API src

Found 1483 results.

Related terms

Feste Brennstoffe

Brennstoffe werden zur Wärmegewinnung eingesetzt und dienen der Erzeugung von elektrischem Strom im Dampfkraftwerk. Die Landwirtschaft verfügt über ein großes Potenzial an energetisch nutzbarer fester Biomasse. Das sind zum einen Getreidestroh, Grünland- und Landschaftspflegeaufwüchse zum anderen Energiepflanzen (Getreidekorn, Miscanthus, Schnellwachsende Baumarten), die gezielt angebaut werden. Im Zuge des weiteren Preisanstieges für fossile Energieträger und im Interesse der Umweltschonung (Klimawandel) gewinnen diese nachhaltigen Ressourcen zunehmend an Bedeutung.

Energie - Heizkraftwerke und Kraftwerke ab 2000 kW

Der Kartendienst (WMS-Gruppe) stellt die digitalen Geodaten aus dem Bereich Erneuerbare Energien des Saarlandes dar.:Industrielle Anlage zur Erzeugung von Wärme und Elektrizität. Die Daten stammen aus dem Marktstammdatenregister (MaStR). Stand: 06.09.2022

Luft- und Geothermie-Wärmepumpe Einzelbetrachtung

Die Karte zeigt in aggregierter Darstellung die für die Wärmeerzeugung mit Luft- und Geothermie-Wärmepumpen geeigneten Gebiete auf Basis der Flurstücke. Für die Nutzung oberflächennaher Geothermie auf Flurstückebene sind in Norderstedt nur wenige Gebiete gut geeignet. Ausschlussbereiche auf Grund der Trinkwassergewinnung und häufig kleine Flurstücke schränken auch die mitteltiefe Geothermie ein (siehe Wärmeplan Norderstedt S. 43 ff.) Herausgeberin: Stadt Norderstedt Stand: September 2024

Luft- und Geothermie-Wärmepumpe Quartiersbetrachtung

Die Karte zeigt in aggregierter Darstellung die für die Wärmeerzeugung mit Luft- und Geothermie-Wärmepumpe geeigneten Gebiete auf Basis von Flurstücks übergreifenden Quartierslösungen. Durch gemeinschaftliche Wärmeerzeugung oder dezentrale Netze im Quartier vergrößert sich das Potential deutlich. Herausgeberin: Stadt Norderstedt Stand: September 2024

Geothermie-Wärmepumpe Einzelbetrachtung

Die Karte zeigt in aggregierter Darstellung die für die Wärmeerzeugung mit Geothermie-Wärmepumpen geeigneten Gebiete auf Basis der Flurstücke. Für die Nutzung oberflächennaher Geothermie auf Flurstückebene sind in Norderstedt nur wenige Gebiete gut geeignet. Ausschlussbereiche auf Grund der Trinkwassergewinnung und häufig kleine Flurstücke schränken auch die mitteltiefe Geothermie ein (siehe Wärmeplan Norderstedt S. 43 ff.) Herausgeberin: Stadt Norderstedt Stand: September 2024

Interoperabler INSPIRE View-Service: Production And Industrial Facilities / Anlagen nach Bundesimmissionsschutzgesetz in Brandenburg (WMS-PF-BIMSCHG)

Der interoprable INSPIRE-Viewdienst (WMS) Production and Industrial Facilities gibt einen Überblick über die Anlagen nach Bundesimmissionsschutzgesetz (BImSchG) in Brandenburg. Der Datenbestand beinhaltet die Punktdaten zu BImSchG-Betriebsstätten und BImSchG-Anlagen (ohne Anlagenteile). Datenquelle ist das Anlageninformationssystem "LIS-A". Gemäß der INSPIRE-Datenspezifikation "Production and Industrial Facilities" (D2.8.III.8_v3.0) liegen die Inhalte der BImSchG-Anlagen INSPIREkonform vor. Der WMS beinhaltet 2 Layer: "ProductionFacility" (Betriebsstätte) und "ProductionInstallation" (Anlage). Der ProductionFacility-Layer wird gem. INSPIRE-Vorgaben nach Wirstschaftszweigen (BImSchG-Kategorie 1. Ordnung) untergliedert in: - PF.PowerGeneration: Wärmeerzeugung, Bergbau und Energie (BImSchG-Kategorie: Nr. 1) - PF.ConstructionMaterialProduction: Steine und Erden, Glas, Keramik, Baustoffe (BImSchG-Kategorie: Nr. 2) - PF.MetalProcessingAndProduction: Stahl, Eisen und sonstige Metalle einschließlich Verarbeitung (BImSchG-Kategorie: Nr. 3) - PF.ChemicalProcessing: Chemische Erzeugnisse, Arzneimittel, Mineralölraffination und Weiterverarbeitung (BImSchG-Kategorie: Nr. 4) - PF.PlasticsManufacturing: Oberflächenbehandlung mit organischen Stoffen, Herstellung von bahnenförmigen Materialien aus Kunststoffen, sonstige Verarbeitung von Harzen und Kunststoffen (BImSchGKategorie: Nr. 5) - PF.WoodAndPaperProcessing: Holz, Zellstoff (BImSchG-Kategorie: Nr. 6) - PF.FoodAndAgriculturalProduction: Nahrungs-, Genuss- und Futtermittel, landwirtschaftliche Erzeugnisse (BImSchG-Kategorie: Nr. 7) - PF.WasteProcessing: Verwertung und Beseitigung von Abfällen und sonstigen Stoffen(BImSchGKategorie: Nr. 8) - PF.MaterialStorage: Lagerung, Be- und Entladen von Stoffen und Gemischen(BImSchG-Kategorie: Nr. 9) - PF.OtherProcessing: Sonstige Anlagen (BImSchG-Kategorie: Nr. 10) Maßstab: 1:500000; Bodenauflösung: nullm; Scanauflösung (DPI): null

Luft-Wärmepumpe Einzelbetrachtgung

Die Karte zeigt in aggregierter Darstellung die für die Wärmeerzeugung mit Luftwärmepumpen anhand von Abstandsregelungen geeigneten Gebiete auf Basis der Flurstücke. Herausgeberin: Stadt Norderstedt Stand: September 2024

Wärmenetzeignungsgebiete Hamburg

Die Karte zeigt, wo im Stadtgebiet der Freien und Hansestadt Hamburg Wärmenetze vorhanden sind und wo sich eine Wärmenetzversorgung unter wirtschaftlichen Gesichtspunkten für den Wärmenetzbetreiber und die jeweilige Gebäudeeigentümerin bzw. den jeweiligen Gebäudeeigentümer eignet. Die Einteilung des Stadtgebiets in bestimmte Wärmenetzeignungskategorien basiert auf einer Wirtschaftlichkeitsberechnung hypothetischer ("imaginärer") Wärmenetze und einem Vollkostenvergleich verschiedener klimaneutraler Wärmeversorgungsoptionen (Wärmenetzanschluss, Wärmepumpe, Pelletheizung) aus Gebäudesicht. Die hypothetischen Wärmenetze verbinden Gebäude der Stadt und orientieren sich dabei am Straßennetz. Für die Wirtschaftlichkeitsberechnung wird eine zusammenhängende Gebäudeanzahl zusammengefasst betrachtet. Aus Sicht des Wärmenetzes wirtschaftlich ist die Versorgung einer Gruppe an Gebäuden, wenn die Einnahmen aus der Wärmelieferung die Kosten für das Wärmenetz (Errichtung und Betrieb) und die Wärmeerzeugung decken. Aus Sicht der Gebäude wurde eine überschlägige Vollkostenrechnung verschiedener Wärmeversorgungsoptionen (Wärmepumpe, Pelletkessel, Wärmenetzanschluss) durchgeführt. Jedes Gebäude weist somit eine Wärmeversorgungsoption auf, die auf Basis der getroffenen Annahmen und unter den verglichenen Optionen, die günstigste darstellt. Aus diesen Analysen wurde die Aussage abgeleitet, ob ein Gebäude potenziell wirtschaftlich über ein Wärmenetz versorgt werden könnte und wie ein Wärmenetzanschluss aus Sicht des Gebäudes im Vergleich mit den alternativen Wärmeversorgungsoptionen abschneidet.

Indikator: Umweltkosten von Energie und Straßenverkehr

Die wichtigsten Fakten Stromerzeugung, Wärmeerzeugung und Verkehrsaktivitäten belasten die Umwelt u.a. durch den Ausstoß von Treibhausgasen und Luftschadstoffen stark. Dadurch entstehen hohe Folgekosten für die Gesellschaft, etwa durch umweltbedingte Erkrankungen, Schäden an Ökosystemen oder auch an Gebäuden und die Zunahme von Extremwetterereignissen. Für Deutschland schätzen wir die Höhe dieser Umweltkosten im Jahr 2022 auf rund 301 Milliarden Euro. Das ist eine Abnahme von 3,3 % im Vergleich zu 2021. Welche Bedeutung hat der Indikator? Die Nutzung und Umwandlung von Energierohstoffen zur Strom- und Wärmeerzeugung sowie für den Straßenverkehr belasten die Umwelt durch die ⁠ Emission ⁠ von Treibhausgasen und Luftschadstoffen wie Feinstaub und Stickoxide. Diese verursachen eine Zunahme von Erkrankungen, Schäden an Gebäuden sowie Denkmälern (Fassadenverschmutzung), belasten die Ökosysteme (siehe Indikatoren „Belastung der Bevölkerung durch Feinstaub“ und „Eutrophierung durch Stickstoff“ ) und tragen zum ⁠ Klimawandel ⁠ bei. Die Folgen des Klimawandels wie zunehmender ⁠ Starkregen ⁠, Unwetter oder Überschwemmungen bedrohen Menschenleben und verursachen schwere Schäden. Damit sind auch wirtschaftliche Kosten in Milliardenhöhe verbunden, etwa Aufwendungen für die Beseitigung von Unwetterschäden. Auch fünfzehn Jahre nach Erscheinen des „Stern Reviews“, bekräftigt der Ökonom Nicholas Stern, dass die Kosten des Nichthandelns die Kosten des Klimaschutzes um ein Vielfaches übersteigen und ruft erneut zu entschiedenem Handeln im Kampf gegen den Klimawandel auf (Stern 2006 und Stern 2021 ). Wie ist die Entwicklung zu bewerten? Nachdem die Umweltkosten aus Energie und Straßenverkehr von 2020 auf 2021 um 6 % anstiegen, sanken diese zwischen 2021 und 2022 um 3,3 % und lagen im Jahr 2022 bei 301,1 Mrd. Euro. Diese Entwicklung ergibt sich aus einem Rückgang um 6,2 % bei der Stromerzeugung sowie um 6,9 % bei der Wärmeerzeugung. Diesem rückläufigen Trend bei der Wärme- und Stromerzeugung steht eine Zunahme um 3,3 % bei den Umweltkosten des Straßenverkehrs gegenüber. Im Saldo ergibt sich damit ein Minus von 3,3 % bei den Gesamt-Umweltkosten aus Energie- und Straßenverkehr. Ausschlaggebend für die gesunkenen Umweltkosten ist der  niedrige ⁠ Endenergieverbrauch ⁠: Der Endenergieverbrauch 2022 war der zweitniedrigste seit 1990 , lediglich im Pandemiejahr 2020 war dieser noch geringer. Wie wird der Indikator berechnet? Die Berechnungen erfolgen auf Basis der Arbeiten zur „ Methodenkonvention 3.1 – Kostensätze “ sowie zur „ Methodological Convention 3.2 for the Assessment of Environmental Costs “ (derzeit nur in englischer Sprache verfügbar). Letztere stellt dabei eine Teilaktualisierung der „Methodenkonvention 3.1 – Kostensätze“ dar, im Zuge derer die für diesen ⁠ Indikator ⁠ relevanten Kapitel zu Treibhausgasemissionen und Luftschadstoffen überarbeitet wurden. Die Schätzungen zu den Umweltkosten von Treibhausgasemissionen basieren auf einem neuen Modell, dem Greenhouse Gas Impact Value Estimator (GIVE) Modell. Dieses stellt eine Weiterentwicklung des Vorgängermodells Climate Framework for Uncertainty, Negotiation and Distribution (FUND) dar. Beim GIVE Modell handelt es sich um ein integriertes Bewertungsmodell (Integrated Assessment Model) mit welchem neben Kostensätzen für die ⁠ Emission ⁠ von Kohlendioxid auch Kostensätze für die Treibhausgase Methan und Lachgas ermittelt werden können. Die neue Methodik wird für die Schätzungen ab 2020 angewendet. Zu Vergleichszwecken werden für die Jahre 2020 bis 2022 mit der gestrichelten Linie auch die auf dem FUND basierenden Umweltkosten dargestellt. Wie sich ablesen lässt, fallen die mit dem GIVE Modell ermittelten klimabezogenen Umweltkosten etwas höher aus als im FUND Modell. Ausführliche Informationen zum Thema finden Sie im Daten-Artikel "Gesellschaftliche Kosten von Umweltbelastungen" .

Hamburger Gewässerinformationssystem

Das Datenmanagementsystem GERONIMUS der Hamburger Wasserwirtschaft (Abteilung W1 im Amt Wasser, Abwasser und Geologie) ist ein kohärentes System von Hard und Softwarekomponenten innerhalb und außerhalb des FHH-Netzes. Grundwasser- und Pegelstände Die Internetserver sind Kern des vollautomatisierten Wasserstandsdatentransfers des Hamburger Landesmessnetzes für Grund- und Oberflächenwasser (ca. 20000 Datensätze /d). Um Externen den ständigen Zugang zur Korrektur und Analyse der Massendaten zu ermöglichen, werden die Daten in einer Postgres-Datenbank im Internet gehalten. Sie können dort über ein Xterminal-ähnliches Verfahren direkt von den Auftragnehmern zu jeder Zeit unabhängig vom Zugang innerhalb des FHH-Netzes analysiert und bearbeitet werden. Die Zuwächse und Korrekturen werden quasi zeitgleich mit der internen Oracle-Instanz GDB (Gewässerdatenbank) synchronisiert und sind dort für alle Stellen der Hamburger Verwaltung zugänglich. Beschaffenheitsdaten (Grund und Oberflächengewässer) Die Beschaffenheitsdaten der Grund- und Oberflächengewässerdaten werden zentral über das LIMS des Institutes für Hygiene und Umwelt erfasst und gepflegt. Über einen nächtlichen Transfermechanismus gelangen die Daten in die Oracle-Instanz GDB und stehen dann für alle Stellen der Hamburger Verwaltung zur Verfügung. Stammdaten Messstellen Alle Daten der Hamburger Messnetze sind an Messstellen, Brunnen, Pegel, Entnahmestellen oder WFD-Monitoring-Stellen gebunden. Neben den Stammdaten der BUKEA-Messstellen wird auch der Hamburgteilige Datenbestand der Hamburger Wasserwerke vorgehalten. Auch die Entnahme- und Einleitstellen für die Wärmegewinnung oder Wärmeableitung im Grundwasser werden in GERONIMUS administriert. Wasserrechte Innerhalb des GERONIMUS-Systems werden alle Daten hinsichtlich der Rechte am und im Gewässer der Hamburger Ober- und Grundwasser gespeichert (Wasserbuch). Neben den Kenndaten werden auch die kompletten Bescheide digital vorgehalten. Digitale Umweltgebührenordnung (DUGO) Innerhalb der Wasserwirtschaftlichen Verwaltung fallen Gebühren zu unterschiedlichen Tatbeständen für Bürger oder auch Firmen an. Diese werden innerhalb des GERONIMUS-Systems gehostet und für die Finanzbehörde aufbereitet. Digitales Auftragsmanagement und Qualitätssicherung (DAQS) Für den Betrieb der Hamburger Messnetze fallen ständig Aufträge für Auftragnehmer (Messstellenbau, Wartung, Auswertung etc. Gutachten) an, die in Verträgen/Wartungsverträgen ausgegeben und historisiert werden. Grundwasserförderer, Fördererlaubnisse zur Erstellung der Zahlungsbescheide Zur Erstellung der Vorauszahlungsbescheide und Festsetzungsbescheide zur Grundwasserförderung der privaten und öffentlichen Förderer werden alle dazu notwendigen Daten unter GERONIMUS administriert. Gewässerbauwerke Das Kataster der Bauwerke am oder im Gewässer wird mit Kenndaten und Dokumenten administriert. Bisher ist allein der Aspekt Wasserrahmenrichtlinie datentechnisch abgebildet. Maßnahmenumsetzung nach Wasserrahmenrichtlinie (Water Framework Directive EG 2000/76) Die Umsetzung der Maßnahmen zur Verbesserung des Zustands der Hamburger Wasserkörper ist ein mehr oder weniger komplexer Eingriff in die Struktur der Gewässer, der neben Kenndaten der Maßnahme auch den Umsetzungsstatus und die Kosten beinhält. Zudem müssen die Daten historisierbar sein, um ältere Zustände abgleichen zu können. Charakteristik und Statusangaben der Hamburger Wasserkörper Die Kenndaten und Charakteristika der Hamburger Wasserkörper gemäß Wasserrahmenrichtlinie sowie die Status- bzw. Potentiale der biologischen und chemischen Qualitätskomponenten sind innerhalb GERONIMUS erfasst. Hydromorphologie der kleinen und mittleren Hamburger Gewässer Für das Bewertungsverfahren der Hydromorphologie werden alle Kenndaten zur Einstufung der Hydromorphologie nach Wasserrahmenrichtlinie im LAWA Detailverfahren oder dem Übersichtsverfahren historisierbar administriert. Monitoring gemäß Wasserrahmenrichtlinie Die Zuordnung Qualitätskomponenten zu den WRRL- Monitoringstellen sowie die Monitoringstellen der Wasserkörper sind im GERONIMUS-System administriert. Hochwasserrisikomanagement Die Daten zum Reporting und zur Maßnahmenumsetzung in Umfeld der Hochwasserrisikomanagementrichtlinie werden im GERONIMUS-System gehostet. Dazu zählen auch die Deichrouten. Gewässernetz Das Hamburger Gewässernetz wird als Netzwerktopologie innerhalb von GERONIMUS gepflegt. Es ist mit seinen Gewässerkennzahlen bundesweit und mit den Geometrien mit NI und SH an den Grenzen metergenau abgestimmt. Die Fließgewässer und Gräben sind hierzu geroutet und stationiert. Es dient als Basis der Abbildung der Oberflächenwasserkörper, der Gewässerabschnitte der Hydromorphologie, der Hochwasserrisikogebiete, der Maßnahmen und Bauwerke an den Gewässern. Zusätzlich werden die Uferrouten des reduzierten Gewässernetzes gepflegt. Digitale Karten in GERONIMUS Topographische Karten in Maßstäben von 1:1.000 bis 1:600.000 in unterschiedlicher Auflösung

1 2 3 4 5147 148 149