API src

Found 112 results.

Related terms

Statistik der Wasserversorgung und der Abwasserbeseitigung bei Wärmekraftwerken für die öffentliche Versorgung

Gewinnung von Grund-, Quell- und Oberflächenwasser sowie Bezug und Abgabe von Wasser. Verwendung von Wasser, getrennt nach Einsatzbereichen, Einfach-, Mehrfach- und Kreislaufnutzung. Behandlung und Einleitung von Kühlwasser und sonstigem Wasser nach Menge, Art der Abwasserbehandlung, behandeltes und unbehandeltes Abwasser sowie die jeweiligen Konzentrationen und Frachten an Schadstoffen nach dem Abwasserabgabengesetz, Klärschlamm nach Menge, Behandlung, Beschaffenheit und Verbleib sowie die für das Aufbringen genutzte Fläche nach Nutzungsart, Zahl der beschäftigten Personen.

Bauliche Anlagen

Bauliche Anlagen i.S.d. § 62 Berliner Wassergesetz (BWG) sind grundsätzlich alle Bauwerke, die sich im, über, unter und am Gewässer befinden. Das Wasserrecht gilt demnach für die Bauwerke an Gewässern, die sich bis zu einem Abstand von 10 m bei Gewässern 1. Ordnung und bei Gewässern 2. Ordnung bis zu einem Abstand bis zu 5 m von der Uferlinie landeinwärts befinden. In jedem Fall muss geprüft werden, ob sie einer Genehmigung bedürfen. Soweit nichts anderes ausdrücklich erwähnt wird, werden die Genehmigungen von der Wasserbehörde bei der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt erteilt; ein entsprechendes Hinweisblatt für Antragsteller (3) steht Ihnen auf unserer Downloadseite zur Verfügung. Befinden sich die baulichen Anlagen in einer Bundeswasserstraße, ist zusätzlich eine bundesrechtliche strom- und schifffahrtspolizeiliche Genehmigung bei der zuständigen Bundeswasserstraßenverwaltung, dem Wasser- und Schifffahrtsamt Berlin (WSA Berlin), Mehringdamm 129, in 10965 Berlin, zu beantragen. Zu den baulichen Anlagen zählen u. a. die folgenden Anlagen: Sportbootstege werden ausschließlich für das Anlegen und Liegen von Sportbooten zugelassen. Die wasserrechtliche Genehmigung erteilt das jeweilige Bezirksamt. Sonstige Stege sind alle Stege, die nicht für Sportboote bestimmt sind (z.B. Versorgungs- oder Aussichtsstege). Dazu gehören auch die Anlegestellen (Anlegestege, -brücken, -plattformen) der Fahrgastschifffahrt und die für Restaurant-, Theater- oder Kabinenschiffe ebenso wie die für die Berufsschifffahrt. Plattformen hauptsächlich als zusätzlicher Aufenthaltsort auf/am Gewässer genutzt. Sie können aus Holz, Stahl oder Schwimmkörpern gebaut werden und ständig oder zeitweise im Gewässer sein. Dalben -Pfahlbündel- werden an Uferwänden und in Häfen insbesondere als Anlege- oder Abweisepfähle genutzt. Uferbefestigungen sowie jegliche Umgestaltung von Ufern an Gewässern (z.B. Betonmauern, Spundwände, Pfahlreihen, Schrägböschungen) sowie auch der Neu- oder Umbau von bestehenden Uferbefestigungen ist genehmigungsbedürftig. Einleit- und Entnahmebauwerke dienen der Einleitung von Wasser bzw. der Entnahme von Wasser zu verschiedensten Zwecken (als Kühlwasser, Brauchwasser, für die Bewässerung usw.). Die Bauwerke können ge-mauert sein oder aus Rohren oder Fertigteilen bestehen. Das Bauwerk und die Benutzung des Gewässers sind zu genehmigen bzw. zu erlauben. Durchlässe sind Bauwerke, die dem Durchleiten eines kleinen Fließgewässers durch einen Damm dienen. Auf dem Damm können ein Weg, eine Straße, Schienen o. ä. sein. Gewässerkreuzungen können ober- oder unterirdisch Gewässer kreuzen. Unterirdisch wird meist mittels Düker gekreuzt, in dem sich die entsprechenden Medien (z.B. Wasser, Abwasser, Gas, Telekommunikation) befinden. Brücken kreuzen die Gewässer oberirdisch. Kleine private Brücken, Stege und z.B. Rohrbrücken werden von der Wasserbehörde zugelassen. Öffentlich zugelassene Brücken genehmigt die Brückenbauverwaltung bei der Senatsverwaltung für Stadtentwicklung. Häfen / Marinas können dem Güterumschlag oder als Liegefläche für Sportboote (Marina) dienen. Hafentypische Einrichtungen (Be-, Entladungseinrichtungen, Service usw.) müssen vorhanden sein. Für die Neuerrichtung eines Hafens muss in der Regel ein förmliches Genehmigungsverfahren durchgeführt werden, das auch eine Umweltverträglichkeitsprüfung (UVP) beinhaltet. Für Neubauten an Bundeswasserstraßen ist in der Regel die Bundeswasserstraßenverwaltung Genehmigungsbehörde. Slipanlagen sind bauliche Anlagen am/im Gewässer, die dem Ein- und Aussetzen von Schiffen dienen. Je nach Schiffsgröße haben sie einen unterschiedlichen Aufbau. Bojen sind kugel-, kegel- oder tonnenförmige Schwimmkörper, die in der Regel auf dem Gewässergrund verankert sind und verschiedene Funktionen erfüllen. Sie können als Takel-, Anker- oder Absperrbojen benutzt werden. Als Anlagen im Gewässer sind sie genehmigungspflichtig.

Nichtöffentliche Abwasserentsorgung

Nichtöffentliche Abwasserentsorgung Nichtöffentliche Betriebe leiteten im Jahr 2019 rund 15,6 Milliarden Kubikmeter Wasser in Gewässer ein. Rund 86 Prozent davon gelangten als Kühlwasser unbehandelt in Flüsse und Seen. Das waren rund 2.275 Millionen Kubikmeter weniger als 2016. Abwasser aus der Wirtschaft Die Menge des Abwassers, ungenutzten Wassers sowie der Wasserverluste aus nichtöffentlichen Betrieben betrug im Jahr 2019 rund 15,6 Milliarden Kubikmeter (Mrd. m³). Gegenüber 2016 sank diese Menge um rund 5 % (2016: 19,6 Mrd. m³). 2019 wurden davon 11,8 Mrd. m³ unbehandeltes Abwasser direkt in ein Oberflächengewässer oder in den Untergrund eingeleitet. Bergbau, Gewinnung von Steinen und Erden, Verarbeitendes Gewerbe und Energieversorgung hatten daran einen Anteil von 97 % (siehe Tab. „Abwassereinleitung nach Wirtschaftszweigen 2010, 2013, 2016 und 2019“). Kühlwassereinleitungen in deutsche Flüsse Betriebe der Energieversorgung haben in Deutschland 2019 mit 8,5 Mrd. m³ fast vier Mrd. m³ Kühlwasser weniger eingesetzt als 2016 (12,3 Mrd. m³). Das entspricht einem Rückgang von etwa 30 %. Bedingt durch diesen Rückgang gelangte 2019 auch weniger unbehandeltes Abwasser aus diesen Betrieben in die Oberflächengewässer oder in den Untergrund - nämlich 8,4 Mrd. m³ gegenüber 2016 noch 12,0 Mrd. m³. Auch die anderen Wirtschaftsbereiche setzen Wasser zur Kühlung ein. Insgesamt wurden so im Jahr 2019 in Deutschland 13,0 Mrd. m³ für Kühlungszwecke verwendet, darunter 1,5 Mrd. m³ in Mehrfach- und Kreislaufnutzung. 2013 waren es noch 16,6 Mrd. m³ bzw. 1,2 Mrd. m³. Kühlwasser kann – besonders wenn es aus der Kreislaufkühlung kommt – problematisch sein: Dem Wasser werden zur Korrosionsverminderung, zur Härtestabilisierung und zur Bekämpfung von Mikro- und Makroorganismen Chemikalien zugesetzt. Die Einleitung von Kühlwasser kann zudem Gewässer erwärmen. Daten aus dem Jahr 2019 weisen für einige Flusssystemen einen Rückgang der Abwassermengen aus Kühlsystemen auf (siehe Abb. „Abwassereinleitungen aus Kühlsystemen nichtöffentlicher Betriebe in deutsche Flüsse“), so sanken die Einleitungen von Abwasser aus Kühlsystemen in die Weser von 2016 auf 2019 um etwa 32 % und in die Elbe um 23 %. Hingegen stieg die Einleitung von Abwasser aus Kühlsystemen in die Oder um mehr als 120 % und in die Donau um 11 %. Auffällig sind die Steigerungen bei den Einleitungen in die Eider und die Warnow/Peene mit 496 % bzw. 530 % prozentualen Steigerungen, aber im Vergleich zu den anderen Flusssystemen weiterhin geringen Mengen in Höhe von 0,04 Mrd. m³ bzw. 0,27 Mrd. m³ (aufgrund der geringen Mengen nicht in der Abbildung dargestellt). Die größte Menge an Kühlwasser wurde 2019 mit etwa 7,0 Mrd m³ in den Rhein eingeleitet. Dies ist ein Rückgang um etwa 11 % im Vergleich zum Jahr 2016 nach einer Steigerung um 2 % von 2013 zu 2016. Ein deutlicher Rückgang der Abwassereinleitung ist auch für Flüsse wie Mosel und Saar erkennbar. Nachdem in beiden Flüssen die Abwassereinleitungen aus Kühlsystemen von 70 Mio. m³ (2010) auf 87,4 Mio. m³ (2013) anstiegen und im Zeitraum 2013 bis 2016 die Einleitungen um etwa 0,3 Mio. m³ sanken, ist nun ein weiterer Rückgang der Abwassereinleitung aus Kühlsystemen von den 87,1 Mio. m³ in 2016 zu 2019 um etwa 90 % auf 8 Mio. m³ in Mosel und Saar zu beobachten. Abwasserverordnung und Oberflächengewässerverordnung Die Gewässerbelastung durch chemische Stoffe und zu warmes Kühlwasser wollen Bund und Länder in vertretbaren Grenzen halten. Daher wurden in der Abwasserverordnung für verschiedene Stoffe Vorgaben für das eingeleitete Abwasser aus Kühlsystemen und der Dampferzeugung festgelegt. Dem Kühlwasser dürfen mit der Ausnahme von Phosphonaten und Carboxylaten nur leicht abbaubare ⁠ Komplexbildner ⁠ zugesetzt werden. Nicht zulässig ist die Einleitung von Chrom-, Quecksilber- und metallorganischen Verbindungen (siehe Anhang 31 der Abwasserverordnung). Die Anlage 7 der Oberflächengewässerverordnung enthält Vorgaben, welche Temperaturwerte für die Fließgewässer eingehalten werden sollen: Für einen sehr guten ökologischen Zustand des Gewässers darf die Abwärme des Kühlwassers nicht dazu führen, dass die Temperatur unterhalb der Einleitungsstelle die in der Oberflächengewässerverordnung für unterschiedliche Fischgemeinschaften festgelegten Temperaturwerte überschreitet. Für das Einleiten von Abwässern in Oberflächengewässer gelten für die unterschiedlichen Industriebranchen stoffliche Vorgaben der Abwasserverordnung. Die Einhaltung dieser Vorgaben überwachen die zuständigen Behörden der Bundesländer. Abwasservermeidung Ziel der Abwasserbehandlung ist, Gewässer möglichst wenig zu belasten. Noch sinnvoller ist allerdings, die Schadstoffbelastung an der Quelle zu vermeiden oder reduzieren, damit Klärwerke nicht erst aufwändig Schadstoffe aus dem Abwasser entfernen müssen. Es gibt bereits eine Vielzahl etablierter technischer Verfahren. Einige Beispiele: abwasserfreie (und chlorfreie) Zellstoffherstellung, abwasserfreie Altpapier- und Papierherstellung, abwasserfreie Rauchgasreinigung, abwasserfreie Fahrzeugreinigung, abwasserfreie Metalloberflächenbehandlung (zum Beispiel Galvanik), abwasserfreie Mehrwegflaschenreinigung, abwasserfreier Siebabdruck, wasserfreie Stoffsynthesen, abwasserfreie Pulverlackierung. Viele dieser abwasserfreien oder abwasserarmen Verfahren gelten bereits als Stand der Technik. Neue aber auch bestehende Anlagen müssen diese Verfahren dann in der Regel anwenden. Statistik der „Nichtöffentlichen Wasserversorgung und nichtöffentlichen Abwasserentsorgung“ Die Erhebungen zur "Wasserversorgung und Abwasserbeseitigung im Bergbau, bei der Gewinnung von Steinen und Erden und im Verarbeitenden Gewerbe" (§ 7 UStatG 1994), der "Wasserversorgung und Abwasserbeseitigung in der Landwirtschaft" (§ 8 UStatG 1994) und der "Wasserversorgung und Abwasserbeseitigung bei Wärmekraftwerken für die öffentliche Versorgung" (§ 9 UStatG 1994) wurden zur Erhebung der „Nichtöffentlichen Wasserversorgung und nichtöffentlichen Abwasserbeseitigung" (§ 8 UStatG 2005) zusammengefasst. In dem vorliegenden Artikel werden die Daten ab 2010 nach dem neuen Erhebungsverfahren dargestellt. Eine Vergleichbarkeit mit früheren Daten ist nicht möglich. Weitere Hinweise zur statistischen Erhebung finden Sie unter: Statistisches Bundesamt, Fachserie 19, Reihe 2.2 , 2010 – Stand 30.09.2013, 2013 – Stand 11.08.2016, 2016 – Stand 14.08.2018 und 2019 – Stand 14.03.2023.

Gewässergüte (Chemie) 1991

Umweltatlas-Methode Die nach der ”Umweltatlas-Methode” berücksichtigten Parameter sollen die lokale und regionale Wasserqualität der Oberflächengewässer charakterisieren. Anders als bei der Gewässercharakterisierung nach der ”LAWA-Methode” (Länderarbeitsgemeinschaft Wasser 1991), bei der eine Vielzahl von Parametern zugrundegelegt und zu einer Gesamtbewertung zusammengefaßt wird, werden hier fünf der für die Eutrophierungs-Problematik der Berliner Gewässer maßgeblichen Parameter berücksichtigt und getrennt voneinander bewertet und dargestellt. Dies sind Orthophosphat-Phosphor, Ammonium-Stickstoff, Sauerstoff-Sättigungsindex, Sauerstoff-Minimum und Titer für Escherichia coli. Hiermit läßt sich das relativ kleine Untersuchungsgebiet Berlin differenziert und übersichtlich darstellen. Die Klassifizierung erfolgt in Anlehnung an die Gewässergütekarte der Bundesrepublik Deutschland in vier Güteklassen mit drei Zwischenstufen. Die Klassengrenzen für die beiden Sauerstoff-Parameter wurden in Anlehnung an die in der Gewässergütekartierung der LAWA gewählten Klassen gesetzt. Die Konzentration der Nährstoffe Orthophosphat-Phosphor und Ammonium-Stickstoff wird den entsprechenden Güteklassen so zugeordnet, daß die Belastungsstufen der verschiedenen Parameter miteinander vergleichbar sind. Für das Algenwachstum ist der Phosphatgehalt im Gewässer der begrenzende Faktor. Die Schwelle zur Eutrophierung wird für rückgestaute Fließgewässer allgemein mit 0,01 – 0,03 mg/l angegeben. Der Wert 0,01 mg/l bildet daher die Obergrenze der Güteklasse 2 ”mäßig belastet”. Die Klassifikation für Ammonium-Stickstoff wurde aus dem Rheinbericht von 1978 übernommen, in dem Ammonium-Stickstoff bereits 7-stufig klassifiziert vorlag (IWAR 1978). Da viele Gewässerabschnitte in Berlin als Badegewässer genutzt werden, findet der bakteriologische Parameter Escherichia coli hier Berücksichtigung bei der Darstellung der Gewässergüte. In die vorliegende Karte wurden nur die wichtigsten Fließgewässer in Berlin sowie einige Brandenburger Fließstreckenabschnitte im direkten Umland von Berlin einbezogen. Die Gewässer wurden in 99 Abschnitte unterteilt, mit in der Regel jeweils einer Meßstelle in der Mitte des Streckenabschnittes. Die Untersuchungsergebnisse dieser Meßstellen wurden als repräsentativ für den gesamten Abschnitt angesehen. Um den für belastete Gewässer besonders kritischen Zeitraum mit der größten biologischen Aktivität zu erfassen, wurden für die Darstellung die Werte des Sommerhalbjahres (1. 5. bis 31. 10.) berücksichtigt, und zwar für die Parameter Orthophosphat-Phosphor, Ammonium-Stickstoff und Sauerstoff-Sättigungsindex das Mittel des Sommerhalbjahres sowie für Sauerstoffgehalt und Titer für E. coli der jeweils ungünstigste Einzelwert in diesem Zeitraum. Analog zu den früheren Darstellungen anderer Abflußjahre im Umweltatlas wurden die Meßergebnisse nach einer 7-stufigen Skala von ”praktisch unbelastet” bis ”übermäßig verschmutzt” bewertet und entsprechend farblich dargestellt. Orthophosphat-Phosphor (PO 4 -P) Phosphat kann im Wasser in verschiedenen Formen vorhanden sein; von den Pflanzen kann der Phosphor jedoch nur in Form des gelösten Orthophosphat-Ions aufgenommen und zum Aufbau körpereigener Biomasse genutzt werden. Der überwiegende Teil der Phosphate in den Berliner Gewässern stammt aus den häuslichen Abwässern und hier vor allem aus dem Fäkalbereich. Die Verwendung von phosphathaltigen Reinigungsmitteln trägt ebenfalls zur Phosphatbelastung bei. Ein großer Teil des in Berlin anfallenden Abwassers wird bereits heute in den Klärwerken durch biologische Phosphat-Elimination bzw. durch chemische Phosphatfällung weitgehend entphosphatet. Ammonium-Stickstoff (NH 4 -N) Neben den Phosphaten sind es vor allem die Stickstoffverbindungen, die den Nährstoffgehalt des Wassers bestimmen. Im Wasser ist Stickstoff sowohl in elementarer als auch in Form von anorganischen und organischen Verbindungen enthalten. Der organisch gebundene Stickstoff liegt in den Gewässern in Form von Eiweißen vor, die aus abgestorbenen Organismen stammen. Pflanzen können den zum Aufbau ihrer körpereigenen Proteine erforderlichen Stickstoff normalerweise aber nur in Form von Nitrat- und Ammoniumionen aufnehmen. Die im Wasser vorhandenen Stickstoffverbindungen müssen deshalb zunächst entsprechend umgewandelt werden. Diese Aufgabe übernehmen Mikroorganismen, die dafür sorgen, daß die im Wasser vorhandenen Eiweißstoffe abgebaut werden. Andere Mikroorganismen wandeln das dabei entstehende Ammonium unter aeroben Bedingungen (bei Anwesenheit von Sauerstoff) über Nitrit schließlich zu Nitrat um. In der Zeit mit einer hohen biogenen Aktivität (Frühjahr bis Herbst) verlaufen die Stoffumwandlungsprozesse im Gewässer schneller, so daß analog zum geringeren Ammoniumgehalt ein höherer Nitratgehalt im Gewässer vorliegt. Da Nitrit nur ein Zwischenprodukt bei dieser Umwandlung ist, bleibt der Nitritgehalt im Gewässer meist niedrig. Abbildung 1 zeigt die Gehalte von Ammonium, Nitrit und Nitrat an der Meßstelle Teltow-Werft Schönow. Die geschilderten Stoffumwandlungsprozesse im Gewässer werden an dieser Meßstelle jedoch durch die Einleitungen der Klärwerke maßgeblich beeinflußt. Die geringe Ammoniumbelastung im Sommer ist an dieser Probenahmestelle (hinter Klärwerkszulauf Ruhleben) vor allem auf die im Sommer bessere Reinigungsleistung der Klärwerke zurückzuführen. Die Tatsache, daß der Ammoniumgehalt im Sommer darüberhinaus stärker sinkt als der Nitratgehalt steigt, ist mit der Bindung von Nitrat durch die Algen erklärbar. In den Berliner Gewässern stammt der überwiegende Teil der Stickstoffverbindungen aus den häuslichen Abwässern. Besonders belastend für den Sauerstoffhaushalt der Gewässer sind Klärwerke, über die ein hoher Anteil Ammonium-Stickstoff eingeleitet wird, da der Abbauprozeß bis zum Nitrat dann im Gewässer selbst stattfindet. Für die Umwandlung von 1 mg/l Ammonium-Stickstoff zu Nitrat-Stickstoff werden ca. 4,4 mg/l Sauerstoff benötigt. Sauerstoff-Sättigungsindex Der Gehalt an gelöstem Sauerstoff im Gewässer wird vor allem von der Wassertemperatur beeinflußt; mit zunehmender Wassertemperatur nimmt die Aufnahmefähigkeit des Wassers für Sauerstoff ab. Neben hohen Temperaturen im Sommer führt die Aufwärmung der Gewässer durch Kühlwassereinleitungen zu einer weiteren Belastung des Sauerstoffhaushaltes: Alle chemischen und biologischen Prozesse werden beschleunigt; der Sauerstoffbedarf steigt, während die Aufnahmefähigkeit von Sauerstoff sinkt. Gerade langsam fließende und eine große Oberfläche bildende, seenartig erweiterte Fließgewässer weisen dann zunehmend kritische Sauerstoffgehalte auf. Der Sauerstoff-Sättigungsindex gibt an, wieviel Prozent der physikalisch möglichen Sauerstoffsättigung zum Zeitpunkt der Probenahme erreicht wird. In unbelasteten Gewässern treten normalerweise keine größeren Schwankungen beim Sauerstoff-Sättigungsindex auf und der Sauerstoffgehalt entspricht etwa dem theoretisch möglichen (Sauerstoff-Sättigungsindex ca. 100 %). Da bei den meisten Abbauvorgängen im Gewässer Sauerstoff verbraucht, bei starkem Algenwachstum über die Photosynthese aber Sauerstoff produziert wird, können in nährsalzreichen Gewässern beträchtliche Schwankungen auftreten. So sind nicht nur geringe Sauerstoff-Sättigungsindizes, sondern auch ein starker biogener Sauerstoff-Eintrag und damit eine Sauerstoff-Übersättigung ein Indiz für eine Gewässerbelastung. Abbildung 2 zeigt für das Abflußjahr 1991 den Verlauf von Wassertemperatur und gemessenem Sauerstoffgehalt beispielhaft für die Meßstelle Sophienwerder (Spree). Daneben wurde der aufgrund der Temperatur mögliche Sauerstoffgehalt bei 100 % Sättigung abgebildet, um Über- und Untersättigung sichtbar zu machen. Während im Winter und Frühjahr der gemessene Sauerstoffgehalt im wesentlichen dem aufgrund der Temperatur zu erwartenden entspricht, ist das Wasser im Sommer nicht gesättigt, was auf das Überwiegen von Sauerstoff verbrauchenden Abbauvorgängen im Sommer zurückgeführt werden kann. Sauerstoff-Minimum Der für die Atmung aller Organismen notwendige Sauerstoff wird dem Wasser über die Luft bzw. durch die Photosynthese der Wasserpflanzen zugeführt. Der Sauerstoffgehalt belasteter, langsam fließender Gewässer unterliegt damit nicht nur klimatischen (Windgeschwindigkeit, Temperatur, Lichteinstrahlung usw.), sondern auch jahres- und tageszeitlichen Schwankungen, die auf übermäßiges Algenwachstum zurückzuführen sind. Zusätzlicher Sauerstoff durch die Assimilationstätigkeit der Algen kann aber nur in den oberen Wasserschichten erzeugt werden. Maßgebend ist die Eindringtiefe des Sonnenlichts in ein Gewässer. Die einzelnen Fischarten benötigen für ihre Lebensfähigkeit jeweils bestimmte Umweltbedingungen. Hierzu gehört auch ein Mindestgehalt an gelöstem Sauerstoff, der im Gewässer nicht unterschritten werden darf. Besonders kritische Sauerstoffverhältnisse können sich stets bei Gewässern mit großen Regenwasser- oder Mischwassereinleitungen nach Starkregenfällen einstellen. Die mit dem Einleitungswasser eingebrachten organischen Stoffe werden im Gewässer mit Hilfe von Bakterien unter erheblichem Sauerstoffbedarf abgebaut. Hierbei kann mehr Sauerstoff im Gewässer verbraucht werden als über die Luft und durch biogene Produktion wieder ergänzt werden kann. Sinkt der Sauerstoffgehalt unter eine bestimmte Grenze (ca. 4 mg/l für Karpfenfische) ist ein für Fische kritischer Zustand erreicht. Bei einer weiteren Abnahme des Sauerstoffgehalts kommt es zum Fischsterben. Die komplexen und rasch ablaufenden Wechsel im Sauerstoffhaushalt in Gewässern mit hohen Nährstofffrachten und intensiver Phytoplanktonentwicklung lassen sich durch monatliche bzw. 14-tägige Messungen nur unvollständig erfassen. Die an den kontinuierlichen Untersuchungsstellen gemessenen, teilweise erheblichen tageszeitlichen Schwankungen im Sauerstoffgehalt spiegeln die angespannten Sauerstoffverhältnisse der Berliner Gewässer wider. Titer für Escherichia coli Zur Kontrolle der bakteriologischen Beschaffenheit eines Gewässers – insbesondere um die Eignung als Badegewässer zu prüfen – werden Untersuchungen auf Escherichia coli (E. coli) durchgeführt. E. coli selbst ist in der Regel kein Krankheitserreger; sein Vorkommen gibt jedoch einen Anhalt über die Belastung eines Gewässers mit tierischen und menschlichen Fäkalien. Sind viele Coli-Bakterien enthalten, so liegt eine starke Belastung mit Fäkalwasssern vor; d.h. die Wahrscheinlichkeit, daß auch Krankheitskeime vorhanden sind, steigt mit der Zunahme von E. coli. Angegeben wird bei der Bestimmung diejenige Menge Wasser, in der gerade noch das Bakterium E. coli nachgewiesen werden kann (Coli-Titer). Für Oberflächengewässer, die zum Baden geeignet sind, gilt nach der EG-Badewasserrichtlinie ein E. coli-Titer von 10 -1 ml als gerade noch tolerabel. Chlorophyll a Ergänzend zur Darstellung der Gütebeschaffenheit der Berliner Gewässer nach dem Umweltatlas-Verfahren ist im Hinblick auf das Hauptproblem in den Berliner Gewässern – die hohe Nährstoffbelastung – gesondert der Chlorophyll a-Gehalt der Gewässer dargestellt. Chlorophyll a ist der blaugrüne Anteil des Chlorophyll (Blattgrün). Die Bestimmung des Chlorophyll a-Gehaltes im Gewässer gibt Hinweise auf die Algendichte. Als absolutes Maß für die Phytoplanktonbiomasse kann der Chlorophyll a-Gehalt nicht gelten; jedoch gibt dieser Pigmentgehalt gemeinsam mit anderen Biomasse- und Bioaktivitätsparametern Auskunft über das mengenmäßige Vorkommen und die potentielle Stoffwechselleistung des Phytoplanktons in Gewässern. Die Pigmentausbeute der im Frühjahr und Spätherbst auftretenden Kieselalgen liegt bei gleicher Wellenlänge im Meßverfahren etwas höher, als bei den sich vorwiegend im Sommer bildenden Blaualgen. An speziellen Meßpunkten ist daher der Vergleich der Chlorophyll a-Werte mit den über Zählung ermittelten Algenbiomassen geboten. Die Entwicklung der Phytoplankton-Zusammensetzung ist jahreszeitlich unterschiedlich und hängt von verschiedenen Faktoren ab, u.a. Temperatur, Lichteinstrahlung, Zooplankton-Entwicklung und Nährstoffangebot/-zusammensetzung. Während sich im Frühjahr vorwiegend die Kieselalgen (Bacillariophyceae) entwickeln, bestimmen im Hochsommer überwiegend die Blaualgen (Cyanophyceae) die Zusammensetzung des Phytoplanktons (vgl. Abb. 3). Gerade die hohen Temperaturen und die intensive Lichteinstrahlung im Hochsommer begünstigen das Algenwachstum. Bei gleichzeitigem Überangebot an Nährstoffen im Gewässer kann es dann zur Massenentwicklung der Algen kommen. Das vornehmlich in den Monaten Mai/Juni auftretende Phytoplanktonminimum hängt von vielen Faktoren ab, wie Witterung, Algenarten-Zusammensetzung und insbesondere von der Zooplankton-Struktur. Wird die Frühjahrsalgengemeinschaft von freßbaren Arten (v.a. Kieselalgen) dominiert, kann es zu einer Massenentwicklung des Zooplanktons kommen, das in der Lage ist, große Mengen an Algenbiomasse zu filtrieren. Somit wird eine hohe Sichttiefe erreicht (vgl. Abb. 4). Dieses ”Klarwasserstadium” wird verstärkt in den Gewässern der Spree, der Oberhavel und teilweise in der Unterhavel beobachtet, nicht aber in den Gewässern der Dahme, wo bereits im Frühjahr fädige, kaum freßbare Blaualgen auftreten. Für die Kartendarstellung wurden die Meßwerte der Monate April bis September 1991 berücksichtigt. Für die einzelnen Gewässerabschnitte sind neben dem Mittelwert das Maximum und Minimum dieses Zeitraumes dargestellt. Die Bänder für die Mittelwertdarstellung der Monate April bis Juni sowie Juli bis September sollen einerseits die Frühjahrs-, andererseits die Hochsommerentwicklung des Phytoplanktons widerspiegeln. Da die Algenentwicklung u.a. die Trübung des Wassers beeinflußt, ist im 6. Band die Sichttiefe (Mittelwert des Sommerhalbjahres, April bis September) dargestellt. Die Meßwerte wurden einer 7-stufigen Bewertungsskala zugeordnet. Der für die Berliner Gewässer als Sanierungsziel betrachtete Wert von max. 30 µg Chlorophyll a pro Liter wird als oberer Wert der Güteklasse 1 bis 2 angesehen. Für die Güteklassen 1 bis 3 erfolgt eine lineare Einteilung der Meßwerte; die Abkehr von der linearen Einteilung in der Güteklasse 3 bis 4 erfolgt aufgrund einer größeren Ungenauigkeit des Meßverfahrens bei hohen Meßwerten.

Grundwassertemperatur 2010

Die Grundwassertemperatur im Ballungsraum von Berlin ist bzw. wird durch den Menschen tiefgreifend verändert. Die seit den 1980er Jahren im oberflächennahen Grundwasser des Landes Berlin durchgeführten Temperaturmessungen zeigen, dass im zentralen Innenstadtbereich die Durchschnittstemperatur z. T. um mehr als 4 °C gegenüber dem dünner besiedelten Umland erhöht ist. Die Temperaturmessungen belegen, dass sich dieser Temperaturanstieg zunehmend auch in größeren Tiefen mit mehr als 20 m bemerkbar macht. Die Ursachen für die Temperaturerhöhung sind vielfältig und stehen im direkten Zusammenhang mit der fortschreitenden baulichen Entwicklung und den vorhandenen Nutzungen an der Erdoberfläche. Es lassen sich dabei direkte von indirekten Beeinflussungen der Grundwassertemperatur unterscheiden (s. a. Abb. 1): Unter einer direkten Beeinflussung der Grundwassertemperatur werden alle Wärmeeinträge in das Grundwasser durch das Abwasserkanalnetz, Fernheizleitungen, Stromtrassen und unterirdische Bauwerke wie Tunnel, U-Bahnschächte, Tiefgaragen etc. verstanden. Sie umfassen auch Wärmeeinträge, die mit der Grundwasserwärmenutzung und -speicherung in Verbindung stehen. Unter einer indirekten Beeinflussung der Grundwassertemperatur werden Prozesse im Zuge der Urbanisierung verstanden, die mit der Veränderung des Wärmehaushalts der bodennahen Atmosphäre entstehen. Nach Gross (1991) sind als wichtige Größen zu nennen: Die Störung des Wasserhaushalts durch einen hohen Versiegelungsgrad Die Veränderung der Bodeneigenschaften durch eine Anhäufung von Baukörpern (Veränderung der Oberflächenwärmeleitung und -wärmekapazität) Die Änderung des Strahlungshaushaltes durch Veränderungen in der Luftzusammensetzung Die anthropogene Wärmeerzeugung (Hausbrand, Industrie, Verkehr). Durch die o. g. Unterschiede wird im Vergleich zum Umland eine Veränderung des Wärmehaushalts hervorgerufen. Die Stadt heizt sich langsam auf, speichert insgesamt mehr Wärme und gibt diese wieder langsam an die Umgebung ab, d. h., sie kann allgemein als ein riesiger Wärmespeicher betrachtet werden. Langfristig führt dieser Prozess zu einer Erhöhung des langjährigen Mittels der Luft- bzw. Bodentemperatur (vgl. Karte 04.02, SenStadt 2001). Die langfristige Erwärmung des oberflächennahen Bodens führt auch zu einer Erwärmung des Grundwassers. Da die Temperatur die physikalischen Eigenschaften sowie die chemische und biologische Beschaffenheit des Grundwassers beeinflusst, können eine Qualitätsverschlechterung des Grundwassers und eine Beeinträchtigung der Grundwasserfauna die Folge sein. Berlin bezieht sein Trinkwasser zu 100 % aus dem Grundwasser, welches fast ausschließlich im Land Berlin gewonnen wird. Auch einen Großteil des Brauchwassers für industrielle Zwecke liefert das Grundwasser. Daher ist der Schutz des Grundwassers vor tief greifenden Veränderungen wie z. B. einer signifikanten Grundwassertemperaturerhöhung oder -erniedrigung von hoher Bedeutung – speziell vor dem Hintergrund einer nachhaltigen Wasserwirtschaft. Seit 1978 werden in tiefen Grundwassermessstellen, die über das ganze Stadtgebiet des Land Berlin verteilt sind, verstärkt Temperaturprofile aufgenommen und zu raumzeitlichen Darstellungen des Grundwassertemperaturfeldes verarbeitet und ausgewertet. Das vorliegende Kartenwerk soll die Fortschreibung der vorliegenden Dokumentation zur zeitlichen Veränderung der Grundwassertemperatur unter dem Stadtgebiet sein und als Genehmigungsgrundlage für Grundwassertemperatur verändernde Maßnahmen dienen. Zusätzlich kann es in Kombination mit anderen thematischen Karten wie z. B. der Geologie und Hydrogeologie zur Entscheidungsfindung und Vorplanung einer energetischen Bewirtschaftung des Grundwassers herangezogen werden. Die Untergrundtemperatur ist z. B. eine wichtige Größe für die Auslegung von Erdwärmesondenanlagen. Innerhalb der letzten Jahre ist eine stark ansteigende Nachfrage nach Erdwärmesonden in Kombination mit Wärmepumpen zum Heizen und anderen thermischen Nutzungen des Untergrundes z. B. zur Klimatisierung von Gebäuden zu beobachten. Gerade im urbanen Bereich können die unterschiedlichsten thermischen Nutzungen auf engstem Raum miteinander konkurrieren. Um die Auswirkungen dieser Nutzungen zu überwachen, kommt der regelmäßigen Überwachung der Grundwassertemperatur eine zunehmend wichtige Bedeutung zu. Grundwassertemperatur und Temperaturjahresgang Die wesentliche Wärmequelle für den oberflächennahen Untergrund bis in ca. 20 m Tiefe ist die Sonneneinstrahlung, die auf die Erdoberfläche trifft. Diese ist maßgeblich für die Oberflächentemperatur verantwortlich. Der oberflächennahe Boden wird durch die eingestrahlte Sonnenenergie erwärmt und dieser gibt die Wärme an die Atmosphäre und den Untergrund ab. Die Jahressumme des Strahlungsanteils der auf eine horizontale Oberfläche auftrifft (die sog. Globalstrahlung) beträgt im Land Berlin im Mittel rd. 1.000 kWh pro m² und Jahr. Wieviel Energie letztendlich über die Erdoberfläche in den Untergrund eingetragen wird, ist sehr stark von deren Oberflächenbeschaffenheit abhängig. Dabei spielen Faktoren wie z. B. die Farbe, der Feuchtegehalt sowie die Art und der Grad der Bodenbedeckung eine wichtige Rolle. Grundsätzlich unterliegen die Temperaturen an der Erdoberfläche und somit auch der Wärmeeintrag bzw. -austrag periodischen Schwankungen mit einem Zyklus von einem Jahr, entsprechend dem Verlauf der Jahreszeiten. Die Oberflächentemperatur dringt mit abnehmender Intensität in den Untergrund ein. Die Eindringtiefe und die Geschwindigkeit mit der die Wärme transportiert wird, ist abhängig von der Wärmeleitfähigkeit des Untergrundes. Beim Wärmetransport im Untergrund kann zwischen konduktivem und konvektivem Wärmetransport unterschieden werden. Während beim konvektiven Wärmetransport die Wärmebewegung durch Materie wie z. B. Grund- und Sickerwasser erfolgt, wird beim konduktiven Transport Energie durch Stoßfortpflanzung zwischen den Molekülen transportiert. Im Gegensatz zur Sonneneinstrahlung als Hauptwärmequelle der Erdoberfläche besitzt der aus dem Erdinnern zur Oberfläche gerichtete Erdwärmestrom , der seinen Ursprung in der Wärmeentwicklung beim Zerfall radioaktiver Isotope hat, nur eine untergeordnete Bedeutung. In der kontinentalen Erdkruste ist die Wärmestromdichte – definiert als Wärmestrom pro Flächeneinheit senkrecht zur Einheitsfläche – regional verschieden. Nach Hurtig & Oelsner (1979) und Honarmand & Völker (1999) beträgt die mittlere Wärmestromdichte im Land Berlin zwischen ca. 80 und 90 mW/m². Daraus berechnet sich als Jahressumme eine Energiemenge von rd. 0,75 kWh pro m² und Jahr und ist somit also rd. 1/1.000 geringer als die Globalstrahlung. Die Temperatur oberflächennaher Grundwässer wird also im Wesentlichen durch den Energieaustausch zwischen Sonne, Erdoberfläche und Atmosphäre, untergeordnet durch den aus dem Erdinneren zur Oberfläche gerichteten Wärmestrom bestimmt. Die regionale Jahresdurchschnittstemperatur an der Oberfläche in Berlin beträgt unter anthropogen unbeeinflussten Verhältnissen ca. 8,0 bis 8,5 °C. Während die tageszeitlichen Schwankungen nur eine Tiefe von bis zu 1,0 m erfassen, reichen die jahreszeitlichen bis in eine Tiefe zwischen 15 und max. 25 m. Ab dieser Tiefe, in der jahreszeitliche Einflüsse nicht mehr zu registrieren sind, – der sog. neutralen Zone -, steigt die Temperatur in Abhängigkeit von der Wärmeleitfähigkeit der Gesteine und der regionalen Wärmestromdichte an (Abb. 2). Im Berliner Raum beträgt der durchschnittliche Temperaturanstieg im Bereich bis ca. 300 m Tiefe 2,5 bis 3 °C / 100 m. Oberflächengestalt und Grundwassersituation Das in nahezu ostwestlicher Richtung verlaufende Warschau-Berliner Urstromtal trennt die Barnim-Hochfläche im Norden von der Teltow-Hochfläche und der Nauener Platte im Süden der Stadt (Abb. 3). Die Geländehöhen des Urstromtales betragen 30 bis 40 m NHN, während die Hochflächen durchschnittlich 40 bis 60 m über NHN liegen. Einzelne Höhen erheben sich bis über 100 Meter über das Meeresniveau (vgl. Karte 01.08, SenStadt 2010a). In Berlin ist der Porenraum der überwiegend sandig und kiesigen Sedimente der oberen 150 bis 200 Metern vollständig bis nahe an die Oberfläche mit Grundwasser erfüllt, das zur Trinkwasserversorgung der Stadt genutzt wird. Der Abstand vom Grundwasser bis zur Geländeoberkante (Grundwasserflurabstand) schwankt je nach Morphologie und Geologie zwischen 0 m und wenigen Metern im Urstromtal sowie fünf bis über 30 Meter auf den Hochflächen (vgl. Karte 02.07, SenStadt 2010b). Die Grundwasserentnahmen zur Trink- und Brauchwassergewinnung haben zur Ausbildung von weit gespannten Senktrichtern der Grundwasseroberfläche geführt, die die natürlichen Flurabstände und Grundwasserfließgeschwindigkeiten erhöhen sowie die natürlichen Grundwasserfließrichtungen verändern. Dadurch sind in den Bereichen, in denen Brunnengalerien in der Nähe von Flüssen und Seen Grundwasser fördern, influente Verhältnisse entstanden, d. h. das Oberflächenwasser infiltriert als Uferfiltrat in das Grundwasser. Da das Oberflächenwasser aber durch vielfache Kühlwassereinleitungen von Heizkraftwerken ganzjährig erwärmt ist (wie z. B. im Bereich der Spree), führt diese Infiltration im Einzugsbereich des Oberflächengewässers zwangsläufig zu einer Erwärmung des Grundwassers. Besiedlungsstruktur und klimatische Verhältnisse Das Land Berlin besitzt eine polyzentrale Besiedlungsstruktur, die durch das Vorhandensein zweier Hauptzentren, mehrerer kleinerer Stadtzentren sowie einem dichten Nebeneinander von Wohnen, Grünflächen, Gewerbe und Industrie charakterisiert ist. Größere Gewerbegebiete und Industrieansiedlungen liegen bevorzugt an den vom Stadtkern radial zum Stadtrand gerichteten Siedlungs- und Entwicklungsachsen sowie an kanalisierten Oberflächengewässern. Stark vereinfacht lassen sich folgende Unterscheidungen treffen (Abb. 4): Gebiete ohne Besiedlung, überwiegend Vegetation mit geringer bis mittlerer Siedlungsdichte und mit hoher Siedlungsdichte, Stadtzentren und Industrieansiedlungen. Bei der Betrachtung der lokalklimatischen Verhältnisse in Berlin zeigt vor allem für die baulich hochverdichtete Innenstadt tief greifende Veränderungen im Wärmehaushalt gegenüber dem Umland. Durch anthropogene Aktivitäten wird Energie als Wärme in die Stadtatmosphäre abgegeben. So beträgt die mittlere Jahreslufttemperatur im Außenbezirk Dahlem 8,9 °C, im Innenstadtbereich sind dagegen die durchschnittlichen Temperaturen bereits bis auf über 10,5 °C angestiegen (vgl. Karte 04.02, SenStadt 2001).

Grundwassertemperatur 2015

Temperaturprofile Die Eindringtiefe der jahreszeitlichen Temperaturschwankungen und damit die Tiefenlage der neutralen Zone (NZ) wird maßgeblich durch die geogenen Faktoren wie den Grundwasserflurabstand, die thermische Leitfähigkeit und Wärmekapazität der Gesteine sowie die Grundwasserneubildung bestimmt. In Berlin liegt die neutrale Zone in Abhängigkeit von den oben genannten Verhältnissen in Tiefen zwischen ca. 15 und max. 25 m (Henning & Limberg, 2012). In Abbildung 5 ist für drei Spezial-Temperaturmessstellen in unterschiedlichen stadtklimatischen Zonen, die zeitliche Variation des Temperaturverlaufs in den ersten 40 m unter der Geländeoberkante im grundwasserungesättigten und -gesättigten Untergrund dargestellt. Der Grundwasserflurabstand beträgt in Abhängigkeit von der geomorphologischen Lage zwischen 5 und 10 m. In Abhängigkeit vom jeweiligen Standort der Messstelle zeigen sich deutliche Unterschiede in den beobachteten Temperaturen sowie auch im Temperaturverlauf mit zunehmender Tiefe unterhalb der neutralen Zone zwischen ca. 10 und ca. 15 m Tiefe unter der Geländeoberkante. Im oberflächennahen Bereich (< 5 m Tiefe) treten die niedrigsten Untergrundtemperaturen in der Regel im Frühjahr (Februar bis Mai) und die höchsten im Herbst (September bis Oktober) auf. In der Tabelle 1 sind für die oben dargestellten Messstellen in einer tabellarischen Übersicht die Temperaturkennwerte gegenübergestellt, die aus Messungen im Beobachtungszeitraum zwischen Februar 2008 bis März 2010 resultieren (Henning & Limberg, 2012). Aus Tabelle 1 ist zu ersehen, dass generell mit zunehmender Besiedlungsdichte, ausgedrückt durch die stadtstrukturelle Lage, eine Zunahme der Grundwassertemperaturen in der neutralen Zone (NZ) (vgl. Abb. 5) zu beobachten ist. Es lässt sich grob folgende Einteilung für die unterschiedlichen Besiedlungsbereiche vornehmen (Tab. 2): Die Abbildung 6 zeigt ein Beispiel für den Temperaturverlauf mitten in einer dichten Industrieansiedlung mit mehreren großen Abwärmeproduzenten; zudem liegt in unmittelbarer Nähe ein Oberflächengewässer (die Spree). Die höchsten Grundwassertemperaturen sind im Winter und die niedrigsten im Sommer zu beobachten. Da das Oberflächengewässer durch Kühlwassereinleitungen, insbesondere während der Wintermonate, stark erwärmt wird, erhöht sich durch infiltrierendes Oberflächenwasser auch die Grundwassertemperatur. Im Jahr 1991 war über das ganze Jahr in einer Tiefe zwischen 10 und 20 m unter Geländeoberkante eine Temperaturanomalie mit jahreszeitlichen Temperaturschwankungen von nur rd.. 1 K zwischen ca. 14,5 °C und ca. 15,5 °C zu beobachten. In der Abbildung 7 sind die Temperaturprofile von 5 ausgewählten Messstellen im Bezirk Berlin Mitte in einem Gebiet von ca. 3 × 3 km Fläche dargestellt, die in den Jahren 2012/13 gemessen worden sind. Die Abbildung zeigt eine deutliche Beeinflussung der Untergrundtemperatur bis in Tiefen von mehr als 100 m unter der Geländeoberfläche. Die gemessenen Temperaturen bewegen sich in einem Temperaturbereich zwischen 11 und 15 °C. Die Messstelle mit der stärksten Temperaturbeeinflussung liegt in der Nähe von einem Oberflächengewässer (zwischen Spree und Kupfergraben, violette Linie in der Abbildung 7). Die Auswertung von Langzeituntersuchungen an Messstellen im Innenstadtbereich zeigen nach Henning Energie- und Umweltberatung (2010), dass langfristig auch mit einer Beeinflussung der Grundwassertemperaturen in größeren Tiefen zu rechnen ist. Die Abbildung 8 kann dies beispielhaft an Temperaturprofilen verdeutlichen, die in einer Grundwassermessstelle zu unterschiedlichen Zeitpunkten aufgenommenen wurden. Die gemessenen Temperaturprofile in den Jahren 1984 und 1993 zeigen für die neutrale Zone in ca. 18 m Tiefe und dem tieferen Untergrund (mehr als 20 m Tiefe) in etwa den gleichen Temperaturverlauf. Ein Vergleich mit dem angenommenen „ungestörten“ Temperaturverlauf zeigt bis in rd. 70 m Tiefe einen deutlichen Anstieg der Untergrundtemperatur. In 40 m Tiefe beträgt dieser Temperaturunterschied ca. 1 K. Dieser bis Anfang der 1990er Jahre beobachtete Temperaturanstieg ist auf Veränderung des Lokalklimas durch vermutlich eine größere Wohnbebauung zurückzuführen, die in den 1960 bis 1970er Jahren in unmittelbarer Nähe errichtet worden ist. Der „ungestörte“ Temperaturverlauf wurde aus dem Bohrprofil, der für den Standort angenommenen mittleren Wärmestromdichte und der ungestörten mittleren Oberflächenjahrestemperatur theoretisch berechnet. Zwischen 1993 und 2015 ist ein weiterer Temperaturanstieg in der neutralen Zone um ca. 0,7 K zu beobachten. Dieser Temperaturanstieg macht sich bis in Tiefen von rd. 80 m bemerkbar. Da im Umfeld der Messstelle in diesem Zeitraum keine signifikanten Veränderungen durch z. B. Bebauung / Flächenversiegelung zu beobachten waren, die eine Veränderung des Lokalklimas bewirken können, besteht in diesem Fall wahrscheinlich ein Zusammenhang mit den Auswirkungen der allgemeinen Klimaerwärmung. Die Abbildung 9 zeigt, dass seit Beginn der 1980er Jahre im Land Berlin und in dessen Umland ebenso wie auf globaler Ebene (rote Linie) ein deutlicher Anstieg der Lufttemperaturen zu beobachten ist. Dieser Temperaturanstieg von ca. 0,5 K im Jahr 1995 bzw. von mehr als 0,8 K im Jahr 2010 führt zu einer merklichen Störung des Temperaturgleichgewichts im oberflächennahen Untergrund, der auch unterhalb der neutralen Zone bei zahlreichen Messstellen im Land Berlin zu beobachten ist. Ein Beispiel dafür ist in Abbildung 10 dargestellt. Die Bodentemperatur ist im Betrachtungszeitraum zwischen 1984 und 2015 in Potsdam in 12 m Tiefe um ca. 1,2 K gestiegen (blaue Linie). In Berlin ist der gleiche Trend zu beobachten: In der Messstelle 7063 (grüne Linie) stieg im gleichen Zeitraum die Temperatur in 20 m Tiefe um ca. 0,8 K an. Kartenbeschreibungen Allgemeines In den Karten wird für das Land Berlin die Temperaturverteilung im Untergrund für fünf unterschiedliche Tiefen für die Bezugshorizonte 20 m, 40 m, 60 m, 80 m und 100 m unter Gelände und die Durchschnittstemperaturen für die Tiefenbereiche 0 bis 50 m und 0 m bis 100 m dargestellt. Es muss beachtet werden, dass die dargestellten Ergebnisse zur Temperaturverteilung nicht als punktbezogene Information, sondern als Tendenz zu verstehen sind, da die Isothermenverläufe in Abhängigkeit von der vorhandenen Messstellendichte relativ große Unsicherheiten aufweisen können. Dabei gelten die durchgezogenen Isothermen als weitestgehend gesichert, während die gestrichelten Isothermen als „vermutet“ einzustufen sind. Die Kartenangaben zur Temperaturverteilung sollten immer dann verwendet werden, wenn keine für den Standort und repräsentative Temperaturmessungen vorliegen. Es ist zu beachten, dass die Ergebnisse einer Temperaturmessung immer nur exakt für das aufgenommene Tiefenprofil gelten. Je nach Variabilität der Standortcharakteristik können schon wenige 100 m weiter andere Bedingungen vorherrschen, die zu einer Temperaturänderung im Untergrund führen. Ohne Berücksichtigung der Veränderungen kann dies bei einer Übertragung auch auf dicht benachbarte Standorte zu einer teilweise erheblichen Fehleinschätzung der Temperaturverhältnisse führen. Temperaturen 20 m unter Geländeoberkante Die aktuelle geothermische Karte (Messung 2015) weist für den Bezugshorizont 20 m unter Geländeoberkante (Karte 2.14.1) teilweise deutliche Unterschiede zu der vorhergehenden Kartenausgabe von 2014 auf (Messung aus dem Jahr 2012). Diese sind u. a. darauf zurückzuführen, dass wesentlich weniger Messstellen für die Ermittlung der Temperaturverteilung mit einbezogen worden sind und im Vergleich zur letzten Messung aus dem Jahr 2012 in der Ausgabe 2014 bei einzelnen Messstellen signifikante Temperaturänderungen zu registrieren war bzw. Messwertkorrekturen durchgeführt werden mussten. Grundsätzlich ist jedoch anhand der aufgeführten Karten eine erste Abschätzung der Temperaturverhältnisse an einem Standort für die Nutzung von geothermischer Energie möglich. Generell ist ein tendenzieller Temperaturanstieg vom Stadtrand zum Stadtzentrum hin zu beobachten. Der Temperaturverlauf im Nordosten zeigt einen kontinuierlichen Anstieg zum Stadtzentrum hin, während sich das übrige Stadtgebiet durch das Auftreten mehrerer kleinerer positiver und negativer Temperaturanomalien auszeichnet. Das stark bebaute und versiegelte Stadtzentrum wird 20 m unter Geländeoberkante (Karte 02.14.1) von einer 12,5 °C – Isolinie eingeschlossen. Die im Stadtzentrum zu beobachtende Wärmeinsel mit Temperaturen von mehr als 12,5 °C wird durch den Großen Tiergarten, einer großen Grünfläche im Innenstadtbereich, durchbrochen. Innerhalb dieser Wärmeinsel sind Temperaturanomalien mit Temperaturen von mehr als 13,5 °C zu beobachten. Außerhalb des Stadtzentrums korrelieren positive Temperaturanomalien ebenfalls mit hoch versiegelten Bereichen wie Nebenzentren und Industriegebieten. Unterhalb der ausgedehnten Waldgebiete im Stadtrandbereich von Südosten, Norden, Nordwesten und Südwesten sowie im Bereich des Grunewalds liegen die Temperaturen im Bereich von weniger als 10,5 °C. Die bisher beobachteten Temperaturanomalien im Stadtgebiet mit weniger als 10,5 °C,, wie z. B. der Britzer Garten oder das Tempelhofer Feld, beides Flächen mit einem hohen Vegetationsanteil, treten in der aktuellen Karte nicht auf. Die Ursache ist u. a. in der deutlich geringeren Messstellendichte zu suchen. In diesem Fall wurden im Einzugsbereich beider Flächen keine Messdaten erhoben. Generell ergeben sich im dicht besiedelten Innenstadtbereich gegenüber dem Freiland Temperaturerhöhungen im Grundwasser von mehr als 4 K. Temperaturen 40 m, 60 m, 80 m und 100 m unter Geländeoberkante Die weiteren Karten (Karten 02.14.3 – 02.14.6) zeigen die Grundwassertemperaturverteilung für die Bezugshorizonte 40 m, 60 m, 80 m und 100 m unter Geländeoberkante im Land Berlin. In diesen Tiefen ist eine Beeinflussung durch die täglichen und jahreszeitlichen Temperaturschwankungen ausgeschlossen. Es können sich jedoch in diesen Tiefen langfristig anhaltende u. a. anthropogen verursachte Temperaturänderungen, die z. B. durch eine veränderte bauliche Entwicklung oder klimatische Veränderungen verursacht werden, bemerkbar machen. Solche Temperaturanomalien sind insbesondere im Innenstadtbereich im Bezirk Mitte, aber auch an der südlichen Stadtgrenze in Berlin Lichterfelde am Teltowkanal mit einer langen baulichen bzw. intensiven industriellen Nutzung zu beobachten (Grundwassertemperaturverteilung für die Bezugshorizonte 80 m und 100 m). Andere Temperaturanomalien wie z. B. im Südwesten von Berlin an der Grenze zu Potsdam, im nördlichen Grunewald im Bereich des Erdgasspeichers und in Lübars an der nördlichen Grenze von Berlin sind mit geologischen Strukturen im tieferen Untergrund verknüpft. Bei den benannten Temperaturanomalien ist ein Zusammenhang mit den im Großraum Berlin bekannten Salzkissenstrukturen im tiefen Untergrund zu vermuten. Auch die in der Ausgabe 2014 dargestellten Temperaturanomalien im tieferen Untergrund mit mehr als 80 m unter Geländeoberkante wie z. B. im Gebiet Rudow/Altglienicke im Südosten Berlins, in den Ortsteilen Lichtenberg, Marzahn und Hellersdorf im Osten von Berlin treten in der aktuellen Karte nicht auf. Auch in diesen Gebieten ist die Ursache in den fehlenden Messdaten zu suchen. Die Temperaturaussagen in diesen Bereichen sind weiterhin mit relativ großen Unsicherheiten behaftet. Durchschnittstemperatur 0 m bis 50 m und 0 m bis 100 m unter Geländeoberkante In Ergänzung zu den Karten für die Grundwassertemperaturverteilung für die unterschiedlichen Bezugshorizonte sind zusätzlich zwei Karten für die Durchschnittstemperaturen in den Tiefenbereichen 0 m bis 50 m und 0 m bis 100 m erstellt worden. Die beiden Karten dienen u. a. als Hilfsmittel für die Abschätzung der spezifischen Leistung von Erdwärmesonden. Die Karte für den Tiefenabschnitt 0 m bis 50 m zeigt, dass insbesondere der stark bebaute Innenstadtbereich Durchschnittstemperaturen von mehr als 11 °C aufweist. In den Außenbezirken liegen die Durchschnittstemperaturen bei ca. 10 °C bzw. in den unbebauten Randbereichen bei ca. 9 °C. Für den Tiefenabschnitt 0 m bis 100 m ist der Bereich mit Durchschnittstemperaturen von ca. 12 °C deutlich größer als im Tiefenabschnitt 0 m bis 50 m und umfasst den Innenstadtbereich und die unmittelbar angrenzenden städtischen Gebiete. In den Außenbezirken und Randbereichen von Berlin liegen die Durchschnittstemperaturen zwischen 10 °C und 11 °C. Im Zusammenhang mit den beiden Karten wird darauf hingewiesen, dass aufgrund der lokalklimatischen Verhältnisse und der vorhandenen Messstellendichte die ausgewiesenen Durchschnitttemperaturen kleinräumig abweichen können. So ist in Gebieten mit hohen Grünflächenanteilen eine niedrigere Durchschnittstemperatur möglich, in stark industrialisierten Gebieten mit einer hohen Oberflächenversiegelung können auch höhere Durchschnittstemperaturen auftreten. Zusammenfassung Zusammenfassend ist festzustellen, dass sich im dicht besiedelten Innenstadtbereich gegenüber dem Freiland Temperaturerhöhungen im Grundwasser von mehr als 4 K ergeben können und dieses somit deutlich erwärmt ist. Es besteht ein eindeutiger Zusammenhang mit den stadtklimatischen Verhältnissen an der Oberfläche. Dies belegen auch die Ergebnisse der regelmäßigen Untersuchungen an ausgewählten Spezial-Temperaturmessstellen in unterschiedlichen stadtstrukturellen Lagen. Allgemein zeigt die oberflächennahe Grundwassertemperaturverteilung im Land Berlin einen Zusammenhang mit der Verteilung von Industrieansiedlungen, größeren Baukörpern, Abwärmeproduzenten, Oberflächenversiegelung, Freiflächen und anthropogen erwärmter Oberflächengewässer (s. a. Henning, 1990). Unter Berücksichtigung des Grundwasserströmungsfeldes kann davon ausgegangen werden, dass diese Faktoren einen wesentlichen Einfluss auf die Veränderung der Grundwassertemperatur haben. Da es in der Stadt in der Regel zu einer Überschneidung dieser Faktoren kommt, überlagern sich die Einflussgrößen gegenseitig. Auf Grundlage von Daten aus Langzeituntersuchungen kann gezeigt werden, dass aufgrund der fortschreitenden baulichen Entwicklung aber auch der allgemeinen klimatischen Veränderungen von einer weiteren tief greifenden Erwärmung des oberflächennahen (kleiner 20 m Tiefe) als auch des tieferen Untergrundes (bis 100 m Tiefe) und somit auch des Grundwassers auszugehen ist.

Grundwassertemperatur 2012

Die Grundwassertemperatur im Ballungsraum von Berlin ist bzw. wird durch den Menschen nachhaltig verändert. Die seit den 1980er Jahren im oberflächennahen Grundwasser des Landes Berlin durchgeführten Temperaturmessungen zeigen, dass im zentralen Innenstadtbereich die Durchschnittstemperatur z. T. um mehr als 4 °C gegenüber dem dünner besiedelten Umland erhöht ist. Die Temperaturmessungen belegen, dass sich dieser Temperaturanstieg zunehmend auch in größeren Tiefen mit mehr als 20 m bemerkbar macht. Die Ursachen für die Temperaturerhöhung sind vielfältig und stehen im direkten Zusammenhang mit der fortschreitenden baulichen Entwicklung und den vorhandenen Nutzungen an der Erdoberfläche. Es lassen sich dabei direkte von indirekten Beeinflussungen der Grundwassertemperatur unterscheiden (s. a. Abbildung 1): Unter einer direkten Beeinflussung der Grundwassertemperatur werden alle Wärmeeinträge in das Grundwasser durch das Abwasserkanalnetz, Fernwärmeleitungen, Stromtrassen und unterirdische Bauwerke wie Tunnel, U-Bahnschächte, Tiefgaragen etc. verstanden. Sie umfassen auch Wärmeeinträge, die mit der Grundwasserwärmenutzung und -speicherung in Verbindung stehen. Unter einer indirekten Beeinflussung der Grundwassertemperatur werden Prozesse im Zuge der Urbanisierung verstanden, die mit der Veränderung des Wärmehaushalts der bodennahen Atmosphäre entstehen. Nach Gross (1991) sind als wichtige Größen zu nennen: Die Störung des Wasserhaushalts durch einen hohen Versiegelungsgrad. Die Veränderung der thermischen Oberflächeneigenschaften wie Oberflächenwärmeleitung und -wärmekapazität durch Versiegelung und Anhäufung von Baukörpern. Die Änderung des Strahlungshaushalts durch Veränderungen in der Luftzusammensetzung. Die anthropogene Wärmeerzeugung (Hausbrand, Industrie, Verkehr). Im Vergleich zum Umland wird durch diese Unterschiede eine Veränderung im Wärmehaushalt hervorgerufen. Die Stadt heizt sich langsam auf, speichert insgesamt mehr Wärme und gibt diese wieder langsam an die Umgebung ab, d. h., sie kann allgemein als ein riesiger Wärmespeicher betrachtet werden. Langfristig führt dieser Prozess zu einer Erhöhung des langjährigen Mittels der Lufttemperatur (vgl. Karte Langjähriges Mittel der Lufttemperatur 1961-1990, Karte 04.02 ). Von der langfristigen Erwärmung ist auch das oberflächennahe Grundwasser betroffen. Die physikalischen Eigenschaften, die chemische und biologische Beschaffenheit des Grundwassers ist temperaturabhängig. Die Folge einer Erwärmung können eine Qualitätsverschlechterung des Grundwassers und eine Beeinträchtigung der Grundwasserfauna zur Folge haben. Berlin bezieht sein Trinkwasser zu 100 % aus dem Grundwasser, welches fast ausschließlich im Land Berlin gewonnen wird. Auch einen Großteil des Brauchwassers für industrielle Zwecke wird dem Grundwasser entnommen. Daher ist dem Schutz des Grundwassers vor tiefgreifenden Veränderungen wie z. B. einer deutlichen Grundwassertemperaturerhöhung oder -erniedrigung eine große Bedeutung beizumessen – insbesondere vor dem Hintergrund einer nachhaltigen Wasserwirtschaft. Seit 1978 werden zur Bestandsaufnahme und Beobachtung der Veränderungen in tiefen Grundwassermessstellen, die über das ganze Stadtgebiet des Landes Berlin verteilt sind, verstärkt Temperaturprofile aufgenommen. Das vorliegende Kartenwerk soll die Fortschreibung der vorliegenden Dokumentation zur zeitlichen Veränderung der Grundwassertemperatur unter dem Stadtgebiet sein, als Genehmigungsgrundlage für Grundwassertemperatur verändernde Maßnahmen dienen und Eingangsdaten für die Planung und Auslegung von Anlagen zur Erdwärmenutzung zur Verfügung stellen. Zusätzlich kann es in Kombination mit anderen thematischen Karten wie z. B. der Geologischen Skizze ( Karte 01.17 ), der Grundwassergleichenkarte (Karte 02.12) oder der Potenzialkarten ( Karte 02.18 ) zur Entscheidungsfindung und Vorplanung einer energetischen Bewirtschaftung des Grundwassers herangezogen werden. Die Untergrundtemperatur ist z. B. eine wichtige Größe für die Auslegung von Erdwärmesondenanlagen. Grundwassertemperatur und Temperaturjahresgang Die wesentliche Wärmequelle für den oberflächennahen Untergrund bis in ca. 20 m Tiefe ist die Sonneneinstrahlung, die auf die Erdoberfläche trifft. Diese ist maßgeblich für die Oberflächentemperatur verantwortlich. Der oberflächennahe Boden wird durch die eingestrahlte Sonnenenergie erwärmt und dieser gibt die Wärme an die Atmosphäre und den Untergrund ab. Die Jahressumme des Strahlungsanteils der auf eine horizontale Oberfläche auftrifft (die sog. Globalstrahlung) beträgt im Land Berlin im Mittel rd. 1.000 kWh pro m² und Jahr. Sehr viele Einzelparameter an der Grenzfläche Luft/Erde beeinflussen das thermische Lokalklima. Die Farbe, Zusammensetzung, Oberflächenrauigkeit, Bedeckung, der Versiegelungsgrad, der Wasserhaushalt sowie die Ausrichtung zum solaren Strahlungseinfall urbaner Oberflächen entscheiden darüber, wie viel Energie aufgenommen und in der Bausubstanz „gespeichert“ bzw. von dieser an die Atmosphäre bzw. den Untergrund abgegeben wird. Grundsätzlich unterliegen die Temperaturen an der Erdoberfläche und somit auch der Wärmeeintrag bzw. -austrag periodischen Schwankungen mit einem Zyklus von einem Jahr, entsprechend dem Verlauf der Jahreszeiten. Die Oberflächentemperatur dringt mit abnehmender Intensität in den Untergrund ein. Die Eindringtiefe und die Geschwindigkeit, mit der die Wärme transportiert wird, ist abhängig von der Wärmeleitfähigkeit des Untergrundes. Beim Wärmetransport im Untergrund kann zwischen einem konduktiven und konvektiven Wärmetransport unterschieden werden. Während beim konvektiven Wärmetransport die Wärmebewegung durch Materie wie z. B. Grund- und Sickerwasser erfolgt, wird beim konduktiven Transport Energie durch Stoßfortpflanzung zwischen den Molekülen transportiert. Im Gegensatz zur Sonneneinstrahlung als Hauptwärmequelle des oberflächennahen Bereichs besitzt der aus dem Erdinnern zur Oberfläche gerichtete Erdwärmestrom , der seinen Ursprung in der Wärmeentwicklung beim Zerfall radioaktiver Isotope hat, nur eine untergeordnete Bedeutung. In der kontinentalen Erdkruste ist die Wärmestromdichte – definiert als Wärmestrom pro Flächeneinheit senkrecht zur Einheitsfläche – regional verschieden. Nach Hurtig & Oelsner (1979) und Honarmand & Völker (1999) beträgt die mittlere Wärmestromdichte im Land Berlin zwischen ca. 80 und 90 mW/m². Daraus berechnet sich als Jahressumme eine Energiemenge zwischen rd. 0,7 und 0,8 kWh pro m² und Jahr und ist somit also rd. 1/1.000 geringer als die Globalstrahlung. Die Temperatur oberflächennaher Grundwässer wird im Wesentlichen durch den Energieaustausch zwischen Sonne, Erdoberfläche und Atmosphäre, untergeordnet durch den aus dem Erdinneren zur Oberfläche gerichteten Wärmestrom bestimmt. Die regionale Jahresdurchschnittstemperatur an der Oberfläche in Berlin beträgt unter anthropogen unbeeinflussten Verhältnissen ca. 8,0 bis 8,5 °C. Während die täglichen Schwankungen nur eine Tiefe von max. 1 m erfassen, reichen die jahreszeitlichen Schwankungen bis in eine Tiefe zwischen 15 und max. 25 m. Ab dieser Tiefe, in der jahreszeitliche Einflüsse nicht mehr zu registrieren sind, – der sog. neutralen Zone -, steigt die Temperatur in Abhängigkeit von der Wärmeleitfähigkeit der Gesteine und der regionalen Wärmestromdichte an (Abb. 2). Im Berliner Raum beträgt der durchschnittliche Temperaturanstieg im Bereich bis ca. 300 m Tiefe 2,5 bis 3 °C / 100 m. Oberflächengestalt und Grundwassersituation Das in nahezu ostwestlicher Richtung verlaufende Warschau-Berliner Urstromtal trennt die Barnim-Hochfläche im Norden von der Teltow-Hochfläche und der Nauener Platte im Süden der Stadt (Abb. 3). Die Geländehöhen des Urstromtales betragen 30 bis 40 m über NHN, während die Hochflächen durchschnittlich 40 bis 60 m über NHN liegen. Einzelne Höhen erheben sich bis über 100 m über das Meeresniveau (vgl. Karte der Geländehöhen, Karte 01.08). In Berlin ist der Porenraum der überwiegend sandig und kiesigen Sedimente der oberen 150 bis 200 m vollständig bis nahe an die Oberfläche mit Grundwasser erfüllt, das zur Trinkwasserversorgung der Stadt genutzt wird. Der Abstand vom Grundwasser bis zur Geländeoberkante (Grundwasserflurabstand) schwankt je nach Morphologie und Geologie zwischen 0 m und wenigen Metern im Urstromtal sowie fünf bis über 30 m auf den Hochflächen (vgl. Karte Flurabstand des Grundwassers, Karte 02.07 ). Die Grundwasserentnahmen zur Trink- und Brauchwassergewinnung haben zur Ausbildung von weit gespannten Senktrichtern der Grundwasseroberfläche geführt, die die natürlichen Flurabstände und Grundwasserfließgeschwindigkeiten erhöhen sowie die natürlichen Grundwasserfließrichtungen verändern. Dadurch sind in den Bereichen, in denen Brunnengalerien in der Nähe von Flüssen und Seen Grundwasser fördern, influente Verhältnisse entstanden, d. h. das Oberflächenwasser infiltriert als Uferfiltrat in das Grundwasser. Da das Oberflächenwasser aber durch vielfache Kühlwassereinleitungen von Heizkraftwerken ganzjährig erwärmt ist (wie z. B. im Bereich der Spree), führt diese Infiltration im Einzugsbereich des Oberflächengewässers zwangsläufig zu einer Erwärmung des Grundwassers. Besiedlungsstruktur und klimatische Verhältnisse Das Land Berlin besitzt eine polyzentrale Besiedlungsstruktur, die durch das Vorhandensein zweier Hauptzentren, mehrerer kleinerer Stadtzentren sowie einem dichten Nebeneinander von Wohnen, Grünflächen, Gewerbe und Industrie charakterisiert ist. Größere Gewerbegebiete und Industrieansiedlungen liegen bevorzugt an den vom Stadtkern radial zum Stadtrand gerichteten Siedlungs- und Entwicklungsachsen sowie an kanalisierten Oberflächengewässern. Vereinfacht lassen sich folgende Unterscheidungen treffen (Abb. 4): Grün- und Freiflächen Wohnnutzung (geringe bis mittlere Siedlungsdichte) und Mischnutzung, Kerngebietsnutzungen, Gewerbe- und Industrienutzung (Stadtzentren mit hoher Siedlungsdichte). Bei der Betrachtung der lokalklimatischen Verhältnisse in Berlin zeigt vor allem die baulich hochverdichtete Innenstadt tief greifende Temperaturveränderungen gegenüber dem Umland. So beträgt das langjährige Mittel der Lufttemperatur zwischen 1961 und 1990 nach der Karte Langjähriges Mittel der Lufttemperatur 1961 – 1990 ( Karte 04.02 ) am nordöstlichen Stadtrand in Buch zwischen 7,0 und 7,5 °C, im Innenstadtbereich sind dagegen ist das langjährige Mittel bis auf über 10,5 °C angestiegen.

Grundwassertemperatur 2015

Die Grundwassertemperatur im Ballungsraum von Berlin ist bzw. wird durch den Menschen nachhaltig verändert. Die seit den 1980er Jahren im oberflächennahen Grundwasser des Landes Berlin durchgeführten Temperaturmessungen zeigen, dass im zentralen Innenstadtbereich die Durchschnittstemperatur z. T. um mehr als 4 °C gegenüber dem dünner besiedelten Umland erhöht ist. Die Temperaturmessungen belegen, dass sich dieser Temperaturanstieg zunehmend auch in größeren Tiefen mit mehr als 20 m bemerkbar macht. Die Ursachen für die Temperaturerhöhung sind vielfältig und stehen im direkten Zusammenhang mit der fortschreitenden baulichen Entwicklung und den vorhandenen Nutzungen an der Erdoberfläche. Es lassen sich dabei direkte von indirekten Beeinflussungen der Grundwassertemperatur unterscheiden (s. a. Abbildung 1): Unter einer direkten Beeinflussung der Grundwassertemperatur werden alle Wärmeeinträge in das Grundwasser durch das Abwasserkanalnetz, Fernwärmeleitungen, Stromtrassen und unterirdische Bauwerke wie Tunnel, U-Bahnschächte, Tiefgaragen etc. verstanden. Sie umfassen auch Wärmeeinträge, die mit der Grundwasserwärmenutzung und -speicherung in Verbindung stehen. Unter einer indirekten Beeinflussung der Grundwassertemperatur werden Prozesse im Zuge der Urbanisierung verstanden, die mit der Veränderung des Wärmehaushalts der bodennahen Atmosphäre entstehen. Nach Gross (1991) sind als wichtige Größen zu nennen: Die Störung des Wasserhaushalts durch einen hohen Versiegelungsgrad. Die Veränderung der thermischen Oberflächeneigenschaften wie Oberflächenwärmeleitung und -wärmekapazität durch Versiegelung und Anhäufung von Baukörpern. Die Änderung des Strahlungshaushalts durch Veränderungen in der Luftzusammensetzung. Die anthropogene Wärmeerzeugung (Hausbrand, Industrie, Verkehr). Im Vergleich zum Umland wird durch diese Unterschiede eine Veränderung im Wärmehaushalt hervorgerufen. Die Stadt heizt sich langsam auf, speichert insgesamt mehr Wärme und gibt diese wieder langsam an die Umgebung ab, d. h., sie kann allgemein als ein riesiger Wärmespeicher betrachtet werden. Langfristig führt dieser Prozess zu einer Erhöhung des langjährigen Mittels der Lufttemperatur (vgl. Karte Langjähriges Mittel der Lufttemperatur 1961-1990, Karte 04.02 ). Von der langfristigen Erwärmung ist auch das oberflächennahe Grundwasser betroffen. Die physikalischen Eigenschaften, die chemische und biologische Beschaffenheit des Grundwassers ist temperaturabhängig. Die Folge einer Erwärmung können eine Qualitätsverschlechterung des Grundwassers und eine Beeinträchtigung der Grundwasserfauna zur Folge haben. Berlin bezieht sein Trinkwasser zu 100 % aus dem Grundwasser, welches fast ausschließlich im Land Berlin gewonnen wird. Auch einen Großteil des Brauchwassers für industrielle Zwecke wird dem Grundwasser entnommen. Daher ist dem Schutz des Grundwassers vor tiefgreifenden Veränderungen wie z. B. einer deutlichen Grundwassertemperaturerhöhung oder -erniedrigung eine große Bedeutung beizumessen – insbesondere vor dem Hintergrund einer nachhaltigen Wasserwirtschaft. Seit 1978 werden zur Bestandsaufnahme und Beobachtung der Veränderungen in tiefen Grundwassermessstellen, die über das ganze Stadtgebiet des Landes Berlin verteilt sind, verstärkt Temperaturprofile aufgenommen. Das vorliegende Kartenwerk soll die Fortschreibung der vorliegenden Dokumentation zur zeitlichen Veränderung der Grundwassertemperatur unter dem Stadtgebiet sein, als Genehmigungsgrundlage für Grundwassertemperatur verändernde Maßnahmen dienen und Eingangsdaten für die Planung und Auslegung von Anlagen zur Erdwärmenutzung zur Verfügung stellen. Zusätzlich kann es in Kombination mit anderen thematischen Karten wie z. B. der Geologischen Skizze ( Karte 01.17 ), der Grundwassergleichenkarte (Karte 02.12) oder der Potenzialkarten ( Karte 02.18 ) zur Entscheidungsfindung und Vorplanung einer energetischen Bewirtschaftung des Grundwassers herangezogen werden. Die Untergrundtemperatur ist z. B. eine wichtige Größe für die Auslegung von Erdwärmesondenanlagen. Grundwassertemperatur und Temperaturjahresgang Die wesentliche Wärmequelle für den oberflächennahen Untergrund bis in ca. 20 m Tiefe ist die Sonneneinstrahlung, die auf die Erdoberfläche trifft. Diese ist maßgeblich für die Oberflächentemperatur verantwortlich. Der oberflächennahe Boden wird durch die eingestrahlte Sonnenenergie erwärmt und dieser gibt die Wärme an die Atmosphäre und den Untergrund ab. Die Jahressumme des Strahlungsanteils der auf eine horizontale Oberfläche auftrifft (die sog. Globalstrahlung) beträgt im Land Berlin im Mittel rd. 1.000 kWh pro m² und Jahr. Sehr viele Einzelparameter an der Grenzfläche Luft/Erde beeinflussen das thermische Lokalklima. Die Farbe, Zusammensetzung, Oberflächenrauigkeit, Bedeckung, der Versiegelungsgrad, der Wasserhaushalt sowie die Ausrichtung zum solaren Strahlungseinfall urbaner Oberflächen entscheiden darüber, wie viel Energie aufgenommen und in der Bausubstanz „gespeichert“ bzw. von dieser an die Atmosphäre bzw. den Untergrund abgegeben wird. Grundsätzlich unterliegen die Temperaturen an der Erdoberfläche und somit auch der Wärmeeintrag bzw. -austrag periodischen Schwankungen mit einem Zyklus von einem Jahr, entsprechend dem Verlauf der Jahreszeiten. Die Oberflächentemperatur dringt mit abnehmender Intensität in den Untergrund ein. Die Eindringtiefe und die Geschwindigkeit, mit der die Wärme transportiert wird, ist abhängig von der Wärmeleitfähigkeit des Untergrundes. Beim Wärmetransport im Untergrund kann zwischen einem konduktiven und konvektiven Wärmetransport unterschieden werden. Während beim konvektiven Wärmetransport die Wärmebewegung durch Materie wie z. B. Grund- und Sickerwasser erfolgt, wird beim konduktiven Transport Energie durch Stoßfortpflanzung zwischen den Molekülen transportiert. Im Gegensatz zur Sonneneinstrahlung als Hauptwärmequelle des oberflächennahen Bereichs besitzt der aus dem Erdinnern zur Oberfläche gerichtete Erdwärmestrom , der seinen Ursprung in der Wärmeentwicklung beim Zerfall radioaktiver Isotope hat, nur eine untergeordnete Bedeutung. In der kontinentalen Erdkruste ist die Wärmestromdichte – definiert als Wärmestrom pro Flächeneinheit senkrecht zur Einheitsfläche – regional verschieden. Nach Hurtig & Oelsner (1979) und Honarmand & Völker (1999) beträgt die mittlere Wärmestromdichte im Land Berlin zwischen ca. 80 und 90 mW/m². Daraus berechnet sich als Jahressumme eine Energiemenge zwischen rd. 0,7 und 0,8 kWh pro m² und Jahr und ist somit also rd. 1/1.000 geringer als die Globalstrahlung. Die Temperatur oberflächennaher Grundwässer wird im Wesentlichen durch den Energieaustausch zwischen Sonne, Erdoberfläche und Atmosphäre, untergeordnet durch den aus dem Erdinneren zur Oberfläche gerichteten Wärmestrom bestimmt. Die regionale Jahresdurchschnittstemperatur an der Oberfläche in Berlin beträgt unter anthropogen unbeeinflussten Verhältnissen ca. 8,0 bis 8,5 °C. Während die täglichen Schwankungen nur eine Tiefe von max. 1 m erfassen, reichen die jahreszeitlichen Schwankungen bis in eine Tiefe zwischen 15 und max. 25 m. Ab dieser Tiefe, in der jahreszeitliche Einflüsse nicht mehr zu registrieren sind, – der sog. neutralen Zone -, steigt die Temperatur in Abhängigkeit von der Wärmeleitfähigkeit der Gesteine und der regionalen Wärmestromdichte an (Abb. 2). Im Berliner Raum beträgt der durchschnittliche Temperaturanstieg im Bereich bis ca. 300 m Tiefe 2,5 bis 3 °C / 100 m. Oberflächengestalt und Grundwassersituation Das in nahezu ostwestlicher Richtung verlaufende Warschau-Berliner Urstromtal trennt die Barnim-Hochfläche im Norden von der Teltow-Hochfläche und der Nauener Platte im Süden der Stadt (Abb. 3). Die Geländehöhen des Urstromtales betragen 30 bis 40 m über NHN, während die Hochflächen durchschnittlich 40 bis 60 m über NHN liegen. Einzelne Höhen erheben sich bis über 100 m über das Meeresniveau (vgl. Karte der Geländehöhen, Karte 01.08). In Berlin ist der Porenraum der überwiegend sandig und kiesigen Sedimente der oberen 150 bis 200 m vollständig bis nahe an die Oberfläche mit Grundwasser erfüllt, das zur Trinkwasserversorgung der Stadt genutzt wird. Der Abstand vom Grundwasser bis zur Geländeoberkante (Grundwasserflurabstand) schwankt je nach Morphologie und Geologie zwischen 0 m und wenigen Metern im Urstromtal sowie fünf bis über 30 m auf den Hochflächen (vgl. Karte Flurabstand des Grundwassers, Karte 02.07 ). Die Grundwasserentnahmen zur Trink- und Brauchwassergewinnung haben zur Ausbildung von weit gespannten Senktrichtern der Grundwasseroberfläche geführt, die die natürlichen Grundwasserflurabstände und -fließgeschwindigkeiten erhöhen sowie die natürlichen Grundwasserfließrichtungen verändern. Dadurch sind in den Bereichen, in denen Brunnengalerien in der Nähe von Flüssen und Seen Grundwasser fördern, influente Verhältnisse entstanden, d. h. das Oberflächenwasser infiltriert als Uferfiltrat in das Grundwasser. Da das Oberflächenwasser aber durch vielfache Kühlwassereinleitungen von Heizkraftwerken ganzjährig erwärmt ist (wie z. B. im Bereich der Spree), führt diese Infiltration im Einzugsbereich des Oberflächengewässers zwangsläufig zu einer Erwärmung des Grundwassers. Besiedlungsstruktur und klimatische Verhältnisse Das Land Berlin besitzt eine polyzentrale Besiedlungsstruktur, die durch das Vorhandensein zweier Hauptzentren, mehrerer kleinerer Stadtzentren sowie einem dichten Nebeneinander von Wohnen, Grünflächen, Gewerbe und Industrie charakterisiert ist. Größere Gewerbegebiete und Industrieansiedlungen liegen bevorzugt an den vom Stadtkern radial zum Stadtrand gerichteten Siedlungs- und Entwicklungsachsen sowie an kanalisierten Oberflächengewässern. Vereinfacht lassen sich folgende Unterscheidungen treffen (Abb. 4): Grün- und Freiflächen Wohnnutzung (geringe bis mittlere Siedlungsdichte) und Mischnutzung, Kerngebietsnutzungen, Gewerbe- und Industrienutzung (Stadtzentren mit hoher Siedlungsdichte). Bei der Betrachtung der lokalklimatischen Verhältnisse in Berlin zeigt vor allem die baulich hochverdichtete Innenstadt tief greifende Temperaturveränderungen gegenüber dem Umland. So beträgt das langjährige Mittel der Lufttemperatur zwischen 1961 und 1990 nach der Karte Langjähriges Mittel der Lufttemperatur 1961 – 1990 ( Karte 04.02 ) am nordöstlichen Stadtrand in Buch zwischen 7,0 und 7,5 °C, im Innenstadtbereich sind dagegen ist das langjährige Mittel bis auf über 10,5 °C angestiegen.

Grundwassertemperatur 2020

Die Grundwassertemperatur im Ballungsraum von Berlin ist bzw. wird durch den Menschen nachhaltig verändert. Die Temperaturmessungen im oberflächennahen Grundwasser des Landes Berlin zeigen, dass im zentralen Innenstadtbereich die Durchschnittstemperatur z. T. um mehr als 5° C gegenüber dem dünner besiedelten Umland erhöht ist. Des Weiteren zeigen die Messung, dass sich dieser Temperaturanstieg zunehmend auch in größeren Tiefen mit mehr als 20 m bemerkbar macht. Die Ursachen für die Temperaturerhöhung sind vielfältig und stehen im direkten Zusammenhang mit der fortschreitenden baulichen Entwicklung, den vorhandenen Nutzungen an der Erdoberfläche und den Auswirkungen des Klimawandels. Es lassen sich direkte und indirekte Beeinflussungen der Grundwassertemperatur unterscheiden (s. Abbildung 1): Unter einer direkten Beeinflussung der Grundwassertemperatur werden alle Wärmeeinträge in das Grundwasser durch das Abwasserkanalnetz, Fernwärmeleitungen, Stromtrassen und unterirdische Bauwerke wie Tunnel, U-Bahnschächte, Tiefgaragen etc. verstanden. Sie umfassen auch Wärmeeinträge, die mit der Grundwasserwärmenutzung und -speicherung in Verbindung stehen. Unter einer indirekten Beeinflussung der Grundwassertemperatur werden Prozesse im Zuge der Urbanisierung verstanden, die mit der Veränderung des Wärmehaushalts der bodennahen Atmosphäre entstehen. Nach Gross (1991) sind als wichtige Größen zu nennen: Die Störung des Wasserhaushalts durch einen hohen Versiegelungsgrad. Die Veränderung der thermischen Oberflächeneigenschaften wie Oberflächenwärmeleitung und -wärmekapazität durch Versiegelung und Anhäufung von Baukörpern. Die Änderung des Strahlungshaushalts durch Veränderungen in der Luftzusammensetzung. Die anthropogene Wärmeerzeugung (Hausbrand, Industrie, Verkehr). Im Vergleich zum Umland wird durch diese Einflussgrößen eine Veränderung im Wärmehaushalt hervorgerufen. Die Stadt heizt sich langsam auf, speichert insgesamt mehr Wärme und gibt diese wieder langsam an die Umgebung ab, d. h., sie kann allgemein als ein riesiger Wärmespeicher betrachtet werden. Langfristig führt dieser Prozess zu einer Erhöhung des langjährigen Mittels der Lufttemperatur (vgl. Karte Langjähriges Mittel der Lufttemperatur 1981-2010, (vgl. Karte Langjähriges Mittel der Lufttemperatur 1981-2010, Karte 04.02 ). Von der langfristigen Erwärmung ist auch das oberflächennahe Grundwasser betroffen. Die physikalischen Eigenschaften, die chemische und biologische Beschaffenheit des Grundwassers ist temperaturabhängig. Die Folge einer Erwärmung können eine Qualitätsverschlechterung des Grundwassers und eine Beeinträchtigung der Grundwasserfauna zur Folge haben. Berlin bezieht sein Trinkwasser aus dem Grundwasser, welches fast ausschließlich im Land Berlin gewonnen wird. Auch ein Großteil des Brauchwassers für industrielle Zwecke wird dem Grundwasser entnommen. Daher ist dem Schutz des Grundwassers vor tiefgreifenden Veränderungen wie z. B. einer deutlichen Grundwassertemperaturerhöhung oder -erniedrigung eine große Bedeutung beizumessen – insbesondere vor dem Hintergrund einer nachhaltigen Wasserwirtschaft. Seit 1978 werden zur Bestandsaufnahme und Beobachtung der Veränderungen in tiefen Grundwassermessstellen und Temperaturmessstellen, die über das ganze Stadtgebiet des Landes Berlin verteilt sind, verstärkt Temperaturtiefenprofile aufgezeichnet. Das vorliegende Kartenwerk soll die Fortschreibung der vorliegenden Dokumentation zur zeitlichen Veränderung der Grundwassertemperatur unter dem Stadtgebiet sein, als Genehmigungsgrundlage für Grundwassertemperatur verändernde Maßnahmen dienen und Eingangsdaten für die Planung und Auslegung von Anlagen zur Erdwärmenutzung zur Verfügung stellen. Zusätzlich kann es in Kombination mit anderen thematischen Karten wie z. B. der Geologischen Skizze ( Karte 01.17 ), der Grundwassergleichenkarte ( Karte 02.12 ) oder den geothermischen Potenzialkarten ( Karte 02.18 ) zur Entscheidungsfindung und Vorplanung einer energetischen Bewirtschaftung des Grundwassers herangezogen werden. Die Untergrundtemperatur ist eine wichtige Größe für die Auslegung von Erdwärmesondenanlagen. Grundwassertemperatur und Temperaturjahresgang Die wesentliche Wärmequelle für den oberflächennahen Untergrund bis in ca. 20 m Tiefe ist die Sonneneinstrahlung, die auf die Erdoberfläche trifft. Diese ist maßgeblich für die Oberflächentemperatur verantwortlich. Der oberflächennahe Boden wird durch die eingestrahlte Sonnenenergie erwärmt und dieser gibt die Wärme an die Atmosphäre und den Untergrund ab. Die Jahressumme des Strahlungsanteils der auf eine horizontale Oberfläche auftrifft (die sog. Globalstrahlung) beträgt im Land Berlin im Mittel ca. 1.000 kWh pro m² und Jahr. Sehr viele Einzelparameter an der Grenzfläche Luft/Erde beeinflussen das thermische Lokalklima. Die Farbe, Zusammensetzung, Oberflächenrauigkeit, Bedeckung, der Versiegelungsgrad, der Wasserhaushalt sowie die Ausrichtung zum solaren Strahlungseinfall urbaner Oberflächen entscheiden darüber, wie viel Energie aufgenommen und in der Bausubstanz „gespeichert“ bzw. von dieser an die Atmosphäre bzw. den Untergrund abgegeben wird. Grundsätzlich unterliegen die Temperaturen an der Erdoberfläche und somit auch der Wärmeeintrag bzw. -austrag periodischen Schwankungen mit einem Zyklus von einem Jahr, entsprechend dem Verlauf der Jahreszeiten. Die Oberflächentemperatur dringt mit abnehmender Intensität in den Untergrund ein. Die Eindringtiefe und die Geschwindigkeit, mit der die Wärme transportiert wird, ist unter anderem abhängig von der Wärmeleitfähigkeit des Untergrundes. Beim Wärmetransport im Untergrund kann zwischen einem konduktiven und konvektiven Wärmetransport unterschieden werden. Während beim konvektiven Wärmetransport die Wärme durch Materie wie z. B. Grund- und Sickerwasser erfolgt, wird beim konduktiven Wärmetransport Energie ohne Materialbewegung im Gestein weitergeleitet. Im Gegensatz zur Sonneneinstrahlung als Hauptwärmequelle des oberflächennahen Bereichs besitzt der aus dem Erdinnern zur Oberfläche gerichtete Erdwärmestrom , der seinen Ursprung in der Wärmeentwicklung beim Zerfall radioaktiver Isotope hat, nur eine untergeordnete Bedeutung. In der kontinentalen Erdkruste ist die Wärmestromdichte – definiert als Wärmestrom pro Flächeneinheit senkrecht zur Einheitsfläche – regional verschieden. Nach Hurtig & Oelsner (1979) und Honarmand & Völker (1999) beträgt die mittlere Wärmestromdichte im Land Berlin zwischen ca. 80 und 90 mW/m². Daraus berechnet sich als Jahressumme eine Energiemenge zwischen ca. 0,7 und 0,8 kWh pro m² und Jahr und ist somit also ca. 1/1.000 geringer als die Globalstrahlung. Die Temperatur des oberflächennahen Grundwassers wird im Wesentlichen durch den Energieaustausch zwischen Sonne, Erdoberfläche und Atmosphäre, untergeordnet durch den aus dem Erdinneren zur Oberfläche gerichteten Wärmestrom bestimmt. Das langjährige Mittel der Lufttemperaturen 1981-2010 liegt in Berlin im Jahresmittel je nach Ort zwischen 9,3 °C und 10,4 °C (SenStadtWohn (2021)). Während die täglichen Schwankungen nur eine Tiefe von max. 1 m erfassen, reichen die jahreszeitlichen Schwankungen bis in eine Tiefe zwischen ca. 15 und 20 m. Ab dieser Tiefe, in der jahreszeitliche Einflüsse nicht mehr zu registrieren sind, – der sog. neutralen Zone -, steigt die Temperatur in Abhängigkeit von der Wärmeleitfähigkeit der Gesteine und der regionalen Wärmestromdichte an (Abb. 2). Im Berliner Raum beträgt der durchschnittliche Temperaturanstieg im Bereich bis ca. 300 m Tiefe 2,5 bis 3 °C / 100 m. Oberflächengestalt und Grundwassersituation Das in nahezu ostwestlicher Richtung verlaufende Warschau-Berliner Urstromtal trennt die Barnim-Hochfläche im Norden von der Teltow-Hochfläche und der Nauener Platte im Süden der Stadt (Abb. 3). Die Geländehöhen des Urstromtales betragen 30 bis 40 m über NHN, während die Hochflächen durchschnittlich 40 bis 60 m über NHN liegen. Einzelne Höhen erheben sich bis über 100 m über das Meeresniveau. In Berlin ist der Porenraum der überwiegend sandig und kiesigen Sedimente der oberen 150 bis 200 m vollständig bis nahe an die Oberfläche mit Grundwasser erfüllt, das zur Trinkwasserversorgung der Stadt genutzt wird. Der Abstand vom Grundwasser bis zur Geländeoberkante (Grundwasserflurabstand) schwankt je nach Morphologie und Geologie zwischen 0 m und wenigen Metern im Urstromtal sowie 5 bis über 30 m auf den Hochflächen (vgl. Karte Flurabstand des Grundwassers, Karte 02.07 ). Die Grundwasserentnahmen zur Trink- und Brauchwassergewinnung haben zur Ausbildung von weit gespannten Absenktrichtern der Grundwasseroberfläche geführt, die die natürlichen Grundwasserflurabstände und -fließgeschwindigkeiten erhöhen sowie die natürlichen Grundwasserfließrichtungen verändern. Dadurch sind in den Bereichen, in denen Brunnengalerien in der Nähe von Flüssen und Seen Grundwasser fördern, influente Verhältnisse entstanden, d. h. das Oberflächenwasser infiltriert als Uferfiltrat in das Grundwasser. Da das Oberflächenwasser aber durch vielfache Kühlwassereinleitungen von Heizkraftwerken ganzjährig erwärmt ist (wie z. B. im Bereich der Spree), führt diese Infiltration im Einzugsbereich des Oberflächengewässers zwangsläufig zu einer Erwärmung des Grundwassers. Besiedlungsstruktur und klimatische Verhältnisse Das Land Berlin besitzt eine polyzentrale Besiedlungsstruktur, die durch das Vorhandensein zweier Hauptzentren, mehrerer kleinerer Stadtzentren sowie einem dichten Nebeneinander von Wohnen, Grünflächen, Gewerbe und Industrie charakterisiert ist. Größere Gewerbegebiete und Industrieansiedlungen liegen bevorzugt an den vom Stadtkern radial zum Stadtrand gerichteten Siedlungs- und Entwicklungsachsen sowie an kanalisierten Oberflächengewässern. Vereinfacht lassen sich folgende Unterscheidungen treffen (vgl. Abb. 4): Grün- und Freiflächen Bebaute Flächen Bei der Betrachtung der lokalklimatischen Verhältnisse in Berlin zeigt vor allem die baulich hochverdichtete Innenstadt tiefgreifende Temperaturveränderungen gegenüber dem Umland. So beträgt das langjährige Mittel der Lufttemperatur zwischen 1981 und 2010 (vgl. Karte Langjähriges Mittel der Lufttemperatur 1981-2010 ( Karte 04.02 ) beispielsweise am nordöstlichen Stadtrand in Buch 9,5 °C, im Innenstadtbereich wird dagegen ein langjähriges Mittel von bis zu 10,4 °C gemessen.

Grundwassertemperatur 2010

Temperaturprofile Die Eindringtiefe der jahreszeitlichen Temperaturschwankungen und damit die Tiefenlage der neutralen Zone wird maßgeblich durch die geogenen Faktoren wie den Flurabstand, die thermische Leitfähigkeit und Wärmekapazität der Gesteine und die Grundwasserneubildung bestimmt. In Berlin liegt die neutrale Zone in Abhängigkeit von den oben genannten Verhältnissen in Tiefen zwischen ca. 15 und max. 25 m (Henning & Limberg 1995). In Abb. 5 ist für vier Grundwassermessstellen in etwa gleicher geologischer Position, aber in unterschiedlichen stadtstrukturellen Lagen, die zeitliche Variation des Temperaturverlaufs in den ersten 25 Metern unter der Geländeoberkante im grundwasserungesättigten und -gesättigten Untergrund dargestellt. Die ersten zehn Bodenmeter sind durch das Auftreten von überwiegend bindigen Böden i. d. R. Geschiebemergel gekennzeichnet. Der Grundwasserflurabstand beträgt in Abhängigkeit von der geomorphologischen Lage zwischen 5 und 10 m. In Abhängigkeit vom jeweiligen Standort der Grundwassermessstelle zeigen sich deutliche Unterschiede in den beobachteten Temperaturen sowie auch im Temperaturverlauf mit zunehmender Tiefe unterhalb der neutralen Zone in rd. 15 m Tiefe. Im oberflächennahen Bereich (< 5 m Tiefe) treten die niedrigsten Untergrundtemperaturen in der Regel im Frühjahr (Februar bis Mai) und die höchsten im Spätsommer (September bis Oktober) auf. In der Tabelle 1 sind für ausgewählte Messstellen mit unterschiedlichen stadtstrukturellen Lagen in einer Übersicht die Temperaturkennwerte gebildet aus Messungen vom Februar, April, Juni, August, Oktober, Dezember 2009 gegenübergestellt (Henning Energie- und Umweltberatung, 2010). Aus Tabelle 1 ist zu ersehen, dass generell mit zunehmender Besiedlungsdichte eine Zunahme der Grundwassertemperaturen (vgl. Abb. 5) zu registrieren ist. Es lässt sich grob folgende Einteilung für die unterschiedlichen Besiedlungsbereiche vornehmen: Bereiche Temparatur in der neutralen Zone ohne Besiedlung, überwiegend Vegetation < 9 °C mit geringer bis mittlerer Siedlungsdichte 9 – 11 °C mit hoher Siedlungsdichte, Stadtzentren und Industrieansiedlungen > 11 °C Ausnahmen bilden Gebiete, die im Einzugsbereich von dichten Industrieansiedlungen mit großen Abwärmeproduzenten oder in unmittelbarer Nähe zu erwärmten Oberflächengewässern liegen. Die Abbildung 6 zeigt ein Beispiel für einen Extremfall. Diese Grundwassermessstelle liegt mitten in einer dichten Industrieansiedlung mit mehreren großen Abwärmeproduzenten in unmittelbarer Nähe zu einem Oberflächengewässer. In diesem Fall sind die höchsten Grundwassertemperaturen im Winter und die niedrigsten im Sommer zu beobachten. Da das Oberflächengewässer durch Kühlwassereinleitungen, insbesondere während der Wintermonate, stark erwärmt wird erhöht sich durch infiltrierendes Oberflächenwasser auch die Grundwassertemperatur. Im Jahr 1991 war über das ganze Jahr in einer Tiefe zwischen 10 und 20 m unter Geländeoberkante eine Temperaturanomalie mit jahreszeitlichen Temperaturschwankungen von nur ca. 1 K zwischen 14,5 und 15,5 °C zu beobachten. Die Auswertung von Langzeituntersuchungen an Messstellen im Innenstadtbereich zeigen (Henning Energie- und Umweltberatung, 2010), dass langfristig auch mit einer Beeinflussung der Grundwassertemperaturen in größeren Tiefen zu rechnen ist. Die Abb. 7 kann dies beispielhaft an in einer Grundwassermessstelle zu unterschiedlichen Zeitpunkten aufgenommenen Temperaturprofilen verdeutlichen. Die gemessenen Temperaturprofile in den Jahren 1984 und 1993 zeigen für die neutrale Zone in ca. 18 m Tiefe und dem tieferen Untergrund (mehr als 20 m Tiefe) in etwa den gleichen Temperaturverlauf. Ein Vergleich mit dem angenommenen „ungestörten“ Temperaturverlauf zeigt bis in rd. 70 m Tiefe einen deutlichen Anstieg der Untergrundtemperatur. In 40 m Tiefe beträgt dieser Temperaturunterschied noch rd. 0,5 K. Dieser bis Anfang der 1990er Jahre beobachtete Temperaturanstieg ist auf Veränderung des Lokalklimas zurückzuführen, die vermutlich auf eine Bebauung durch eine größere Wohnsiedlung, die in den 1960 bis 1970er Jahren in unmittelbar Nähe errichtet worden ist, zurückzuführen. Zwischen 1993 und 2010 ist ein weiterer Temperaturanstieg in der neutralen Zone um rd. 0,4 K zu beobachten. Dieser Temperaturanstieg macht sich zur Zeit bis in Tiefen von rd. 40 m bemerkbar. Da im Umfeld der Messstelle in diesem Zeitraum keine signifikanten Veränderungen durch z. B. Bebauung zu beobachten waren, die eine Veränderung des Lokalklimas bewirken können, besteht in diesem Fall vermutlich ein Zusammenhang mit den Auswirkungen der allgemeinen Klimaerwärmung. Im gleichen Zeitraum hat sich an der Säkularstation Potsdam die mittlere Lufttemperatur in 2 m Höhe um rd. 0,5 K erhöht (Henning Energie- und Umweltberatung, 2010). Karte der Grundwassertemperaturverteilung für den Bezugshorizont 20 m unter Geländeoberkante In der vorliegenden Karte ist die Grundwassertemperaturverteilung für den Bezugshorizont 20 m unter der Geländeoberkante im Bereich der sog. neutralen Zone für das Land Berlin dargestellt. Eine Beeinflussung durch die jahreszeitlichen Temperaturschwankungen ist in diesen Tiefen i. d. R. nicht vorhanden. Der Abstand zwischen den einzelnen Isolinien beträgt 1 °C. Die Grundwassertemperaturen schwanken zwischen kleiner 8,5 °C im Stadtrandbereich und mehr als 12,5 °C im dicht bebauten Innenstadtbereich bzw. in den Industriegebieten. Generell ist ein tendenzieller Temperaturanstieg vom Stadtrand zum Stadtzentrum hin zu beobachten. Der Temperaturverlauf im Nordosten zeigt einen kontinuierlichen Anstieg zum Stadtzentrum hin, während sich das übrige Stadtgebiet durch das Auftreten mehrerer kleinerer positiver und negativer Temperaturanomalien auszeichnet. Das stark bebaute und versiegelte Stadtzentrum wird von einer 11,5 °C – Isolinie eingeschlossen. Die im Stadtzentrum zu beobachtende Wärmeinsel mit Temperaturen von mehr als 12,5 °C wird durch den Großen Tiergarten, einer großen Grünfläche im Innenstadtbereich, durchbrochen. Innerhalb dieser Wärmeinsel sind – wie aus lokalen Untersuchungen bekannt ist – punktuelle Anomalien mit Temperaturen von über 13,0 °C zu beobachten. Die höchsten Temperaturen werden in der Nähe von Kühlwassereinleitungen der Heizkraftwerke gemessen. Außerhalb des Stadtzentrums korrelieren positive Temperaturanomalien ebenfalls mit hoch versiegelten Bereichen (vgl. Karte 01.02, SenStadt [9]) wie Nebenzentren und Industriegebieten. Unterhalb der ausgedehnten Waldgebiete im Stadtrandbereich von Südosten, Norden, Nordwesten und Südwesten liegen die Temperaturen im Bereich von 9 °C bzw. darunter. Ferner fallen negative Temperaturanomalien im Stadtgebiet von weniger als 10 °C mit Bereichen zusammen, die sich durch einen hohen Vegetationsanteil auszeichnen wie z. B. der Britzer Garten. Generell ergeben sich im dicht besiedelten Innenstadtbereich gegenüber dem Freiland Temperaturerhöhungen im Grundwasser von mehr als 4 °C. Karte der Grundwassertemperaturverteilung für den Bezugshorizont 0 m NHN Die zweite Karte zeigt die Grundwassertemperaturverteilung für den Bezugshorizont 0 m NHN im Land Berlin. Das entspricht in Abhängigkeit von der Lage im Urstromtal oder auf den Hochflächen einer Tiefe zwischen rd. 30 bis max. rd. 70 m unter Geländeoberkante (vgl. Abb. 3). In diesen Tiefen ist eine Beeinflussung durch die täglichen und jahreszeitlichen Temperaturschwankungen ausgeschlossen. In diesen Tiefen können sich jedoch langfristig anhaltende Temperaturänderungen, die z. B. durch eine veränderte bauliche Entwicklung oder klimatische Veränderungen verursacht werden, bemerkbar machen. Der Abstand zwischen den einzelnen Isolinien beträgt bei dieser Karte 1 °C. Ein direkter Vergleich dieser Karte mit der Ausgabe von 1999 ist aufgrund der unterschiedlichen Datengrundlage hinsichtlich der Messstellendichte und wegen der nicht so fein gewählten Temperaturabstufung für die Darstellung nicht möglich. Auch bei dieser Kartendarstellung schwanken die Grundwassertemperaturen zwischen kleiner 8,5 °C im Stadtrandbereich und mehr als 11,5 °C im dicht bebauten Innenstadtbereich. Im stark bebauten und versiegelten Stadtzentrum hat sich der Bereich, der von der 11,5 °C – Isolinie eingeschlossen wird, deutlich verkleinert (Tiefenlage ca. 30 m unter Geländeoberkante). Dagegen ist eine deutliche Vergrößerung der Gebiete zu beobachten, die im Temperaturbereich zwischen 8,5 und 9,5 °C liegen, was zum Teil auf die Tiefenlage des Darstellungshorizonts (zwischen größer 30 m und kleiner 70 m) zurückzuführen ist. Dazu gehören insbesondere die südöstlichen, nördlichen und nordwestlichen Stadtrandbereiche. Ein Vergleich mit der Karte zur Grundwassertemperaturverteilung für den Bezugshorizont 20 m unter Geländeoberkante zeigt, dass insbesondere die im südlichen und südöstlichen Stadtgebiet zu beobachtenden kleineren positiven und negativen Temperaturanomalien nicht mehr auftreten. Zusammenfassend ist festzustellen, dass sich im dicht besiedelten Innenstadtbereich gegenüber dem Freiland Temperaturerhöhungen im Grundwasser von mehr als 4 °C ergeben können und dieses somit deutlich erwärmt ist. Es besteht ein eindeutiger Zusammenhang mit den stadtklimatischen Verhältnissen an der Oberfläche. Dies belegen auch die Ergebnisse der regelmäßigen Untersuchungen an ausgewählten Temperaturmessstellen in unterschiedlichen stadtstrukturellen Lagen. Allgemein zeigt die oberflächennahe Grundwassertemperaturverteilung im Land Berlin einen Zusammenhang mit der Verteilung von Industrieansiedlungen, Abwärmeproduzenten, Oberflächenversiegelung, Freiflächen und anthropogen erwärmter Oberflächengewässer (s.a. Henning, 1990). Unter Berücksichtigung des Grundwasserströmungsfeldes kann davon ausgegangen werden, dass diese Faktoren einen wesentlichen Einfluss auf die Veränderung der Grundwassertemperatur haben. Da es in der Stadt in der Regel zu einer Häufung dieser Faktoren kommt, überlagern sich die Einflussgrößen gegenseitig. (Blobelt, 1999). Auf Grundlage von Daten aus Langzeituntersuchungen kann gezeigt werden, dass aufgrund der fortschreitenden baulichen Entwicklung aber auch der allgemeinen klimatischen Veränderungen von einer weiteren tief greifenden Erwärmung des oberflächennahen (kleiner 20 m Tiefe) und tieferen Untergrunds (bis 100 m Tiefe) und somit auch des Grundwassers auszugehen ist.

1 2 3 4 510 11 12