Erklärung zur Barrierefreiheit Kontakt zur Ansprechperson Landesbeauftragte für digitale Barrierefreiheit Die gute Durchlüftung von Siedlungsgebieten kann zum Abbau von thermischen Belastungen führen. In Berlin sind die aus den innerstädtischen Grünanlagen in die Bebauung gerichteten Strömungen von großer Bedeutung. Die Karte stellt anhand der hochaufgelösten Windrichtungspfeile und Kaltluftvolumenwerte das örtliche Potenzial zur Belüftung der bebauten Gebiete zum dargestellten Zeitpunkt dar. 04.10.01 Bodennahes Windfeld und Kaltluftvolumenstrom Weitere Informationen Die Verteilung der Kenngröße Lufttemperatur stellt in Berlin an typischen Sommertagen aufgrund fehlender ausgeprägter Orographie vor allem eine Folge der Verteilung von bebauten und begrünten Flächen in der Stadt dar. Die Karte stellt zum ausgewählten Zeitpunkt die Verteilung der Temperaturwerte in 2 m Höhe dar. 04.10.02 Lufttemperatur Weitere Informationen Die Strahlungstemperatur ist eine wichtige, die Lufttemperaturverteilung ergänzende Komponente für die Berechnung der bioklimatischen Bewertungsindices, da sie einen großen Einfluss auf die Wärmebilanz des Menschen hat. Sie berücksichtigt die verschiedenen Strahlungsflüsse auf den Menschen. Zur Kennzeichnung der stadtklimatischen Ortslage ist wiederum eher die Nachtsituation geeignet. Im nächtlichen Temperaturniveau liegen die dicht bebauten Gebiete am höchsten, gefolgt von den Wasserflächen. 04.10.03 Strahlungstemperatur Weitere Informationen Das Ausmaß der Abkühlung kann je nach den nutzungsabhängigen Boden- und Oberflächeneigenschaften große Unterschiede aufweisen. Die Stadtstrukturen zeichnen sich in charakteristischer Weise ab. Die niedrigste Abkühlung liegt aufgrund der hoher Wärmeleitfähigkeit und -kapazität über Gewässerflächen sowie Siedlungsflächen mit hoher baulicher Dichte vor. Waldflächen und stark durchgrünte Siedlungstypen weisen dagegen deutlich höhere Abkühlungsraten auf. 04.10.04 Nächtliche Abkühlung zwischen 22:00 Uhr und 04:00 Uhr Weitere Informationen Meteorologische Parameter wirken nicht unabhängig voneinander auf den Menschen ein, sie bedürfen einer integrierenden Bewertung. Die PET-Werte um 14:00 Uhr verdeutlichen eine starke Abhängigkeit der auftretenden Wärmebelastung am Tage von der örtlichen Verschattungssituation, während die Situation am frühen Morgen um 04:00 Uhr zeigt, dass Äcker und Wiesen stark abgekühlt haben, während die bebauten Stadträume je nach Dichte in einem deutlich höheren Werteniveau verbleiben. 04.10.05 Bewertungsindex Physiologisch Äquivalente Temperatur (PET) Weitere Informationen Klimatologische Kenntage stellen die Über- oder Unterschreitung definierter Schwellenwerte, hier der Lufttemperatur, dar. Es prägen sich in der Verteilung der Anzahl der Tage pro Jahr deutlich die Abhängigkeiten von der jeweiligen Flächennutzung durch. Die Stadtzentren West und Ost weisen die höchsten Werte sowohl für die Tagesindices als auch den Nachtindex auf. 04.10.06 Anzahl meteorologischer Kennwerte im Mittel der Jahre 2001-2010 Weitere Informationen Die Klimaanalysekarte bildet den planungsrelevanten Ist-Zustand der Klimasituation ab. Dazu werden das Ausmaß der städtischen Überwärmung, die Ausgleichsleistungen kaltluftproduzierender Flächen sowie räumliche Beziehungen zwischen Ausgleichs- und Wirkungsräumen dargestellt. Einbezogen werden auch die Auswirkungen von Freiflächen des Umlandes auf das Stadtgebiet. 04.10.07 Klimaanalysekarte Weitere Informationen
Was ist Infrarot-Strahlung? Infrarotstrahlung ( IR - Strahlung ) - auch als Wärmestrahlung bezeichnet - ist Teil der optischen Strahlung und damit Teil des elektromagnetischen Spektrums (siehe Abbildung). Sie schließt sich in Richtung größerer Wellenlängen an das sichtbare Licht an. Ihr Wellenlängenbereich reicht von 780 Nanometer bis 1 Millimeter. Unterteilung in IR -A-, IR -B- und IR -C- Strahlung Infrarotstrahlung wird unterteilt in die kurzwellige IR -A- Strahlung mit einem Wellenlängenbereich von 780 bis 1400 Nanometer, die IR -B- Strahlung (1400 bis 3000 Nanometer) und den langwelligen Teilbereich, die IR -C- Strahlung (3000 Nanometer bis 1 Millimeter). Elektromagnetisches Spektrum Sonne als wichtigste Quelle für Infrarot- Strahlung Die wichtigste natürliche Quelle für Infrarot- Strahlung ist die Sonne. Infrarot- Strahlung hat einen Anteil von ca. 50 Prozent an der Sonnenstrahlung, die den Erdboden erreicht. Außerdem gibt die durch die Sonneneinstrahlung erwärmte Erde Infrarot- Strahlung ab. Wärmehaushalt der Erde Durch die in der Atmosphäre enthaltenen natürlichen und künstlichen Gase wie Wasser, Kohlendioxid, Ozon, Methan und Fluorchlorkohlenwasserstoffe (FCKW) wird die von der Erde abgegebene Infrarot- Strahlung absorbiert. Dies führt zu einer zusätzlichen Erwärmung der Erde. Dieser Prozess ist für den Wärmehaushalt der Erde und damit auch für die globale Erwärmung (Klimawandel) von entscheidender Bedeutung. Entdeckung durch William Herschel im Jahr 1800 Die Entdeckung beziehungsweise der Nachweis der Infrarot- Strahlung gelang dem deutschen Astronomen William Herschel erstmalig im Jahre 1800. Er zerlegte das Sonnenlicht mit einem Prisma in seine spektralen Teile und fand dabei jenseits des roten, das heißt langwelligsten Bereichs des sichtbaren Lichts eine nicht sichtbare aber wärmende Strahlung . Die Fähigkeit zur Erwärmung von Stoffen dient auch heute noch zum Nachweis der Infrarotstrahlung. "Warme" Körper geben Infrarot- Strahlung ab Jeder "warme" Körper (Körpertemperatur oberhalb des absoluten Nullpunkts von circa -273 °C ) gibt Infrarotstrahlung ab. Die abgestrahlte Energiemenge und die Wellenlängenverteilung der Strahlung hängen von der Temperatur des Körpers ab. Je wärmer ein Körper ist, umso mehr Energie in Form von IR - Strahlung gibt er ab und umso kürzer ist die Wellenlänge der Strahlung . Stand: 14.03.2024
Wirkung von Infrarot-Strahlung Die Wirkung von Infrarot- Strahlung ( IR ) beruht darauf, dass ihre Energie vom Körper aufgenommen wird. Moleküle werden in Schwingung versetzt, das Ergebnis kennen wir von der natürlichen Infrarotstrahlung der Sonne: Wärme. Die kurzwellige IR -A- Strahlung erreicht die Unterhaut, beziehungsweise im Auge die Netzhaut. IR -B und IR -C Strahlung werden weitestgehend schon in der Oberhaut (Epidermis) absorbiert. Die direkte Wirkung von Infrarot- Strahlung betrifft also vorwiegend die Körperoberfläche. Durch Wärmeleitung erreicht die Temperaturerhöhung jedoch auch tiefer gelegene Körperregionen. Auf der positiven Wärmewirkung beruht die Verwendung von Infrarotstrahlung in der Medizin und im Wellnessbereich , zum Beispiel in Infrarot-Kabinen. Zu hohe Temperatur schadet Hohe Wärmebelastungen durch intensive Infrarot-Bestrahlung können genauso wie direkte Hitzeeinwirkung zu Störungen im Wärmehaushalt des Gesamtorganismus führen. Negative Wirkungen treten vor allem dann auf, wenn die Erhöhung der Körpertemperatur sowie die Einwirkdauer kritische Grenzen überschreiten. Dann können Hitzeschäden wie Hitzekrampf, Hitzekollaps, Hitzeerschöpfung oder Hitzschlag die Folge sein. Hitzekrampf, Hitzekollaps, Hitzschlag Die mildeste Form einer thermischen Überbeanspruchung ist der Hitzekrampf, eine Muskelverkrampfung, die durch einen Verlust von Körpersalzen infolge verstärkten Schwitzens zustande kommt. Durch rechtzeitiges Trinken salzhaltiger Getränke kann ein Hitzekrampf vermieden werden. Steigt die Temperatur im Körperinneren (Kerntemperatur) auf circa 40 Grad Celsius ( °C ), kommt es durch die Erweiterung oberflächennaher Blutgefäße zu einem Blutdruckabfall mit Mangeldurchblutung des Gehirns, der sogar Bewusstlosigkeit zur Folge haben kann (Hitzekollaps). Steigt die Körperkerntemperatur auf über 41 °C , kann es zu einem Kreislaufkollaps und thermischer Schädigung von Organen kommen (Hitzschlag). Sonnenstich Der so genannte Sonnenstich entsteht, wenn besonders Kopf und Nacken längere Zeit ungeschützt der Infrarotstrahlung ausgesetzt werden. Häufigste Ursache im Alltag ist eine zu lange und intensive Sonnenbestrahlung. Beim Sonnenstich werden die Hirnhäute gereizt und können sich sogar entzünden. Besonders anfällig sind Kinder und auf dem Kopf wenig behaarte Menschen. Bei längerem Aufenthalt in der Sonne sollte in jedem Fall leichte, luftige Kleidung, die eine gute Luftzirkulation ermöglicht, und eine Kopfbedeckung getragen werden. Das Risiko für eine Hirnhautentzündung ist bei Kleinkindern größer als bei Erwachsenen. Auf den Schutz von Kindern muss also auch aus diesem Grund besonders geachtet werden. Hitzemelanose Eine seltene, für Einzelfälle bei regelmäßigem, langzeitigem Gebrauch verschiedener Wärmequellen (zum Beispiel Heizdecken und -kissen, beheizte Autositze, Laptops, Infrarotlampen) berichtete Erscheinung ist die Hitzemelanose ("Erythema ab Igne"). Dabei handelt es sich um eine rötlich-bräunliche netzartige Verfärbung der Haut, die eher ein kosmetisches Problem darstellt Allerdings macht sie die Haut möglicherweise anfälliger für die Entstehung von Hautkrebs und sollte daher vermieden werden. Wirkungen auf das Auge Besondere Aufmerksamkeit beim Auge verdient der kurzwellige Infrarot-Anteil ( IR -A). Für diesen Bereich ist der vordere Teil des Auges durchlässig, so dass die Netzhaut erreicht wird und Netzhautschädigungen möglich sind. Bei chronischer Bestrahlung mit starken Infrarot-Quellen kann langfristig die Linse getrübt werden (zum Beispiel entsteht so der so genannte Glasbläserstar). Sonstige Wirkungen Mehrere Untersuchungen schreiben der Infrarotstrahlung eine Beteiligung am Kollagenabbau und an der beschleunigten Hautalterung zu. Ergebnisse aus Untersuchungen zu möglichen Wechselwirkungen von Infrarot mit UV - Strahlung zum Beispiel auf die Schädigung der Erbsubstanz ( DNA ) und auf Reparaturprozesse ergeben bisher kein klares Bild. Stand: 14.03.2024
Kopfschmerzen am Tag, Schlaflosigkeit in der Nacht – viele Menschen sind im Sommer wetterfühlig. Dahinter steckt das sogenannte Bioklima . Es beschreibt alle Einflussfaktoren, die auf Lebewesen einwirken. Die wichtigsten Parameter, die den Wärmehaushalt des Menschen direkt beeinflussen, sind die Lufttemperatur, Luftfeuchte, Windgeschwindigkeit und die thermophysiologisch wirksame Strahlung. Durch Messungen im Rahmen des Klimamodells FITNAH verfügt Berlin über einen umfassenden Überblick über die Auswirkungen des Klimas im Stadtgebiet und im näheren Umland. Besondere Aufmerksamkeit bekommt die Wärmebelastung, denn die zeitweise Überhitzung in großen Städten kann sich sehr negativ auf unser Herz-Kreislauf-System auswirken – vor allem, wenn diese Wärme wegen geringer Abkühlung in der Nacht anhält. Viele Menschen leiden dann unter Schlafproblemen und dem Nachlassen der Leistungsfähigkeit. Es ist also wichtig, die Wärmebelastung in Berlin im Blick zu behalten. Für ihre Erfassung stehen verschiedene Bewertungsgrößen zur Verfügung; hier wurde der sogenannte Predicted Mean Vote (PMV) , das steht für „vorhergesagter durchschnittlicher Wert“, genutzt. Wenn Sie mehr über das Klima und die Temperaturen in Berlins Nächten erfahren wollen, finden Sie hier Karten, Daten und umfassende weitere Informationen zum Thema. Die Inhalte dieses Jahrgangs sind aktuell. Textkurzfassung Literatur Karten Download
Kopfschmerzen am Tag, Schlaflosigkeit in der Nacht – viele Menschen sind im Sommer wetterfühlig. Dahinter steckt das sogenannte Bioklima . Es beschreibt alle Einflussfaktoren, die auf Lebewesen einwirken. Die wichtigsten Parameter, die den Wärmehaushalt des Menschen direkt beeinflussen, sind die Lufttemperatur, Luftfeuchte, Windgeschwindigkeit und die thermophysiologisch wirksame Strahlung. Durch Messungen im Rahmen des Klimamodells FITNAH verfügt Berlin über einen umfassenden Überblick über die Auswirkungen des Klimas im Stadtgebiet und im näheren Umland. Besondere Aufmerksamkeit bekommt die Wärmebelastung, denn die zeitweise Überhitzung in großen Städten kann sich sehr negativ auf unser Herz-Kreislauf-System auswirken – vor allem, wenn diese Wärme wegen geringer Abkühlung in der Nacht anhält. Viele Menschen leiden dann unter Schlafproblemen und dem Nachlassen der Leistungsfähigkeit. Es ist also wichtig, die Wärmebelastung in Berlin im Blick zu behalten. Für ihre Erfassung stehen verschiedene Bewertungsgrößen zur Verfügung; hier wurde der sogenannte Predicted Mean Vote (PMV) , das steht für „vorhergesagter durchschnittlicher Wert“, genutzt. Wenn Sie mehr über das Klima und die Temperaturen in Berlins Nächten erfahren wollen, finden Sie hier Karten, Daten und umfassende weitere Informationen zum Thema. Seit einigen Jahren wird bevorzugt der thermischen Bewertungsindex PET (physiologische Äquivalenttemperatur) verwendet, eine Karte und Informationen zum PET finden Sie in der Klimaanalyse 2014. Die Inhalte dieses Jahrgangs sind historisch und nicht mehr aktuell. Textkurzfassung Literatur Karten Download
Das Stadtbioklimamodell UBIKLIM Die Atmosphäre und damit das Klima ist ein Teil der Umwelt, mit der sich der menschliche Organismus dauernd auseinandersetzen muss, um das Gleichgewicht seiner Lebensfunktionen und damit seine Gesundheit zu erhalten. Die dabei geforderte Anpassungsleistung lässt sich über Wärmehaushaltsmodelle des Menschen (VDI 1998) berechnen, wodurch der Zusammenhang zwischen Mensch und Atmosphäre objektiv, qualitativ und quantitativ erfasst wird. Dabei sind neben der Lufttemperatur ebenso Wind, Feuchte und Strahlungsverhältnisse sowie auch die Aktivität und Bekleidung des Menschen zu berücksichtigen. Der Deutsche Wetterdienst nutzt das Klima-Michel-Modell (Jendritzky et al., 1990). Es basiert auf der Behaglichkeitsgleichung von Fanger (1972) inkl. einer Korrektur nach Gagge et al. (1986) zur besseren Erfassung feucht-warmer Bedingungen, verknüpft alle für den menschlichen Wärmehaushalt relevanten Größen und liefert eine Aussage über das durchschnittliche subjektive Empfinden des Menschen (Behaglichkeit, Wärmebelastung, Kältestress). Der Name “Michel” weist auf den Durchschnittsmenschen hin (hier: männlich, 35 Jahre alt, 1,75 m groß, 75kg schwer). Zur Beschreibung des thermischen Empfindens dient die Gefühlte Temperatur (Staiger et al., 1997) in der Einheit °C. Sie vergleicht die tatsächlich vorgefundenen Bedingungen mit der Temperatur, die in einer Standardumgebung herrschen müsste, um ein identisches Wärme-, Behaglichkeits- oder Kaltgefühl zu haben. Die Bekleidung wird zwischen sommerlich leichter und winterlich dicker stets so variiert, dass sich der Mensch möglichst behaglich fühlt. In Tabelle 1 sind die Gefühlten Temperaturen dem thermischen Empfinden des Menschen sowie den jeweiligen Belastungsstufen zugeordnet. Da die Anpassungsmöglichkeiten unter warmen bzw. heißen Bedingungen eher begrenzt sind und eine Entlastung sich nur durch Ausweichen in eine kühlere Umgebung (im Extremfall in klimatisierte Räume) realisieren lässt, es außerdem in Städten gegenüber dem Umland zu einer Zunahme von Wärmebelastung kommt, besitzt der Wärme- bzw. Hitzbelastungsanteil des Bioklimas bei Fragen des menschlichen Wohlbefindens, u.U. auch mit gesundheitlicher Relevanz, eine besondere Bedeutung. UBIKLIM nutzt das erwähnte Klima-Michel-Verfahren und ermöglicht die lokalen Unterschiede im Bioklima zu erfassen und gemäß Richtlinie 3787 Blatt 2 (VDI 2008) über die Gefühlte Temperatur zu bewerten. Um einen Bezug nicht nur zur lokalen städtischen Situation, sondern auch zum regionalen Bioklima herzustellen, auf dessen Grundlage dann auch die Verknüpfung zu den Klimaszenarien der Zukunft hergestellt werden kann, war die Erweiterung des Stadtbioklimamodells zu einem “Kombinierten Stadtbioklimamodell” erforderlich (vgl. weitere Erläuterungen im Kapitel Methode). Verwendung von Landnutzungsdaten Die Anwendung von Simulationsmodellen erfordert eine über das eigentliche Untersuchungsgebiet hinausgehende räumliche Erfassung der Grundlagendaten und meteorologischen Randbedingungen. Daher untergliederte sich das Untersuchungsgebiet in das etwa 890 km² große Stadtgebiet von Berlin sowie einen rund 850 km² großen Bereich des Umlandes und besaß damit eine Ausdehnung von 46,1 × 38,0 km (vgl. Abbildung 2). Die Bereitstellung der Daten erfolgte in einem Raster von 25 m x 25 m, so dass sich insgesamt rund 2.800.000 Einzelflächen ergaben. Die verwendeten Parameter für das Stadtgebiet Berlin wurden dem Datenbestand des Informationssystems Stadt und Umwelt (ISU) entnommen, der für vielfältige Auswertungen und Berechnungen zur Verfügung steht. Das Informationssystem Stadt und Umwelt (ISU) der Senatsverwaltung für Stadtentwicklung enthält ca. 25.000 Einzelflächen in einem räumlichen Bezugssystems, die für die Berechnungen aufgerastert werden mussten: Flächennutzung Die Daten der Flächennutzung geben den Nutzungsstand von Ende 2005 wieder und beruhen auf der Auswertung von Luftbildern, bezirklichen Flächennutzungskarten, Ortsbegehungen und weiteren Unterlagen für den Umweltatlas (vgl. Karte 06.01 und Karte 06.02, SenStadt 2008a). Es werden etwa 30 Nutzungsarten unterschieden. Stadtstrukturtypen (Karte 06.07, SenStadt 2008b). Eine weitere Verfeinerung dieser Daten fand über die Nutzungsdatei des ISU statt, die u.a. typenspezifische Angaben zur Höhe der Gebäude und Vegetationsstrukturen innerhalb der einzelnen Stadtstrukturtypen enthält. Versiegelung (Karte 01.02, SenStadt 2007). Aus den Vorarbeiten zur Umsetzung der EU-Richtlinie zum Umgebungslärm konnte eine mit Höhenangaben aufbereitete Gebäudedatei eingespeist werden, welche mit Datenstand 2005 sämtliche 550.000 Gebäude der Automatisierten Liegenschaftskarte (ALK) des Landes Berlin sowie in einem Abstand von 3 km um das Stadtgebiet 231.445 Gebäude aus dem Land Brandenburg enthält. Die Liegenschaftskarte ALK bildet als darstellender Teil des so genannten Liegenschaftsbuches neben den Flurstücken vor allem die Gebäude einschließlich ihrer Geschossanzahl flächenscharf ab und ist daher als Basisinformation zur Abbildung von Hochbaustrukturen gut geeignet (vgl. Karte 04.10, Abbildung 2). Im Hinblick auf die Einbindung der ALK-Daten in den Auswertungsprozess ist zu beachten, dass Anlagen auf Bahngelände und S-Bahnhöfe, Gebäude auf Industrie- und Gewerbeflächen sowie Gartenhäuser in Kleingartengebieten nicht in allen Fällen erfasst sind Um dem Modellansatz der Anwendung des 1-dimensionalen Modells MUKLIMO_1 gerecht zu werden, müssen die Flächen der einzelnen Areale deutlich größer als ein 25 m x 25 m-Pixel sein. Das bedeutet, dass kleine Straßen nicht aufgelöst, sondern der umliegenden Nutzung zuzuordnen sind. Auswertung klimatologischer Zeitreihen Auch für Berlin liegen Zeitreihen klimatologischer Parameter verschiedener Stationen – teilweise über einen langen Zeitraum – vor. Wie sich diese Situation im Mittel über ein Jahr bzw. bei extremen Wetterlagen auf die Wärmebelastung auswirkt, zeigen Auswertungen charakteristischer Parameter der Lufttemperatur an verschiedenen Standorten im Stadtgebiet mit unterschiedlichem Stadteinfluss. Die Karte (vgl. Abbildung 3) zeigt die Lage der verwendeten Stationen Berlin-Tegel und Berlin-Tempelhof. In beiden Fällen repräsentieren sie als Stationen auf einem Flughafengelände inmitten Berlins eine Stadtlage mit relativ offener Bebauung. Durch dichte Bebauung und einen in hohem Maße versiegelten Innenstadtbereich wird der Standort der Station Berlin-Alexanderplatz geprägt. Die weiteren Stationen zeichnen sich durch Merkmale einer Stadtrandlage aus. Abbildung 4 zeigt den Verlauf der Lufttemperatur an der Station Tempelhof 1949-2008. Deutlich erkennbar ist der positive Trend insbesondere der letzten 20 Jahre. Nach einem noch mal kalten Jahr 1996, lagen seither alle Jahresmittel der Lufttemperatur über dem langjährigen Jahresmittelwert von 9,6 °C. Das wärmste Jahr der gesamten Beobachtungsreihe war das Jahr 2000 mit 11,1 °C. Die zunehmende Erwärmung betrifft den gesamten Ballungsraum, jedoch ist die thermische Ausprägung in den einzelnen Stadtteilen von Berlin sehr unterschiedlich. Das Auftreten von Tropennächten ist in Deutschland ein seltenes Ereignis. Im Folgenden wird an der Anzahl der Tropennächte (Temperaturminimum >= 20 °C) die Zunahme des Wärmeinseleffektes mit Vordringen in den unmittelbaren Stadtkernbereich von Berlin deutlich. Die unterschiedlichen Zeiträume liefern darüber hinaus Angaben über die Zunahme der Wärmebelastung insbesondere in der überhitzten Innenstadt. Tabelle 3 zeigt im Zeitraum 1999-2008 gegenüber dem Zeitraum 1967-1990 eine mittlere Zunahme um 5 Tropennächte in der Innenstadt, in offen bebautem Stadtgebiet um 0,2 und am Stadtrand eine geringfügige Abnahme um 0,1 (vgl. Tabelle 3). Extreme Hitzeperioden – wie während des Sommers 2003 – führen zu extremer Wärmebelastung in dicht bebauten Stadtgebieten. An der Station Alexanderplatz wurden 10 Tropennächte registriert, noch 3 in offen bebautem Stadtgebiet, während im angrenzenden Umland dieses Ereignis gar nicht auftrat. Die Station Berlin-Alexanderplatz charakterisiert die Lage in einer städtischen Wärmeinsel. Da aber die Stadtstrukturen räumlich nicht homogen sind, bilden sich auch in anderen Teilen der Stadt mit hoher Bebauungsdichte, hohem Versiegelungsgrad und/oder mit sehr geringem Grünflächenanteil weitere Wärmeinseln aus. Andererseits werden in Gebieten mit großen Parkanlagen Temperaturen erreicht, die kaum von denen des Umlandes abweichen.
Stadtklima und Gesundheit – eine Herausforderung für die Gestaltung städtischer Lebensräume Die menschliche Gesundheit ist unsere Lebensgrundlage. Die städtischen Lebens- und Umweltbedingungen haben maßgeblich Einfluss auf das Wohlbefinden, die Gesundheit und die Lebenserwartung für städtische Bevölkerungen. Die Umweltwirkungen auf die menschliche Gesundheit im Kontext des städtischen Klimas können von den bioklimatischen Eigenschaften der Stadt, vor allem bestimmt durch städtische Wärmeinseln und Luftschadstoffe, abgeleitet werden. Bereits heute, vor allem aber in der Zukunft stellen die Besonderheiten des Stadtklimas im Verbund mit den Auswirkungen des Klimawandels, der Überalterung der Gesellschaft, städtischen Lebensweisen und einer ungleichen sozialen Verteilung von Umweltbelastungen große Herausforderungen für die Gestaltung städtischer Lebensräume dar. Da Metropolen wie Berlin ein innerstädtisches Mosaik verschiedener Stadt-, Bevölkerungs- und Sozialstrukturen sowie Umweltbedingungen aufweisen, sind gesundheitliche Auswirkungen ebenso räumlich unterschiedlich ausgeprägt. So sind nicht nur die Umweltbedingungen in einem Stadtgebiet entscheidend, sondern auch wie hoch der Anteil der Personengruppen ist, die diesen Belastungen gegenüber eine besondere Vulnerabilität aufweisen. Vor allem ältere und allein lebende Personen, chronisch Kranke oder sozial Schwache sind von Umweltbelastungen häufig in einem stärkeren Ausmaß betroffen (Böhme et al. 2013). Zum Erhalt bzw. zur Schaffung einer für den Menschen gesunden städtischen Umwelt ist einerseits das Verständnis von den Wirkungen des Stadtklimas auf die Gesundheit entscheidend. Andererseits stellen räumlich differenzierte Betrachtungen zu Mensch-Umwelt-Beziehungen in städtischen Gebieten eine wichtige Grundlage dar. Der Stadtplanung kommt dabei eine maßgebliche Aufgabe zuteil, gerade im Hinblick auf die Folgen des Klimawandels. So hat die Berliner Senatsverwaltung für Stadtentwicklung und Umwelt 2011 den Stadtentwicklungsplan Klima (SenStadtUm 2011) veröffentlicht und im Rahmen der Klimaanpassungsstrategie des Landes Berlin das Klimaschutzteilkonzept „Anpassung an die Folgen des Klimawandels“ (SenStadtUm 2016) entwickelt. Planungshinweiskarten unterstützen das Ziel, ein gesundes Stadtklima zu erhalten bzw. zu schaffen. Bei der Bewertung stadtklimatischer Belastungssituationen und Entlastungsfunktionen sowie der Ausweisung von Flächen mit besonderen stadtklimatischen Missständen und der Vulnerabilität gegenüber dem Stadtklima werden neben Flächennutzungen und Grünflächenversorgungen auch demographische Strukturen berücksichtigt. Die Identifizierung von erhöhten gesundheitlichen Risiken durch Wärme- und Luftschadstoffbelastungen auf Basis von Gesundheitsdaten in räumlicher Auflösung können als wichtige Ergänzung für die Planung und Umsetzung von Minderungs- und Anpassungsmaßnahmen zum Schutz der Gesundheit verstanden werden. Wie ist der Zusammenhang zwischen dem Stadtklima und der menschlichen Gesundheit? Stadtstrukturen modifizieren die bioklimatisch relevanten Parameter Lufttemperatur, Luftfeuchte und Luftbewegungen sowie den Strahlungs- und Energieaustausch. Dabei kann sich das Stadtklima auf direktem und indirektem Wege auf den Menschen auswirken. Denn städtische Wärmeinseln und Luftschadstoffe in der Stadtatmosphäre haben nicht nur direkten Einfluss auf den Menschen, sondern auch auf Wasser, Boden, Flora sowie Fauna in der Stadt. Und über diese Teilsphären (Hydrosphäre, Pedosphäre, Biosphäre) lassen sich ebenso indirekte Wirkungspfade zum Menschen feststellen. Im Folgenden soll der Schwerpunkt der Betrachtung auf den direkten Auswirkungen der städtischen Wärmebelastung auf die menschliche Gesundheit liegen. Städtische Wärmeinseln Die städtische Wärmeinsel wirkt bioklimatisch sowohl vorteilig als auch nachteilig auf die menschliche Gesundheit. Positiv zu bewerten sind eine Verkürzung der winterlichen Frostperiode und eine Reduzierung der Anzahl der Heiztage, wodurch Luftschadstoffimmissionen nachlassen (Kuttler 1998) und das Risiko bezüglich kälteassoziierter Erkrankungen und Sterbefälle vermindert ist. Verkürzte Frostperioden bzw. mildere Winter bedingen allerdings auch eine Verlängerung der Vegetationsperiode und damit der Pollensaison, was Allergien fördern und verstärken bzw. das Allergenspektrum verändern kann (Eis et al. 2010). Ebenso ist mit erhöhten Infektionsrisiken zu rechnen, da es zu günstigeren Lebens- und Ausbreitungsbedingungen für tierische Zwischenwirte und Überträger (Vektoren) von Krankheitserregern kommt (Eis et al. 2010). Nachteilig äußert sich die städtische Überwärmung vor allem in den Sommermonaten, wo die größte Intensität nachts ausgeprägt ist. Da diese Belastungsschwerpunkte mit der nächtlichen Erholungsphase des Menschen zusammentreffen, stellen sie an kontinuierlich heißen Tagen eine zusätzliche Beanspruchung für den menschlichen Organismus dar (Koppe et al. 2004). Aber auch tagsüber können im Sommer hohe Lufttemperaturen, geringe Windintensitäten und räumlich unterschiedliche Strahlungsverhältnisse zu Hitzestress führen. Dabei ist der Grad der Wärmebelastung hauptsächlich durch die Sonneneinstrahlung bestimmt. Hitzewellen, also mehrere wärmebelastete Tage in Folge, stellen in Städten ein spezielles Problem dar, da sich Gebäude und versiegelte Flächen über Tage aufheizen, diese Wärme speichern und verzögert wieder abgeben. Wenn in diesen Fällen eine adäquate Belüftung über Nacht ausbleibt, empfinden Einwohner in diesen Stadtgebieten einen anhaltenden thermischen Stress über die Tages- und Nachtstunden, während Bewohner in begünstigten Stadtarealen durch den kühlenden Einfluss benachbarter Freiflächen eine Wärmeentlastung über Nacht erfahren. Berlin zeichnet sich mit seiner herausragenden Mischung von bebauten und begrünten Flächen durch ein Mosaik verschiedener mikroskaliger Klimate und damit große Unterschiede in den thermischen Bedingungen auf kleinem Raum aus. Deren klimatische Auswirkungen zu bewerten, ist eine vorrangige Aufgabe der dreigeteilten Planungshinweiskarte Stadtklima. Wärmebelastung Unter Wärmebelastung wird eine gesundheitsrelevante Bewertung der thermischen Umwelt verstanden. Die Wärmebelastung wird entweder anhand einfacher Verfahren bestimmt, z.B. Schwellenwerte der Lufttemperatur (klimatologische Kenntage), oder anhand komplexer Verfahren, z.B. mittels dem Predicted Mean Vote (PMV), der gefühlten Temperatur, der Physiological Equivalent Temperature (PET) oder dem Universal Thermal CIimate Index (UTCI), einer Fortschreibung des vom Deutschen Wetterdienst angewendeten Klima-Michel-Modells und der gefühlten Temperatur (Koppe 2005, Jendritzky et al. 2009). Die thermische Belastung unterscheidet sich in Wärmebelastung und Kältereiz. Ab einer starken Wärmebelastung wird auch von Hitzebelastung oder Hitzestress gesprochen, wobei die Begriffe häufig synonym verwendet werden bzw. keine einheitlichen Definitionen vorliegen. Werden die Mortalität (Sterblichkeit oder Sterberate bezogen auf die Gesamtheit der Bevölkerung) und z.B. die Lufttemperaturen über das Kalenderjahr betrachtet, kann im Allgemeinen ein U-förmiger Kurvenverlauf festgestellt werden (vgl. Abbildung 21). h6. Durchgezogene Linie: Temperatur-Mortalitäts-Beziehung über das Kalenderjahr. Gestrichelte Linie: Temperatur-Mortalitäts-Beziehung während Phasen starker Wärmebelastung oder während Sommermonaten (Scherber 2014) Der Kurvenverlauf kann in Abhängigkeit des regionalen Klimas, der betrachteten Saison im Jahr und der Todesursache variieren (Koppe et al. 2004, Michelozzi et al. 2009, Schneider et al. 2009). In den mittleren Breiten weist die Gesamtmortalität (alle Todesursachen) ein Maximum im Winter und ein Minimum im Sommer auf. In besonders heißen Sommern, wie es in Berlin in den Jahren 1994, 2006 und 2010 der Fall war, kann die Gesamtmortalität jedoch das Wintermaximum auch überschreiten (vgl. Abbildung 22). Hitzebedingte Erkrankungen Der menschliche Organismus toleriert Abweichungen der Körperkerntemperatur nur in sehr geringem Maße. Die Körperschale (Arme, Beine und Haut) kann hingegen variierende Temperaturen viel stärker tolerieren. Steigt die Körperkerntemperatur an bzw. kommt es zur Überschreitung der oberen Grenze des sogenannten thermischen Komforts oder zur Störung des menschlichen Wärmehaushaltes, wird der Organismus zunehmend durch Hitzestress belastet. Selbst bei gesunden Personen kann es bereits bei körperlicher Ruhe zu erheblichen Zunahmen der Pumpleistung des Herzens und damit zum Abbau physiologischer Funktionsreserven und eingeschränkter geistiger kognitiver Arbeit kommen (BMU 2011). Der Körper reagiert mit Unwohlsein, verminderter physischer Leistungsbereitschaft und Konzentrationsschwäche. Symptome von Hitzestress sind ein Beeinträchtigungs- und Belastungsgefühl. Bei bereits Erkrankten kann es zur Notwendigkeit vermehrter Medikamenteneinnahme kommen. Eine anhaltende Exposition gegenüber hohen Temperaturen kann zu hitzebedingten Notfallsituationen (z.B. Hitzekrämpfe, Hitzschlag), Erkrankungen bis hin zu Todesfällen führen. Bei hitzebedingten Erkrankungen sind hauptsächlich das Herz-, Gefäß- und Atmungssystem betroffen, welches aufgrund zusätzlicher Einwirkungen von Luftschadstoffen und Pollen beansprucht ist (BMU 2011, Michelozzi et al. 2009, Schneider et al. 2011). Hohe Temperaturen und eine geringe Luftfeuchte können zudem die Schleimhäute austrocknen, was im Sommer als auch im Innenraum im Winter relevant ist. Auf trockenen Schleimhäuten können sich leicht Erreger festsetzen, welche Atmungssystemerkrankungen hervorrufen oder bestehende Symptome verschlechtern. h5. Gefährdete Personen und Risikofaktoren gegenüber Wärmebelastung Der Wasserverlust über die Haut bei der Schweißverdunstung steigt bei erhöhter Umgebungstemperatur erheblich an und wird bei körperlicher Arbeit oder bestehender Erkrankung, die ihrerseits Wasser verbraucht (z.B. Diabetes mellitus, Durchfall), weiter verstärkt. Für ältere und kranke Menschen, Säuglinge und Kleinkinder ist ein hoher Wasserverlust besonders problematisch, da ihr Thermoregulationssystem eingeschränkt arbeitet, die Durstwahrnehmung vermindert und die hormonelle Regulation des Wasser- und Elektrolythaushaltes verändert sind. Wenn der Wasser- und Elektrolythaushalt nicht entsprechend ausgeglichen wird, kommt es in Folge des Wasserverlustes zum Volumenmangel im Kreislaufsystem mit Beeinträchtigung der Kreislauffunktion und Nierentätigkeit, der bis zum Zusammenbruch des Organismus führen kann. Junge Erwachsene können kurzfristig durch alleiniges Trinken selbst schweren Wasserverlust ausgleichen. Ältere Menschen benötigen häufig mehrere Tage dafür (Wichert, von 2004). Zu den hitzegefährdeten Menschen gehören des Weiteren Personen mit bereits bestehenden schweren gesundheitlichen Beeinträchtigungen durch z.B. Herz-Kreislauf- und Atmungssystemerkrankungen, Bettlägerigkeit, neurologische oder psychiatrische Erkrankungen. Sie können sich unter Umständen nicht selbstständig versorgen und nehmen zumeist Medikamente ein, die sich auf den Elektrolyt- und Wärmehaushalt auswirken, wie z.B. Diuretika (wasserausschwemmend), Neuroleptika (antipsychotisch), Betablocker (blutdrucksenkend) und Barbiturate (schlaffördernd). Neben dem Alter und Vorerkrankungen sind als weitere Risikofaktoren für hitzebedingte Erkrankungen Alkohol- und Drogenmissbrauch, anstrengende körperliche Tätigkeiten während extremer Wetterbedingungen, Akklimatisationsmangel, geringe Fitness, Übergewicht, körperliche Ermüdung, physische und soziale Isolation, niedriger sozioökonomischer Status, Wohnen in Ballungsräumen sowie fehlende oder unzureichende Klimatisierung zu nennen (Eis et al. 2010, Koppe et al. 2004). h5. Akklimatisation Die Akklimatisation ist ein wesentlicher Aspekt bei den Auswirkungen von Wärmebelastung. Unter Akklimatisation ist die physiologische Anpassung des menschlichen Organismus an veränderte klimatische Bedingungen zu verstehen. Durch Effizienzsteigerung im Thermoregulationssystem und hormonelle Veränderungen wird die auf den Körper wirkende thermische Belastung reduziert. Eine Kurzzeit-Hitzeakklimatisation stellt sich für gewöhnlich nach 3 – 12 Tagen ein, wobei eine Langzeit-Hitzeakklimatisation mehrere Jahre dauern kann. Die Kurzzeit-Hitzeakklimatisation führt u.a. zu einer vermehrten Schweißproduktion schon bei geringerer Körpertemperatur und einer verringerten Salzkonzentration im Schweiß und Urin. Diese Form der Akklimatisation stellt sich jedoch nur ein, wenn die Hitzeexposition täglich über mehrere Stunden erfolgt, und sie bildet sich innerhalb mehrerer Wochen nach der Hitzeexposition wieder zurück (Koppe et al. 2004). Geschwindigkeit und Stärke der Akklimatisation hängen von unterschiedlichen individuellen Faktoren wie dem Alter, dem Geschlecht, der genetischen Prädisposition, dem Gesundheitszustand, der körperlichen Leistungsfähigkeit und der Fitness ab. Ebenso sind äußere Faktoren, wie z.B. die Nutzung von Klimaanlagen, sowie nationale, geographische und jahreszeitliche Unterschiede für die Akklimatisation und individuelle Hitzetoleranz entscheidend (Koppe 2005). Aufgrund der Relevanz der physiologischen Anpassung bei der Bewertung der thermischen Umwelt wurde die Methode HeRATE (Health Related Assessment of the Thermal Environment) eingeführt (Koppe 2005). Diese Methode wird für die Berechnung der Schwellenwerte des thermischen Indexes „gefühlte Temperatur“ für Hitzewarnungen des Deutschen Wetterdienstes mit berücksichtigt. Deshalb liegen die Schwellenwerte der gefühlten Temperatur für Hitzewarnungen bei frühsommerlichen Hitzewellen und in höheren Breiten etwas niedriger, im Hochsommer und in niederen Breiten etwas höher. Wie können Auswirkungen des städtischen Klimas auf die Gesundheit untersucht werden? Zusammenhänge zwischen dem städtischen Klima und der menschlichen Gesundheit können einerseits anhand der Auswirkungen von Wärme- und Luftschadstoffbelastungen auf die Mortalität (Sterblichkeit), Morbidität (Krankheitshäufigkeit) oder z.B. auf individuelle körperliche und psychische Parameter untersucht werden. Diese Gesundheitsindikatoren stammen häufig von Daten der Sterbefallstatistiken, Krankenhausdiagnosestatistiken (z.B. Patientenaufnahmen in Krankenhäusern), von gesetzlichen Krankenkassen (z.B. Abrechnungsdaten) oder Rettungsdiensteinsätzen. Zur Erfassung der Wärme- und Luftbelastung werden Daten über stationäre Messnetze, mobile Messungen oder auf Basis räumlicher Interpolationen bezogen. Bei den Untersuchungen von Zusammenhängen zwischen Umweltexpositionen und gesundheitlichen Auswirkungen wird in Kurzzeit- und Langzeiteffekte unterschieden. Kurzfristige Wirkungen treten in unmittelbarer zeitlicher Nähe zur Exposition auf (d.h. innerhalb weniger Tage). Langfristig können aber auch chronische Erkrankungen resultieren (Breitner et al. 2013). Andererseits kann das Risiko für gesundheitliche Folgen von Wärme- und Luftschadstoffbelastungen auch von Stadt-, Bevölkerungs- und Sozialstrukturen abgeleitet werden. Unter Berücksichtigung von weiteren Gesundheits- und meteorologischen Indikatoren stellen im Ergebnis dieses Ansatzes Vulnerabilitäts-, Umweltrisiko- oder Hitzestresskarten das potentielle Risiko für Hitzestress oder weitere Umweltbelastungen räumlich dar (vgl. Kapitel „besondere Vulnerabilität aufgrund der demographischen Zusammensetzung“, Dugord et al. 2014, Kim et al. 2014, SenStadtUm 2015d). Der Zusammenhang zwischen Wärme- oder Hitzebelastung, Luftschadstoffen und gesundheitlichen Auswirkungen wird am häufigsten anhand von epidemiologischen Studien untersucht. Die Epidemiologie ist eine wissenschaftliche Disziplin, die sich mit den Ursachen und Folgen sowie der Verbreitung von gesundheitsbezogenen Zuständen und Ereignissen in Populationen beschäftigt (Mücke et al. 2013). In Zeitreihenstudien werden Daten von Umweltexpositionen und sogenannten Gesundheitsendpunkten (z.B. Erkrankung, Todesfall) auf der Ebene aggregierter Populationen (anstelle von Einzelpersonen) zugrunde gelegt und Änderungen der Stärke von Umwelteinflüssen und bestimmte gesundheitliche Effekte über Regressionsanalysen in verschiedenen zeitlichen Auflösungen (meist Tag oder Monat) untersucht. Dabei können auch mögliche Störeinflüsse, wie z.B. saisonale Einflüsse, zeitliche Trends, Meteorologie und sozioökonomischer Status der untersuchten Population berücksichtigt werden. Da sich gesundheitliche Wirkungen nicht immer unmittelbar nach Veränderungen der Umwelteinflüsse zeigen, wird die beobachtete zeitliche Verzögerung der gesundheitlichen Wirkungen auch als Zeit-Lag oder Lag bezeichnet (Breitner et al. 2013). Zeitreihenstudien ermöglichen den Einbezug großer Fallzahlen und Zeiträume, sowie auch hohe Auflösungen auf räumlicher Ebene, was gerade für innerstädtische Differenzierungen von Umweltwirkungen auf die Stadtbevölkerung relevant ist. Zusammenhänge zwischen Umweltexpositionen und gesundheitlichen Wirkungen lassen sich aber auch auf personen- oder personengruppenbezogener Basis mittels z.B. Fall-Kontroll-Studien, Kohortenstudien oder über Befragungen exponierter Personen zum Gesundheitszustand, der Leistungsfähigkeit oder dem Wohlbefinden erfassen. Diese Studiendesigns halten meist weniger Fallzahlen vor, ermöglichen aber eine bessere Kontrolle von Störfaktoren und lassen Zusammenhänge auf individueller Ebene abbilden. Einen Überblick zu Untersuchungen der Auswirkungen von Wärme- und Luftbelastungen auf die Gesundheit in Berlin mit Angabe der verwendeten Daten, zeitlichen und räumlichen Auflösungen zeigt Tabelle 3. Stadtklima und Gesundheit in Berlin – Ein Überblick zu Forschungsergebnissen Bereits in den 1980er Jahren gingen Turowski und Haase der Frage nach, welche bioklimatischen Wirkfaktoren die tägliche Sterbehäufigkeit beeinflussen und werteten dafür Totenscheine u.a. aus Ost-Berlin für den Zeitraum 1958 – 1967 hinsichtlich des Klima- und Wettereinflusses statistisch aus. Die Untersuchung zeigte, dass eine erhöhte Sterblichkeit im Sommerhalbjahr mit erhöhten Werten von Lufttemperatur, Luftfeuchte und Globalstrahlung einhergingen. Die Sterblichkeit aufgrund von Herz-Kreislaufsystemerkrankungen war bei überdurchschnittlich hohen Lufttemperaturen im Sommer in Ost-Berlin signifikant erhöht (bis zu 10 % Abweichung vom Erwartungswert). Für die Sterblichkeit aufgrund von Atmungssystemerkrankungen betrug die Abweichung vom Erwartungswert bis zu 45 %. Am Beispiel von Erkältungskrankheiten bei Berliner Kindern konnte zudem ein Wärmeinseleffekt festgestellt werden. Erkältungen bei Kindern, die in der Innenstadt lebten, kamen im Sommer bei überdurchschnittlich hohen Lufttemperaturen signifikant häufiger vor, wohingegen sich diese Effekte für die Außenbezirke nicht zeigten (Turowski 1998, Turowski und Haase 1987). Gabriel konnte für den Untersuchungszeitraum 1990-2006 anhand von Daten zur Gesamtmortalität (alle Ursachen) und meteorologischer Parameter in Tagesauflösung darstellen, dass in Berlin und Brandenburg hauptsächlich Ältere (> 50-Jährige) und besonders Frauen eine erhöhte Hitzevulnerabilität aufwiesen. Die Mortalitätsraten waren im Untersuchungszeitraum während Hitzewellen höher (bis zu 67 % im Sommer 1994 im Stadtzentrum Berlins), und ein Zusammenhang zwischen Mortalitätsraten und der Dichte urbaner Strukturen innerhalb Berlins konnte festgestellt werden. Die Mortalitätsraten stiegen mit der Dichte urbaner Strukturen (Gabriel 2009, Gabriel und Endlicher 2011). Burkart et al. stellten für den Untersuchungszeitraum 1998-2010 in einer statistischen Auswertung von Gesamtmortalitäts-, Wetter- und Luftgütedaten in Tagesauflösung dar, dass in Berlin das Mortalitätsrisiko mit zunehmender Wärmebelastung steigt und hohe Ozon- sowie Feinstaub (PM10)-Konzentrationen mit einer erhöhten hitzebedingten Mortalität verbunden sind (Burkart et al. 2013). Da zwischen der Lufttemperatur und Luftschadstoffbelastungen oft ein enger Zusammenhang besteht, wurden in der Studie auch mögliche Interaktionen zwischen der Wärmebelastung (ermittelt über den Universal Thermal Climate Index) und den Ozon- und PM10-Konzentrationen einerseits und deren Einfluss auf die Mortalität andererseits untersucht. Im Ergebnis zeigte sich, dass die Mortalität bei hoher Wärme- und Ozonbelastung stark ansteigt (vgl. Abbildung 23). Diese Interaktionseffekte zeigen sich für PM10 weniger stark ausgeprägt (vgl. Abbildung. 24). Auch Scherer et al. verwendeten Daten zur Gesamtmortalität (alle Ursachen), um unter Anwendung eines hitzeereignisbasierten Risikomodells die mit der Wärmebelastung einhergehende Mortalität in Berlin zu quantifizieren. Das Modell identifiziert Hitzeereignisse auf Basis von Lufttemperaturdaten in Tagesauflösung. Ein Hitzeereignis wird dabei als Folge von mindestens drei aufeinander folgenden Tagen definiert, an denen die Lufttemperatur einen bestimmten Schwellenwert übersteigt. Die Studie weist nach, dass ca. 5 % aller Todesfälle in Berlin in den Jahren von 2001 bis 2010 statistisch mit erhöhten Lufttemperaturen korreliert sind. Die betroffenen Personen sind meist 65 Jahre oder älter, während der Zusammenhang zwischen erhöhten Lufttemperaturen und Mortalität bei jüngeren Personen statistisch nur schwach ausgeprägt ist. Die besten Ergebnisse wurden auf der Basis von Tagesmittelwerten der Lufttemperatur und bei einer Überschreitung des Schwellenwertes von 21 °C erzielt (vgl. Abbildung 25). Auf der Basis räumlich verteilter Daten würde die Risikoanalyse auch räumliche Variationen des Stadtklimas und demographischer Eigenschaften berücksichtigen können (Scherer et al. 2013). Die größten sogenannten Überschussmortalitäten, welche als hitzebezogene zusätzliche Sterblichkeit (zusätzlich zur Basisrate der Gesamtmortalität) verstanden wird und eine statistisch berechnete Größe darstellt, wurden für die Jahre 2006 und 2010 anhand des hitzeereignisbasierten Risikomodells von Scherer et al. (2013) ermittelt (vgl. Tab. 4). Eine erhöhte Mortalität in den besonders heißen Sommern 2006 und 2010 in Berlin weisen auch die Untersuchungen von Gabriel und Endlicher (2011), Scherber (2014) und Schuster et al. (2014) nach. Fenner et al. untersuchten für den Zeitraum 2001 – 2010 in Berlin, inwieweit sich die klimatischen Bedingungen innerhalb dichter Bebauung von Bedingungen auf Freiflächen und außerhalb des bebauten Stadtgebietes unterscheiden und welchen Effekt diese Bedingungen auf das Mortalitätsrisiko haben. Das Mortalitätsrisiko (Gesamtmortalität) wurde mit dem hitzeereignisbasierten Risikomodell von Scherer et al. (2013) ermittelt, und zur Identifizierung von Hitze wurden die klimatologischen Kenntage „Heißer Tag (Hitzetag)“ (Tagesmaximumtemperatur ≥ 30 °C) und „Tropennacht“ (Tagesminimumtemperatur ≥ 20 °C) berechnet. Während die Anzahl heißer Tage ähnlich an den vier unterschiedlichen Messstationen ist, treten Tropennächte innerhalb der dichten Bebauungsstruktur wesentlich häufiger auf als auf Freiflächen (vgl. Abbildung 26). Die gestrichelten farbigen Linien zeigen den arithmetischen Mittelwert der Jahre 2001–2010 der jeweiligen Station. Die schwarze Schraffur zeigt die Anzahl der Tage, an denen heiße Tage in Kombination mit Tropennächten aufgetreten sind. Stationen: DAHF – Dahlemer Feld, DESS – Dessauer Straße, TGL – Berlin-Tegel, THF – Berlin-Tempelhof. An der Station DAHF gab es im August 2004 Messausfälle. Die Stationen DAHF und DESS sind Teil des Stadtklima-Messnetzes des Fachgebiets Klimatologie, Institut für Ökologie, Technische Universität Berlin. Die Stationen TGL und THF werden vom Deutschen Wetterdienst betrieben Es wird an allen vier Stationen deutlich, dass die Mehrzahl der Tropennächte in Kombination mit heißen Tagen auftritt (Schraffur in Abb. 26). Dies sind die aus bioklimatischer Sicht äußerst problematischen Situationen, an denen die Menschen nicht nur während des Tages starker Hitze im Freien ausgesetzt sind, sondern der Körper auch in den Nachtstunden durch hohe Lufttemperatur belastet sein kann. Die hitzebezogenen zusätzlichen Sterbefälle zeigen für die Messstation Dessauer Straße (dichte Bebauung) und Tempelhof (Freifläche), dass ca. 4-5 % der Sterbefälle im Untersuchungszeitraum statistisch mit Hitzeereignissen in Verbindung gebracht werden können (Fenner et al. 2015). Sterbefälle sind die gravierendste Folge von Umweltwirkungen. So ist anzunehmen, dass bei extremen Umweltbedingungen auch sonst Gesunde in Leistungsfähigkeit und Wohlbefinden beeinträchtigt werden und Menschen mit krankheitsbedingter mangelhafter Anpassungskapazität schon bei geringeren äußeren Störungen mit einer Zustandsverschlechterung reagieren (Laschewski, 2008). Um angemessene Präventionsmaßnahmen zu etablieren und hitzebedingte Sterbefälle zu vermeiden, sind Untersuchungen zu Auswirkungen von Wärmebelastung bereits auf der Ebene von Gesundheitsindikatoren, wie z.B. Erkrankungs- oder Behandlungsfälle oder physiologische Parameter (z.B. körperliche Aktivität, Lungenfunktion) wichtig. In klinischen Studien an der Charité Berlin (Arbeitsbereich Pneumologische Onkologie) wurde in den Sommern 2011 und 2012 in Berlin untersucht, inwieweit sich Wärmebelastung auf Patienten mit chronisch obstruktiver Lungenerkrankung (COPD) oder mit pulmonal-arterieller Hypertonie (PAH) auswirkt (Jehn et al. 2013, 2014). Dazu wurden Lungenfunktion, der klinische Status und die körperliche Aktivität der Patienten ermittelt und in Abhängigkeit von der Lufttemperatur bzw. der Wärmebelastung ausgewertet. Die Ergebnisse zeigen, dass Wärmebelastung die Symptome der Patienten verschlechtert, andererseits aber Möglichkeiten bestehen, frühzeitig auf die Verschlechterungen zu reagieren, z.B. durch eine telemedizinische Versorgung der Patienten (Jehn et al. 2013). Eine epidemiologische Studie in Berlin für den Zeitraum 1994-2010 über die Zusammenhänge zwischen Wärme- und Luftbelastungen und Patientenaufnahmen sowie Sterbefällen im Krankenhaus zeigte, dass das relative Risiko für die Mortalität (Sterbefälle) als auch Morbidität (Patientenaufnahmen) ab einer starken Wärmebelastung (UTCImax = 32 °C) zunimmt und vor allem ältere Menschen und chronisch Kranke unter Hitzestress leiden (Scherber 2014). Der Risikoanstieg ist für die Mortalität stärker ausgeprägt als für die Morbidität. Allerdings muss dabei berücksichtigt werden, dass die Fallzahlen für Patientenaufnahmen um ein vielfaches größer sind als die Sterbefälle. Die Atmungssystemerkrankungen zeigten neben den Herz-Kreislaufsystemerkrankungen und der Gesamtheit aller Erkrankungen die stärksten Wärmebelastungseffekte an. Wärmebelastung wirkt sich auf das Herz-Kreislaufsystem als auch auf das Atmungssystem aus. Das Atmungssystem wird zudem durch zusätzliche Luftschadstoffeffekte und Begleiterkrankungen beansprucht (Michelozzi et al. 2009; Schneider et al. 2011). In der Untersuchung der Luftschadstoffbelastungseffekte wies Feinstaub (PM10) die stärksten Assoziationen auf, vor allem für Patientenaufnahmen und Sterbefälle im Krankenhaus mit der Diagnose Atmungssystemerkrankungen (Scherber 2014). Im Hinblick auf eine klimawandelbedingte Zunahme der Wärmebelastung in Berlin (SenStadtUm 2015a), stellt sich die Frage, wie sich Wärmebelastungseffekte in naher Zukunft auf Patientenaufnahmen und Sterbefälle auswirken könnten. Unter Annahme mittlerer Bevölkerungsprognosen (SenStadtUm/AfS 2012) und Lufttemperatur-Szenarien für das Tagesmaximum (STAR2-Projektionen, 2 K-Szenario, Realisierung 50) bis 2030 konnte für Berlin eine Zunahme der Patientenaufnahmen und Sterbefälle im Krankenhaus für die Sommermonate ermittelt werden (Scherber 2014). Die Zunahme ist für ≥ 65-Jährige und Herz-Kreislauf-Systemerkrankungen am stärksten ausgeprägt (vgl. Tab. 5). Da Großstädte wie Berlin ein innerstädtisches Mosaik hinsichtlich der Stadt-, Bevölkerungs- und Sozialstrukturen aufweisen, können gesundheitliche Auswirkungen der Wärmebelastung ebenso räumlich unterschiedlich ausgeprägt sein. Räumlich epidemiologische Analysen sind daher ein wichtiger Ansatz, um Stadtgebiete mit erhöhten gesundheitlichen Risiken gegenüber Wärmebelastung zu identifizieren, gerade im Hinblick auf die Entwicklung von spezifischen Interventions- und Präventionsstrategien im Gesundheitswesen und auch langfristig für die Berücksichtigung in der Stadtplanung. Daher wurden für Berlin Sterbefälle und Patientenaufnahmen in Assoziation mit Wärmebelastung auch räumlich differenziert untersucht (Gabriel und Endlicher 2011, Scherber et al. 2014, Schuster et al. 2014). Schuster et al. betrachteten die Gesamtmortalität (alle Ursachen) für eine räumliche Analyse hitzebedingter Überschussmortalität auf Ebene der Planungsräume (SenStadt 2009) im Untersuchungszeitraum 2006-2010 für Berlin. Die hitzebedingte Überschussmortalität wurde anhand des Verhältnisses der Gesamtsterblichkeit in den heißen Julimonaten 2006 und 2010 zur Gesamtsterblichkeit in den eher kühlen Julimonaten von 2007-2009 berechnet, welche im Untersuchungszeitraum die niedrigsten Monatsmittel des täglichen Lufttemperaturmaximums aufwiesen (vgl. Abb. 27). Die Überschussmortalität wurde altersstandardisiert berechnet, um Einflüsse unterschiedlicher Altersausprägungen der Bevölkerung in einzelnen Planungsräumen (PLR) auszuschließen. Im Ergebnis zeigt sich eine innerstädtische Variabilität der hitzebedingten Überschussmortalität, ausgedrückt durch das relative Risiko (RR) (vgl. Abbildung 28). Planungsräume mit erhöhtem und bzw. geringerem relativen Risiko waren relativ gleichverteilt über das Stadtgebiet. Ein erhöhtes relatives Risiko (RR > 1) wurde für mehr als zwei Drittel der Planungsräume festgestellt, in welchen insgesamt 2,26 Mio. von 3,35 Mio. Einwohnern (Stand 31.12.2007) wohnen. Ein allgemeiner Mortalitätsgradient vom Zentrum zum Stadtrand, entsprechend dem städtischen Wärmeinseleffekt, war nicht zu beobachten. Planungsräume mit hohem relativem Risiko fanden sich sowohl innerhalb als auch außerhalb des Innenstadtrings. Planungsräume mit den höchsten relativen Risiken (RR > 4) wurden im Bezirk Neukölln (PLR Rollberg) aber auch in Stadtrandlagen (PLR Döberitzer Weg, PLR Bucher Forst, PLR Schlangenbader Str.) identifiziert (Schuster et al. 2014). Räumliche Ausprägungen von hitzebezogenen Mortalitätsrisiken unter Einbezug aller Diagnosen und Altersgruppen weisen demnach für Berlin keine eindeutigen Zusammenhänge zwischen verdichteten Stadtgebieten und erhöhten gesundheitlichen Risiken auf. Anders stellt es sich für differenzierte Betrachtungen nach hitzevulnerablen Personengruppen dar. Auf Basis von Postleitzahlgebieten wurden relative Risiken für Patientenaufnahmen und Sterbefälle im Krankenhaus während der Sommermonate im Zeitraum 2000 – 2009 mit räumlich aufgelösten Daten zur Wärmebelastung (SenStadtUm 2010b) korreliert (Scherber 2014). Dabei konnte ein signifikanter schwach positiver Zusammenhang zwischen der mittleren Wärmebelastung und den relativen Risiken für Patientenaufnahmen mit Atmungssystemerkrankungen bei ≥ 65-Jährigen auf Postleitzahlebene (Patientenwohnorte) identifiziert werden (Scherber et al. 2014). Die unterschiedlichen Bevölkerungsanteile der ≥ 65-Jährigen in den Postleitzahlgebieten wurden dabei berücksichtigt. Da Atmungssystemerkrankungen und ein Alter über 65 Jahre zu den Risikofaktoren gegenüber Wärmebelastung zählen, sind diese Gruppen besonders relevant. Bei der Suche nach räumlichen Häufungen (Clustern) erhöhter relativer Risiken (als Risikorate) für Patientenaufnahmen mit Atmungssystemerkrankungen bei ≥ 65-Jährigen konnten fünf signifikante Cluster identifiziert werden (vgl. Abb. 29). Folgende Patientenwohnorte weisen innerhalb dieser Cluster die höchsten relativen Risiken (RR > 1,5) auf: die Ortsteile Gesundbrunnen, Mitte, Moabit, Tiergarten und Wedding im Bezirk Mitte und der Ortsteil Neukölln im Bezirk Neukölln. Diese Stadtgebiete weisen zugleich hohe Bebauungsdichten und starke Wärmebelastungen im Sommer bei gleichzeitig gesundheitlich nachteiligen sozioökonomischen Bedingungen auf (SenGUV 2011, SenStadtUm 2015d).
Klimaveränderungen in Ballungsgebieten Das Klima städtischer Ballungsgebiete ist gegenüber dem Umland durch tiefgreifende Veränderungen im örtlichen Wärmehaushalt gekennzeichnet. Ursachen hierfür sind: Veränderungen der Wärmekapazität und Wärmeleitung sowie der Wind- und Austauschverhältnisse durch Flächeninanspruchnahmen, etwa infolge von Infrastrukturmaßnahmen und Bebauungen, die Verminderung verdunstender Oberflächen durch den weiterhin zunehmenden Versiegelungsgrad und damit einhergehend den Verlust an vegetationsbedeckten Flächen, der Klimawandel infolge der weltweiten Erwärmung der Atmosphäre durch Treibhausgas-Emissionen die Zuführung von Energie und Wasserdampf anthropogenen Ursprungs. Als besonders problematische Aspekte des sich hierdurch entwickelnden Stadtklimas gelten die Erhöhung der Lufttemperatur bzw. der bioklimatischen Belastung in den Sommermonaten und die Verschlechterung des Luftaustausches mit den höheren Atmosphärenschichten und der Umgebung während des gesamten Jahres. Die Erhöhung der Lufttemperatur gegenüber dem klimatisch unbeeinflussten Umland hängt im Wesentlichen von der Bebauungsdichte, der jeweiligen Vegetationsstruktur und der Topografie ab. Das langjährige Temperaturmittel ist dabei von grundlegender ökologischer Bedeutung. So kann die Einwanderung wärmeliebender Pflanzen- und Tierarten durch die mäßige bis hohe Zunahme des langjährigen Temperaturmittels und der damit zusammenhängenden Abnahme der Anzahl der Frosttage gegenüber dem unbebauten Umland begünstigt werden: Bei einem Anstieg der Mitteltemperatur von 7 °C auf 10 °C halbiert sich die Anzahl der Frosttage (vgl. Stülpnagel 1987). Neben die Ballungsräumen eigenen Bedingungen verdichteter Siedlungsstrukturen treten nunmehr auch in Berlin spürbar die Effekte des Klimawandels auf, durch den ein weiterer Impuls zum Anstieg der mittleren Temperaturen vorhanden ist. Prognosen über mögliche Entwicklungen hängen in großem Maße von den zukünftigen Treibhaugasemissionen ab und werden u.a. vom Deutschen Wetterdienst untersucht (vgl. DWD 2020). Bis zum Ende des Jahrhunderts wird hiernach in Deutschland ein Anstieg der mittleren Temperaturen von 1,1 bis 3,8 °C gegenüber dem Referenzzeitraum 1971-2000 projiziert. Die Erwärmung in den südlichen Regionen Deutschlands ist etwas stärker ausgeprägt, in den nördlichen Regionen etwas niedriger. Für Berlin liegen verschiedene Szenarienrechnungen zur möglichen Entwicklung der Temperaturen einschließlich der daraus folgenden Handlungserfordernisse vor. Aufgrund der sich kontinuierlich erweiternden Kenntnisse in der Klimamodellierung und der Anpassung an veränderte Rahmenbedingungen stellen die jeweiligen Projektergebnisse keinen dauerhaft gültigen Erkenntnisstand dar (den aktuellen Stand an Informationen finden Sie u.a. auf folgenden Webseiten: SenUMVK Klimaschutz , SenSBW Stadtentwicklungsplan Klima 2.0 und im Themenbereich Klima des Umweltatlas). Anders als beim vorherigen Aktualitätsstand 1961-1990 basieren die Auswertungen in der aktuellen Fortschreibung auf Rasterdatensätzen der standortbezogenen Messungen des Deutschen Wetterdienstes (DWD). Ergänzend zur langjährigen Temperaturverteilung im Jahresmittel können daher nun auch die Temperaturverteilungen in den Jahreszeiten Frühling, Sommer, Herbst und Winter kartographisch dargestellt werden. Aufgrund der unterschiedlichen Datenbasis beider Jahrgänge und der hieraus resultierenden unterschiedlichen methodischen Vorgehensweisen sind die Ergebnisse mit dem Bezugszeitraum 1961-1990 des Umweltatlas Berlin nur sehr eingeschränkt vergleichbar.
Die Grundwassertemperatur im Ballungsraum von Berlin ist bzw. wird durch den Menschen tiefgreifend verändert. Die seit den 1980er Jahren im oberflächennahen Grundwasser des Landes Berlin durchgeführten Temperaturmessungen zeigen, dass im zentralen Innenstadtbereich die Durchschnittstemperatur z. T. um mehr als 4 °C gegenüber dem dünner besiedelten Umland erhöht ist. Die Temperaturmessungen belegen, dass sich dieser Temperaturanstieg zunehmend auch in größeren Tiefen mit mehr als 20 m bemerkbar macht. Die Ursachen für die Temperaturerhöhung sind vielfältig und stehen im direkten Zusammenhang mit der fortschreitenden baulichen Entwicklung und den vorhandenen Nutzungen an der Erdoberfläche. Es lassen sich dabei direkte von indirekten Beeinflussungen der Grundwassertemperatur unterscheiden (s. a. Abb. 1): Unter einer direkten Beeinflussung der Grundwassertemperatur werden alle Wärmeeinträge in das Grundwasser durch das Abwasserkanalnetz, Fernheizleitungen, Stromtrassen und unterirdische Bauwerke wie Tunnel, U-Bahnschächte, Tiefgaragen etc. verstanden. Sie umfassen auch Wärmeeinträge, die mit der Grundwasserwärmenutzung und -speicherung in Verbindung stehen. Unter einer indirekten Beeinflussung der Grundwassertemperatur werden Prozesse im Zuge der Urbanisierung verstanden, die mit der Veränderung des Wärmehaushalts der bodennahen Atmosphäre entstehen. Nach Gross (1991) sind als wichtige Größen zu nennen: Die Störung des Wasserhaushalts durch einen hohen Versiegelungsgrad Die Veränderung der Bodeneigenschaften durch eine Anhäufung von Baukörpern (Veränderung der Oberflächenwärmeleitung und -wärmekapazität) Die Änderung des Strahlungshaushaltes durch Veränderungen in der Luftzusammensetzung Die anthropogene Wärmeerzeugung (Hausbrand, Industrie, Verkehr). Durch die o. g. Unterschiede wird im Vergleich zum Umland eine Veränderung des Wärmehaushalts hervorgerufen. Die Stadt heizt sich langsam auf, speichert insgesamt mehr Wärme und gibt diese wieder langsam an die Umgebung ab, d. h., sie kann allgemein als ein riesiger Wärmespeicher betrachtet werden. Langfristig führt dieser Prozess zu einer Erhöhung des langjährigen Mittels der Luft- bzw. Bodentemperatur (vgl. Karte 04.02, SenStadt 2001). Die langfristige Erwärmung des oberflächennahen Bodens führt auch zu einer Erwärmung des Grundwassers. Da die Temperatur die physikalischen Eigenschaften sowie die chemische und biologische Beschaffenheit des Grundwassers beeinflusst, können eine Qualitätsverschlechterung des Grundwassers und eine Beeinträchtigung der Grundwasserfauna die Folge sein. Berlin bezieht sein Trinkwasser zu 100 % aus dem Grundwasser, welches fast ausschließlich im Land Berlin gewonnen wird. Auch einen Großteil des Brauchwassers für industrielle Zwecke liefert das Grundwasser. Daher ist der Schutz des Grundwassers vor tief greifenden Veränderungen wie z. B. einer signifikanten Grundwassertemperaturerhöhung oder -erniedrigung von hoher Bedeutung – speziell vor dem Hintergrund einer nachhaltigen Wasserwirtschaft. Seit 1978 werden in tiefen Grundwassermessstellen, die über das ganze Stadtgebiet des Land Berlin verteilt sind, verstärkt Temperaturprofile aufgenommen und zu raumzeitlichen Darstellungen des Grundwassertemperaturfeldes verarbeitet und ausgewertet. Das vorliegende Kartenwerk soll die Fortschreibung der vorliegenden Dokumentation zur zeitlichen Veränderung der Grundwassertemperatur unter dem Stadtgebiet sein und als Genehmigungsgrundlage für Grundwassertemperatur verändernde Maßnahmen dienen. Zusätzlich kann es in Kombination mit anderen thematischen Karten wie z. B. der Geologie und Hydrogeologie zur Entscheidungsfindung und Vorplanung einer energetischen Bewirtschaftung des Grundwassers herangezogen werden. Die Untergrundtemperatur ist z. B. eine wichtige Größe für die Auslegung von Erdwärmesondenanlagen. Innerhalb der letzten Jahre ist eine stark ansteigende Nachfrage nach Erdwärmesonden in Kombination mit Wärmepumpen zum Heizen und anderen thermischen Nutzungen des Untergrundes z. B. zur Klimatisierung von Gebäuden zu beobachten. Gerade im urbanen Bereich können die unterschiedlichsten thermischen Nutzungen auf engstem Raum miteinander konkurrieren. Um die Auswirkungen dieser Nutzungen zu überwachen, kommt der regelmäßigen Überwachung der Grundwassertemperatur eine zunehmend wichtige Bedeutung zu. Grundwassertemperatur und Temperaturjahresgang Die wesentliche Wärmequelle für den oberflächennahen Untergrund bis in ca. 20 m Tiefe ist die Sonneneinstrahlung, die auf die Erdoberfläche trifft. Diese ist maßgeblich für die Oberflächentemperatur verantwortlich. Der oberflächennahe Boden wird durch die eingestrahlte Sonnenenergie erwärmt und dieser gibt die Wärme an die Atmosphäre und den Untergrund ab. Die Jahressumme des Strahlungsanteils der auf eine horizontale Oberfläche auftrifft (die sog. Globalstrahlung) beträgt im Land Berlin im Mittel rd. 1.000 kWh pro m² und Jahr. Wieviel Energie letztendlich über die Erdoberfläche in den Untergrund eingetragen wird, ist sehr stark von deren Oberflächenbeschaffenheit abhängig. Dabei spielen Faktoren wie z. B. die Farbe, der Feuchtegehalt sowie die Art und der Grad der Bodenbedeckung eine wichtige Rolle. Grundsätzlich unterliegen die Temperaturen an der Erdoberfläche und somit auch der Wärmeeintrag bzw. -austrag periodischen Schwankungen mit einem Zyklus von einem Jahr, entsprechend dem Verlauf der Jahreszeiten. Die Oberflächentemperatur dringt mit abnehmender Intensität in den Untergrund ein. Die Eindringtiefe und die Geschwindigkeit mit der die Wärme transportiert wird, ist abhängig von der Wärmeleitfähigkeit des Untergrundes. Beim Wärmetransport im Untergrund kann zwischen konduktivem und konvektivem Wärmetransport unterschieden werden. Während beim konvektiven Wärmetransport die Wärmebewegung durch Materie wie z. B. Grund- und Sickerwasser erfolgt, wird beim konduktiven Transport Energie durch Stoßfortpflanzung zwischen den Molekülen transportiert. Im Gegensatz zur Sonneneinstrahlung als Hauptwärmequelle der Erdoberfläche besitzt der aus dem Erdinnern zur Oberfläche gerichtete Erdwärmestrom , der seinen Ursprung in der Wärmeentwicklung beim Zerfall radioaktiver Isotope hat, nur eine untergeordnete Bedeutung. In der kontinentalen Erdkruste ist die Wärmestromdichte – definiert als Wärmestrom pro Flächeneinheit senkrecht zur Einheitsfläche – regional verschieden. Nach Hurtig & Oelsner (1979) und Honarmand & Völker (1999) beträgt die mittlere Wärmestromdichte im Land Berlin zwischen ca. 80 und 90 mW/m². Daraus berechnet sich als Jahressumme eine Energiemenge von rd. 0,75 kWh pro m² und Jahr und ist somit also rd. 1/1.000 geringer als die Globalstrahlung. Die Temperatur oberflächennaher Grundwässer wird also im Wesentlichen durch den Energieaustausch zwischen Sonne, Erdoberfläche und Atmosphäre, untergeordnet durch den aus dem Erdinneren zur Oberfläche gerichteten Wärmestrom bestimmt. Die regionale Jahresdurchschnittstemperatur an der Oberfläche in Berlin beträgt unter anthropogen unbeeinflussten Verhältnissen ca. 8,0 bis 8,5 °C. Während die tageszeitlichen Schwankungen nur eine Tiefe von bis zu 1,0 m erfassen, reichen die jahreszeitlichen bis in eine Tiefe zwischen 15 und max. 25 m. Ab dieser Tiefe, in der jahreszeitliche Einflüsse nicht mehr zu registrieren sind, – der sog. neutralen Zone -, steigt die Temperatur in Abhängigkeit von der Wärmeleitfähigkeit der Gesteine und der regionalen Wärmestromdichte an (Abb. 2). Im Berliner Raum beträgt der durchschnittliche Temperaturanstieg im Bereich bis ca. 300 m Tiefe 2,5 bis 3 °C / 100 m. Oberflächengestalt und Grundwassersituation Das in nahezu ostwestlicher Richtung verlaufende Warschau-Berliner Urstromtal trennt die Barnim-Hochfläche im Norden von der Teltow-Hochfläche und der Nauener Platte im Süden der Stadt (Abb. 3). Die Geländehöhen des Urstromtales betragen 30 bis 40 m NHN, während die Hochflächen durchschnittlich 40 bis 60 m über NHN liegen. Einzelne Höhen erheben sich bis über 100 Meter über das Meeresniveau (vgl. Karte 01.08, SenStadt 2010a). In Berlin ist der Porenraum der überwiegend sandig und kiesigen Sedimente der oberen 150 bis 200 Metern vollständig bis nahe an die Oberfläche mit Grundwasser erfüllt, das zur Trinkwasserversorgung der Stadt genutzt wird. Der Abstand vom Grundwasser bis zur Geländeoberkante (Grundwasserflurabstand) schwankt je nach Morphologie und Geologie zwischen 0 m und wenigen Metern im Urstromtal sowie fünf bis über 30 Meter auf den Hochflächen (vgl. Karte 02.07, SenStadt 2010b). Die Grundwasserentnahmen zur Trink- und Brauchwassergewinnung haben zur Ausbildung von weit gespannten Senktrichtern der Grundwasseroberfläche geführt, die die natürlichen Flurabstände und Grundwasserfließgeschwindigkeiten erhöhen sowie die natürlichen Grundwasserfließrichtungen verändern. Dadurch sind in den Bereichen, in denen Brunnengalerien in der Nähe von Flüssen und Seen Grundwasser fördern, influente Verhältnisse entstanden, d. h. das Oberflächenwasser infiltriert als Uferfiltrat in das Grundwasser. Da das Oberflächenwasser aber durch vielfache Kühlwassereinleitungen von Heizkraftwerken ganzjährig erwärmt ist (wie z. B. im Bereich der Spree), führt diese Infiltration im Einzugsbereich des Oberflächengewässers zwangsläufig zu einer Erwärmung des Grundwassers. Besiedlungsstruktur und klimatische Verhältnisse Das Land Berlin besitzt eine polyzentrale Besiedlungsstruktur, die durch das Vorhandensein zweier Hauptzentren, mehrerer kleinerer Stadtzentren sowie einem dichten Nebeneinander von Wohnen, Grünflächen, Gewerbe und Industrie charakterisiert ist. Größere Gewerbegebiete und Industrieansiedlungen liegen bevorzugt an den vom Stadtkern radial zum Stadtrand gerichteten Siedlungs- und Entwicklungsachsen sowie an kanalisierten Oberflächengewässern. Stark vereinfacht lassen sich folgende Unterscheidungen treffen (Abb. 4): Gebiete ohne Besiedlung, überwiegend Vegetation mit geringer bis mittlerer Siedlungsdichte und mit hoher Siedlungsdichte, Stadtzentren und Industrieansiedlungen. Bei der Betrachtung der lokalklimatischen Verhältnisse in Berlin zeigt vor allem für die baulich hochverdichtete Innenstadt tief greifende Veränderungen im Wärmehaushalt gegenüber dem Umland. Durch anthropogene Aktivitäten wird Energie als Wärme in die Stadtatmosphäre abgegeben. So beträgt die mittlere Jahreslufttemperatur im Außenbezirk Dahlem 8,9 °C, im Innenstadtbereich sind dagegen die durchschnittlichen Temperaturen bereits bis auf über 10,5 °C angestiegen (vgl. Karte 04.02, SenStadt 2001).
Die Grundwassertemperatur im Ballungsraum von Berlin ist bzw. wird durch den Menschen nachhaltig verändert. Die seit den 1980er Jahren im oberflächennahen Grundwasser des Landes Berlin durchgeführten Temperaturmessungen zeigen, dass im zentralen Innenstadtbereich die Durchschnittstemperatur z. T. um mehr als 4 °C gegenüber dem dünner besiedelten Umland erhöht ist. Die Temperaturmessungen belegen, dass sich dieser Temperaturanstieg zunehmend auch in größeren Tiefen mit mehr als 20 m bemerkbar macht. Die Ursachen für die Temperaturerhöhung sind vielfältig und stehen im direkten Zusammenhang mit der fortschreitenden baulichen Entwicklung und den vorhandenen Nutzungen an der Erdoberfläche. Es lassen sich dabei direkte von indirekten Beeinflussungen der Grundwassertemperatur unterscheiden (s. a. Abbildung 1): Unter einer direkten Beeinflussung der Grundwassertemperatur werden alle Wärmeeinträge in das Grundwasser durch das Abwasserkanalnetz, Fernwärmeleitungen, Stromtrassen und unterirdische Bauwerke wie Tunnel, U-Bahnschächte, Tiefgaragen etc. verstanden. Sie umfassen auch Wärmeeinträge, die mit der Grundwasserwärmenutzung und -speicherung in Verbindung stehen. Unter einer indirekten Beeinflussung der Grundwassertemperatur werden Prozesse im Zuge der Urbanisierung verstanden, die mit der Veränderung des Wärmehaushalts der bodennahen Atmosphäre entstehen. Nach Gross (1991) sind als wichtige Größen zu nennen: Die Störung des Wasserhaushalts durch einen hohen Versiegelungsgrad. Die Veränderung der thermischen Oberflächeneigenschaften wie Oberflächenwärmeleitung und -wärmekapazität durch Versiegelung und Anhäufung von Baukörpern. Die Änderung des Strahlungshaushalts durch Veränderungen in der Luftzusammensetzung. Die anthropogene Wärmeerzeugung (Hausbrand, Industrie, Verkehr). Im Vergleich zum Umland wird durch diese Unterschiede eine Veränderung im Wärmehaushalt hervorgerufen. Die Stadt heizt sich langsam auf, speichert insgesamt mehr Wärme und gibt diese wieder langsam an die Umgebung ab, d. h., sie kann allgemein als ein riesiger Wärmespeicher betrachtet werden. Langfristig führt dieser Prozess zu einer Erhöhung des langjährigen Mittels der Lufttemperatur (vgl. Karte Langjähriges Mittel der Lufttemperatur 1961-1990, Karte 04.02 ). Von der langfristigen Erwärmung ist auch das oberflächennahe Grundwasser betroffen. Die physikalischen Eigenschaften, die chemische und biologische Beschaffenheit des Grundwassers ist temperaturabhängig. Die Folge einer Erwärmung können eine Qualitätsverschlechterung des Grundwassers und eine Beeinträchtigung der Grundwasserfauna zur Folge haben. Berlin bezieht sein Trinkwasser zu 100 % aus dem Grundwasser, welches fast ausschließlich im Land Berlin gewonnen wird. Auch einen Großteil des Brauchwassers für industrielle Zwecke wird dem Grundwasser entnommen. Daher ist dem Schutz des Grundwassers vor tiefgreifenden Veränderungen wie z. B. einer deutlichen Grundwassertemperaturerhöhung oder -erniedrigung eine große Bedeutung beizumessen – insbesondere vor dem Hintergrund einer nachhaltigen Wasserwirtschaft. Seit 1978 werden zur Bestandsaufnahme und Beobachtung der Veränderungen in tiefen Grundwassermessstellen, die über das ganze Stadtgebiet des Landes Berlin verteilt sind, verstärkt Temperaturprofile aufgenommen. Das vorliegende Kartenwerk soll die Fortschreibung der vorliegenden Dokumentation zur zeitlichen Veränderung der Grundwassertemperatur unter dem Stadtgebiet sein, als Genehmigungsgrundlage für Grundwassertemperatur verändernde Maßnahmen dienen und Eingangsdaten für die Planung und Auslegung von Anlagen zur Erdwärmenutzung zur Verfügung stellen. Zusätzlich kann es in Kombination mit anderen thematischen Karten wie z. B. der Geologischen Skizze ( Karte 01.17 ), der Grundwassergleichenkarte (Karte 02.12) oder der Potenzialkarten ( Karte 02.18 ) zur Entscheidungsfindung und Vorplanung einer energetischen Bewirtschaftung des Grundwassers herangezogen werden. Die Untergrundtemperatur ist z. B. eine wichtige Größe für die Auslegung von Erdwärmesondenanlagen. Grundwassertemperatur und Temperaturjahresgang Die wesentliche Wärmequelle für den oberflächennahen Untergrund bis in ca. 20 m Tiefe ist die Sonneneinstrahlung, die auf die Erdoberfläche trifft. Diese ist maßgeblich für die Oberflächentemperatur verantwortlich. Der oberflächennahe Boden wird durch die eingestrahlte Sonnenenergie erwärmt und dieser gibt die Wärme an die Atmosphäre und den Untergrund ab. Die Jahressumme des Strahlungsanteils der auf eine horizontale Oberfläche auftrifft (die sog. Globalstrahlung) beträgt im Land Berlin im Mittel rd. 1.000 kWh pro m² und Jahr. Sehr viele Einzelparameter an der Grenzfläche Luft/Erde beeinflussen das thermische Lokalklima. Die Farbe, Zusammensetzung, Oberflächenrauigkeit, Bedeckung, der Versiegelungsgrad, der Wasserhaushalt sowie die Ausrichtung zum solaren Strahlungseinfall urbaner Oberflächen entscheiden darüber, wie viel Energie aufgenommen und in der Bausubstanz „gespeichert“ bzw. von dieser an die Atmosphäre bzw. den Untergrund abgegeben wird. Grundsätzlich unterliegen die Temperaturen an der Erdoberfläche und somit auch der Wärmeeintrag bzw. -austrag periodischen Schwankungen mit einem Zyklus von einem Jahr, entsprechend dem Verlauf der Jahreszeiten. Die Oberflächentemperatur dringt mit abnehmender Intensität in den Untergrund ein. Die Eindringtiefe und die Geschwindigkeit, mit der die Wärme transportiert wird, ist abhängig von der Wärmeleitfähigkeit des Untergrundes. Beim Wärmetransport im Untergrund kann zwischen einem konduktiven und konvektiven Wärmetransport unterschieden werden. Während beim konvektiven Wärmetransport die Wärmebewegung durch Materie wie z. B. Grund- und Sickerwasser erfolgt, wird beim konduktiven Transport Energie durch Stoßfortpflanzung zwischen den Molekülen transportiert. Im Gegensatz zur Sonneneinstrahlung als Hauptwärmequelle des oberflächennahen Bereichs besitzt der aus dem Erdinnern zur Oberfläche gerichtete Erdwärmestrom , der seinen Ursprung in der Wärmeentwicklung beim Zerfall radioaktiver Isotope hat, nur eine untergeordnete Bedeutung. In der kontinentalen Erdkruste ist die Wärmestromdichte – definiert als Wärmestrom pro Flächeneinheit senkrecht zur Einheitsfläche – regional verschieden. Nach Hurtig & Oelsner (1979) und Honarmand & Völker (1999) beträgt die mittlere Wärmestromdichte im Land Berlin zwischen ca. 80 und 90 mW/m². Daraus berechnet sich als Jahressumme eine Energiemenge zwischen rd. 0,7 und 0,8 kWh pro m² und Jahr und ist somit also rd. 1/1.000 geringer als die Globalstrahlung. Die Temperatur oberflächennaher Grundwässer wird im Wesentlichen durch den Energieaustausch zwischen Sonne, Erdoberfläche und Atmosphäre, untergeordnet durch den aus dem Erdinneren zur Oberfläche gerichteten Wärmestrom bestimmt. Die regionale Jahresdurchschnittstemperatur an der Oberfläche in Berlin beträgt unter anthropogen unbeeinflussten Verhältnissen ca. 8,0 bis 8,5 °C. Während die täglichen Schwankungen nur eine Tiefe von max. 1 m erfassen, reichen die jahreszeitlichen Schwankungen bis in eine Tiefe zwischen 15 und max. 25 m. Ab dieser Tiefe, in der jahreszeitliche Einflüsse nicht mehr zu registrieren sind, – der sog. neutralen Zone -, steigt die Temperatur in Abhängigkeit von der Wärmeleitfähigkeit der Gesteine und der regionalen Wärmestromdichte an (Abb. 2). Im Berliner Raum beträgt der durchschnittliche Temperaturanstieg im Bereich bis ca. 300 m Tiefe 2,5 bis 3 °C / 100 m. Oberflächengestalt und Grundwassersituation Das in nahezu ostwestlicher Richtung verlaufende Warschau-Berliner Urstromtal trennt die Barnim-Hochfläche im Norden von der Teltow-Hochfläche und der Nauener Platte im Süden der Stadt (Abb. 3). Die Geländehöhen des Urstromtales betragen 30 bis 40 m über NHN, während die Hochflächen durchschnittlich 40 bis 60 m über NHN liegen. Einzelne Höhen erheben sich bis über 100 m über das Meeresniveau (vgl. Karte der Geländehöhen, Karte 01.08). In Berlin ist der Porenraum der überwiegend sandig und kiesigen Sedimente der oberen 150 bis 200 m vollständig bis nahe an die Oberfläche mit Grundwasser erfüllt, das zur Trinkwasserversorgung der Stadt genutzt wird. Der Abstand vom Grundwasser bis zur Geländeoberkante (Grundwasserflurabstand) schwankt je nach Morphologie und Geologie zwischen 0 m und wenigen Metern im Urstromtal sowie fünf bis über 30 m auf den Hochflächen (vgl. Karte Flurabstand des Grundwassers, Karte 02.07 ). Die Grundwasserentnahmen zur Trink- und Brauchwassergewinnung haben zur Ausbildung von weit gespannten Senktrichtern der Grundwasseroberfläche geführt, die die natürlichen Flurabstände und Grundwasserfließgeschwindigkeiten erhöhen sowie die natürlichen Grundwasserfließrichtungen verändern. Dadurch sind in den Bereichen, in denen Brunnengalerien in der Nähe von Flüssen und Seen Grundwasser fördern, influente Verhältnisse entstanden, d. h. das Oberflächenwasser infiltriert als Uferfiltrat in das Grundwasser. Da das Oberflächenwasser aber durch vielfache Kühlwassereinleitungen von Heizkraftwerken ganzjährig erwärmt ist (wie z. B. im Bereich der Spree), führt diese Infiltration im Einzugsbereich des Oberflächengewässers zwangsläufig zu einer Erwärmung des Grundwassers. Besiedlungsstruktur und klimatische Verhältnisse Das Land Berlin besitzt eine polyzentrale Besiedlungsstruktur, die durch das Vorhandensein zweier Hauptzentren, mehrerer kleinerer Stadtzentren sowie einem dichten Nebeneinander von Wohnen, Grünflächen, Gewerbe und Industrie charakterisiert ist. Größere Gewerbegebiete und Industrieansiedlungen liegen bevorzugt an den vom Stadtkern radial zum Stadtrand gerichteten Siedlungs- und Entwicklungsachsen sowie an kanalisierten Oberflächengewässern. Vereinfacht lassen sich folgende Unterscheidungen treffen (Abb. 4): Grün- und Freiflächen Wohnnutzung (geringe bis mittlere Siedlungsdichte) und Mischnutzung, Kerngebietsnutzungen, Gewerbe- und Industrienutzung (Stadtzentren mit hoher Siedlungsdichte). Bei der Betrachtung der lokalklimatischen Verhältnisse in Berlin zeigt vor allem die baulich hochverdichtete Innenstadt tief greifende Temperaturveränderungen gegenüber dem Umland. So beträgt das langjährige Mittel der Lufttemperatur zwischen 1961 und 1990 nach der Karte Langjähriges Mittel der Lufttemperatur 1961 – 1990 ( Karte 04.02 ) am nordöstlichen Stadtrand in Buch zwischen 7,0 und 7,5 °C, im Innenstadtbereich sind dagegen ist das langjährige Mittel bis auf über 10,5 °C angestiegen.
Origin | Count |
---|---|
Bund | 237 |
Land | 18 |
Type | Count |
---|---|
Förderprogramm | 232 |
Text | 20 |
unbekannt | 3 |
License | Count |
---|---|
geschlossen | 5 |
offen | 249 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 239 |
Englisch | 36 |
Resource type | Count |
---|---|
Bild | 1 |
Dokument | 3 |
Keine | 198 |
Webseite | 57 |
Topic | Count |
---|---|
Boden | 169 |
Lebewesen & Lebensräume | 188 |
Luft | 155 |
Mensch & Umwelt | 255 |
Wasser | 164 |
Weitere | 250 |