a]pyren und Ruß (EC). Auch die SO 2 -Emissionen aus dem Kleinfeuerungssektor stammen zu 87 % aus den Festbrennstoffanlagen. Die Karten zeigen die räumliche Verteilung der Emissionen von Stickoxiden bzw. Feinstaub (PM 10 ) aus dem Hausbrand mit maximalen Werten in Gebieten mit hoher Altbauten- und Bevölkerungsdichte. Besonders niedrige Emissionen weisen Gebiete auf, in denen die Gebäude überwiegend mit Fernwärme geheizt werden, z.B. die Plattenbausiedlungen im Ostteil der Stadt. Karte im Geoportal Berlin ansehen
Web Feature Service (WFS) zum Thema Gebiete mit Wärmenetz - kommunale Wärmeplanung Hamburg. Zur genaueren Beschreibung der Daten und Datenverantwortung nutzen Sie bitte den Verweis zur Datensatzbeschreibung.
Die EVI Energieversorgung Hildesheim ist ein Tochterunternehmen der Stadtwerke Hildesheim AG. Als modernes und dienstleistungsorientiertes Unternehmen bieten wir Ihnen eine sichere Energie- und Wasserversorgung zu wettbewerbsfähigen Konditionen. Zusätzlich profitieren Sie von unseren Service- und Beratungsleistungen. In unser Fernwärmenetz wird ausschließlich Wärme eigespeist, die in unserem Holzhackschnitzelheizkraftwerk erzeugt wird. Dieses produziert neben Wärme auch Ökostrom durch die Verbrennung von Biomasse in Form von Holzhackschnitzeln. Diese werden ausschließlich aus Waldresthölzern gewonnen.
Für einen stabilen Netzbetrieb muss das Angebot an elektrischer Leistung stets dem Verbrauch entsprechen. Dazu halten die Übertragungsnetzbetreiber Regelleistung zur Primär- und Sekundärregelung sowie Minutenreserve vor. Mit der Zunahme der Leistungseinheiten mit volatiler Netzeinspeisung aus erneuerbaren Energien, wie Windkraft und Photovoltaik, erhöht sich permanent der Bedarf an Regelleistung. Gleichzeitig wird die eingespeiste Leistung aus konventionellen Großkraftwerken und damit die zur Verfügung stehende Regelleistung abnehmen. Aktuelle Studien zeigen zudem, dass in der Primärregelung künftig signifikant kürzere Reaktionszeiten und höhere Leistungsänderungsgeschwindigkeiten erforderlich sind. Die so entstehende Bedarfslücke kann künftig durch regionale zellulare Verbünde von Versorgungseinheiten abgedeckt werden. Sie sind gekennzeichnet durch eigene dezentrale Versorger-, Verbraucher- und Speicherkapazitäten , insbesondere Industriebetriebe mit eigenen Heizkraftwerken auf Basis von Gas, Biomasse oder Kohle mit Priorität der Wärmeversorgung, Windenergie- und Photovoltaik-Anlagen sowie elektrische Batteriesysteme und thermische Speicher. Sie stellen nach außen einen Verbund mit positiver und negativer Regelreserve dar. Der Netzbetreiber kann die einzelnen Verbünde gestuft einsetzen und abrufen. Hierdurch entstehen zusätzliche Redundanzen, welche die Gesamtsystemstabilität erhöhen. Ziel des Vorhabens ist es zunächst, Lösungsansätze zu entwickeln, so dass regionale zellulare Verbünde von Versorgungseinheiten auch hochdynamische Netzregelaufgaben erfüllen können. Das komplexe Zusammenwirken von Energiebereitstellungs-, Nutzungs- und Speichereinheiten unterschiedlicher Energieformen stellt dabei eine besondere Herausforderung dar. Die Übernahme von Netzregelaufgaben muss ohne Abstriche bei Prozess- und Versorgungsstabilität, Betriebszuverlässigkeit und Anlagenlebensdauer erfolgen. Nur durch die Integration geeigneter Speicher, einer intelligenten Nutzung systeminhärenter Speicherkapazitäten sowie einer übergeordneten Steuerung und Überwachung des komplexen dezentralen Systems können die Anforderungen erfüllt werden. Als Entwicklungsplattform und Demonstrator soll das Technikum des Zentrum für Energietechnik (ZET) der TUD dienen. Es repräsentiert einen derartigen Verbund dezentraler Erzeuger- und Verbrauchereinheiten von Elektroenergie und Wärme mit Kopplung zum Strom- und Wärmenetz des lokalen Energieversorgers im Universitätscampus.
Der Datensatz beinhaltet Daten vom LBGR über die Potenzielle Standorteignung für Erdwärmekollektoren Brandenburgs - Bundesmethode: Permanenter Welkepunkt (PWP) und wird über je einen Darstellungs- und Downloaddienst bereitgestellt. Die im Boden / oberflächennahen Untergrund gespeicherte Wärmeenergie kann über Wärmetauscher (sog. Erdwärmekollektoren) gewonnen und von Wärmepumpen für Heizzwecke genutzt werden (Boden-Geothermie). In der Karte zur potentiellen Standorteignung für Erdwärmekollektoren wird die Eignung des natürlich gelagerten, abgesetzten Bodens für diese Form der oberflächennahen, geothermischen Nutzung bewertet.
Für die Freie und Hansestadt Hamburg erstellte Ecofys eine umfangreiche Studie zum aktuellen Wärmebedarf des Gebäudebestandes. Im Rahmen dieser Untersuchung wurde die Hamburger Gebäudetypologie aktualisiert und um eine Typologie für Nicht-Wohngebäude erweitert. Zur Ermittlung des Ist-Zustandes und der Bedarfsentwicklung wurden zahlreiche Datensätze zu energetischen Kennwerten, Modernisierungsstand, Sanierungsstand, Energieverbräuche, Versorgungsstruktur, etc. in ein geographisches Informationssystem (GIS) eingepflegt. Die Ergebnisse der Auswertungen lassen nicht nur Rückschlusse auf den Ist-Zustand und die Bedarfsentwicklung zu, sondern sind ein wesentliches Instrument für die strategische Planung der künftigen Wärmeversorgung und die Möglichkeiten der Energieeinsparung im Gebäudebereich.
Im Rahmen der Energieplanung der Stadt Zuerich werden die Energieeinsparungsmoeglichkeiten im Waermebereich untersucht. Es werden Massnahmen bestimmt, die die Stadt Zuerich mit den ihr zur Verfuegung stehenden Instrumenten realisieren kann. Weiter wird ein Ueberblick ueber die im Rahmen des Programms zur energetischen Sanierung der Gebaeude der Stadt Zuerich durchgefuehrten Aktionen und ihrer Wirkungen erarbeitet.
Die kombinatorische Vielfalt der Einflussgrößen auf den Energieverbrauch von Gebäuden verursacht meistens Unsicherheit in der Planung. Ziel dieses Projektes ist es, für Architekten und Fachplaner eine umfassende Matrix zu erstellen, die es erlaubt, die Auswirkungen von Planungsschritten auf den Energiehaushalt und die Behaglichkeit von Gebäuden hinreichend genau zu bewerten und Alternativen gegeneinander abzuwägen. Anhand eines standardisierten Bürogebäudes werden unter Berücksichtigung der äußeren und inneren Lasten und für definierte zu erreichende Raumzustände alle wichtigen Faktoren wie z.B. der Anteil an thermisch aktiver Masse oder der Grad an Verglasung variiert. Die zur Anwendung kommende Methode der thermischen Gebäudesimulation und Strömungssimulation erlaubt eine sehr differenzierte Betrachtungsweise.
Die Danpower Energie Service GmbH betreibt in der Altmark, Sachsen-Anhalt, zehn fast identische Biogasanlagen (BGA). Acht dieser zehn Anlagen sollen an ein geplantes Biogasleitungsnetz angeschlossen werden, welches am Standort Garlipp I im Gewerbegebiet „Der kurze Hagen“ in einer zentralen Biogasaufbereitungsanlage (BGAA) mündet. Die neu geplanten Maßnahmen werden am Standort der bestehenden Biogasanlage im Bereich des ursprünglichen Areals durchgeführt. Aus verfahrenstechnischen Erwägungen sowie aus Optimierungsgründen ergeben sich die nachfolgend beschriebenen technischen Änderungen am Standort Meßdorf. Die BGA wird im Rahmen der vorgenannten Modifikation des Verwertungswegs ebenfalls dem verfahrenstechnischen Stand der Technik angepasst. Bauteile, die der TA Luft unterliegen und vom aktuellen Antrag nicht betroffen sind, werden im Allgemeinen nach Ende der Standzeit auf den Stand der Technik gebracht bzw. bis zur entsprechenden Sanierungspflicht ausgetauscht. Dabei wird der bestehende Grubenspeicherfermenter mit einem neuen Gasspeichersystem (Trachluftdach - TLD) ausgestattet. Der zweite bestehende Rundbehälter mit neuer Rührwerkstechnik sowie erstmalig mit einem Gasspeichersystem (TLD) versehen. Durch diese Maßnahmen überschreitet die Anlage erstmalig einen Grenzwert des Anhangs I der 12. BImSchV. Bevor eine Einleitung in das neu geplante Biogasleitungsnetz erfolgen kann, muss das Biogas getrocknet und entschwefelt werden. Hierfür soll am Standort Meßdorf eine zusätzliche Gaskonditionierung installiert werden, welche eine Gastrocknung, Aktivkohlefilter, Verdichter und einen Steuerungscontainer umfasst. Des Weiteren soll der Mix an nachwachsenden Rohstoffen größtmöglich flexibilisiert werden, um die bestmögliche Auslastung der Anlage zu gewährleisten. Zukünftig sollen daher bis zu 14.000 t/a Substrat eingesetzt werden, welche nach der Stoffliste Anlage 2 der Einsatzstoffe nach Biomasseverordnung vom LfL Bayern genannt werden. Die genehmigte Rohbiogas-menge von 2,2 Mio. Nm³/a soll nicht geändert werden. Ferner soll zukünftig Wirtschaftsdünger in Form von Festmist als Einsatzstoff eingesetzt wer-den. Der Festmist wird in freien Bereichen des Fahrsilos entladen, zwischengelagert, wobei insgesamt eine Manipulationsfläche von 150 m² nicht überschritten wird. Die Lagerung erfolgt auf ca. 59 m² in einem mobilen Unterstand. Zur Erhöhung der Anlagenflexibilität wird außerdem ein Wärmepufferspeicher zur temporären Speicherung der bei dem BHKW-Verbrennungsmotor anfallenden thermischen Energie installiert.
| Origin | Count |
|---|---|
| Bund | 1703 |
| Kommune | 9 |
| Land | 118 |
| Wissenschaft | 4 |
| Zivilgesellschaft | 1 |
| Type | Count |
|---|---|
| Daten und Messstellen | 3 |
| Förderprogramm | 1564 |
| Hochwertiger Datensatz | 9 |
| Text | 84 |
| Umweltprüfung | 21 |
| unbekannt | 94 |
| License | Count |
|---|---|
| geschlossen | 101 |
| offen | 1615 |
| unbekannt | 59 |
| Language | Count |
|---|---|
| Deutsch | 1571 |
| Englisch | 325 |
| Resource type | Count |
|---|---|
| Archiv | 39 |
| Bild | 5 |
| Datei | 53 |
| Dokument | 107 |
| Keine | 973 |
| Webdienst | 39 |
| Webseite | 685 |
| Topic | Count |
|---|---|
| Boden | 1180 |
| Lebewesen und Lebensräume | 1327 |
| Luft | 806 |
| Mensch und Umwelt | 1775 |
| Wasser | 761 |
| Weitere | 1719 |