Kopfschmerzen am Tag, Schlaflosigkeit in der Nacht – viele Menschen sind im Sommer wetterfühlig. Dahinter steckt das sogenannte Bioklima . Es beschreibt alle Einflussfaktoren, die auf Lebewesen einwirken. Die wichtigsten Parameter, die den Wärmehaushalt des Menschen direkt beeinflussen, sind die Lufttemperatur, Luftfeuchte, Windgeschwindigkeit und die thermophysiologisch wirksame Strahlung. Durch Messungen im Rahmen des Klimamodells FITNAH verfügt Berlin über einen umfassenden Überblick über die Auswirkungen des Klimas im Stadtgebiet und im näheren Umland. Besondere Aufmerksamkeit bekommt die Wärmebelastung, denn die zeitweise Überhitzung in großen Städten kann sich sehr negativ auf unser Herz-Kreislauf-System auswirken – vor allem, wenn diese Wärme wegen geringer Abkühlung in der Nacht anhält. Viele Menschen leiden dann unter Schlafproblemen und dem Nachlassen der Leistungsfähigkeit. Es ist also wichtig, die Wärmebelastung in Berlin im Blick zu behalten. Für ihre Erfassung stehen verschiedene Bewertungsgrößen zur Verfügung; hier wurde der sogenannte Predicted Mean Vote (PMV) , das steht für „vorhergesagter durchschnittlicher Wert“, genutzt. Wenn Sie mehr über das Klima und die Temperaturen in Berlins Nächten erfahren wollen, finden Sie hier Karten, Daten und umfassende weitere Informationen zum Thema. Die Inhalte dieses Jahrgangs sind aktuell. Textkurzfassung Literatur Karten Download
Kopfschmerzen am Tag, Schlaflosigkeit in der Nacht – viele Menschen sind im Sommer wetterfühlig. Dahinter steckt das sogenannte Bioklima . Es beschreibt alle Einflussfaktoren, die auf Lebewesen einwirken. Die wichtigsten Parameter, die den Wärmehaushalt des Menschen direkt beeinflussen, sind die Lufttemperatur, Luftfeuchte, Windgeschwindigkeit und die thermophysiologisch wirksame Strahlung. Durch Messungen im Rahmen des Klimamodells FITNAH verfügt Berlin über einen umfassenden Überblick über die Auswirkungen des Klimas im Stadtgebiet und im näheren Umland. Besondere Aufmerksamkeit bekommt die Wärmebelastung, denn die zeitweise Überhitzung in großen Städten kann sich sehr negativ auf unser Herz-Kreislauf-System auswirken – vor allem, wenn diese Wärme wegen geringer Abkühlung in der Nacht anhält. Viele Menschen leiden dann unter Schlafproblemen und dem Nachlassen der Leistungsfähigkeit. Es ist also wichtig, die Wärmebelastung in Berlin im Blick zu behalten. Für ihre Erfassung stehen verschiedene Bewertungsgrößen zur Verfügung; hier wurde der sogenannte Predicted Mean Vote (PMV) , das steht für „vorhergesagter durchschnittlicher Wert“, genutzt. Wenn Sie mehr über das Klima und die Temperaturen in Berlins Nächten erfahren wollen, finden Sie hier Karten, Daten und umfassende weitere Informationen zum Thema. Seit einigen Jahren wird bevorzugt der thermischen Bewertungsindex PET (physiologische Äquivalenttemperatur) verwendet, eine Karte und Informationen zum PET finden Sie in der Klimaanalyse 2014. Die Inhalte dieses Jahrgangs sind historisch und nicht mehr aktuell. Textkurzfassung Literatur Karten Download
Das Projekt "Teilprojekt 1" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Engler-Bunte-Institut, Bereich Gas, Erdöl und Kohle durchgeführt. 1. Vorhabenziel: Das Verbundprojekt soll über 3 Jahre laufen (7 Partner: 3 x Forschung, 4 x Industrie). Ziel ist die Entwicklung eines Konzepts zur Speicherung der bei Wind und Photovoltaik volatil anfallenden elektrischen Energie durch Fixierung von CO2 in Form von CH4. Zur Erzeugung des CH4 aus Strom wird durch Druckelektrolyse H2 gewonnen. Anschließend wird der Wasserstoff zu Methan umgesetzt: CO2 + 4H2 - größer als oder gleich CH4 + 2H2O Das Methan muss vor der Einspeisung ins Erdgasnetz konditioniert werden. Dazu sollen alternative Stoffe ermittelt werden, die die derzeit übliche Konditionierung durch fossiles Flüssiggas ersetzen können. Aufgabe des DVGW ist eine Reaktorkonzeptentwicklung zur Methanisierung. Für die exotherme Reaktion kann der Wärmehaushalt durch den Einsatz von funktionalen Flüssigkeiten wie Ionischen Fluiden optimal gesteuert und die Wärme auf einem hohen Temperaturniveau aus dem Reaktor entnommen werden. Damit kann die Ressourceneffizienz erhöht werden. Die Modellierung des Reaktors soll ein Scale Up auf technische Reaktoren ermöglichen. Zudem soll die intelligente Kopplung der Methanisierung mit CO2-Quellen untersucht werden. 2. Arbeitsplanung: Anfangs werden geeignete Wärmeträgerflüssigkeiten (z. B. IL) ermittelt. Parallel hierzu wird eine Apparatur zur Drei-Phasen-Methanisierung aufgebaut und betrieben. Die Erkenntnisse sollen als Basis für die Modellierung des Reaktors mit Matlab dienen. Am Ende des Projektes soll ein großtechnischer Reaktor grob ausgelegt werden.
Das Projekt "Teilprojekt 4" wird vom Umweltbundesamt gefördert und von IoLiTec - Ionic Liquid Technologies GmbH durchgeführt. 1. Vorhabenziel: Das Ziel des Verbundprojekts ist die Entwicklung eines kurzfristig umsetzbaren Konzepts zur chemischen Speicherung der bei Wind und Photovoltaik volatil anfallenden elektrischen Energie durch Fixierung von CO2. Als geeigneter chemischer Energieträger mit hoher Energiedichte bietet sich dabei Methan in Form von SNG (Substitute Natural Gas) an, welches in das in Deutschland sehr gut ausgebaute Erdgasnetz eingespeist und verteilt werden kann. SNG als Energieträger weist dabei vielfältige Vorteile auf. Es bestehen bereits enorme Speicherkapazitäten (siehe Kap. 1.2) mit positiven Perspektiven für den weiteren Ausbau, und über das ubiquitäre Erdgastransportnetz können große Mengen chemisch gespeicherter Energie problemlos innerhalb Europas transportiert und verteilt werden. Weiterhin ist Methan einer der vielseitigsten und umweltfreundlichsten Brennstoffe. Neben den etablierten Anwendungsfällen im Haushalt kann Methan/SNG bzw. Erdgas und a. als Kraftstoff für Erdgasfahrzeuge, zum Betrieb von Brennstoffzellen, zur zentralen Stromerzeugung in Gas-und-Dampf-Kraftwerken und zur dezentralen Verbrennung in Blockheizkraftwerken (BHKW) und Mini-BHKW verwendet werden. Technisches Arbeitsziel von IOLITEC ist die Synthese neuer ionischer Flüssigkeiten, die als interne Wärmeträgermedien den Wärmehaushalt der Reaktion optimal steuern können. 2. Arbeitsplanung: Im Rahmen des Projektes werden gängige Methoden zur wissenschaftlichen Synthese von neuen Verbindungen angewendet. Bei der Analyse werden z.B. IR- und NMR-Spektroskopie eingesetzt.
Das Stadtbioklimamodell UBIKLIM Die Atmosphäre und damit das Klima ist ein Teil der Umwelt, mit der sich der menschliche Organismus dauernd auseinandersetzen muss, um das Gleichgewicht seiner Lebensfunktionen und damit seine Gesundheit zu erhalten. Die dabei geforderte Anpassungsleistung lässt sich über Wärmehaushaltsmodelle des Menschen (VDI 1998) berechnen, wodurch der Zusammenhang zwischen Mensch und Atmosphäre objektiv, qualitativ und quantitativ erfasst wird. Dabei sind neben der Lufttemperatur ebenso Wind, Feuchte und Strahlungsverhältnisse sowie auch die Aktivität und Bekleidung des Menschen zu berücksichtigen. Der Deutsche Wetterdienst nutzt das Klima-Michel-Modell (Jendritzky et al., 1990). Es basiert auf der Behaglichkeitsgleichung von Fanger (1972) inkl. einer Korrektur nach Gagge et al. (1986) zur besseren Erfassung feucht-warmer Bedingungen, verknüpft alle für den menschlichen Wärmehaushalt relevanten Größen und liefert eine Aussage über das durchschnittliche subjektive Empfinden des Menschen (Behaglichkeit, Wärmebelastung, Kältestress). Der Name “Michel” weist auf den Durchschnittsmenschen hin (hier: männlich, 35 Jahre alt, 1,75 m groß, 75kg schwer). Zur Beschreibung des thermischen Empfindens dient die Gefühlte Temperatur (Staiger et al., 1997) in der Einheit °C. Sie vergleicht die tatsächlich vorgefundenen Bedingungen mit der Temperatur, die in einer Standardumgebung herrschen müsste, um ein identisches Wärme-, Behaglichkeits- oder Kaltgefühl zu haben. Die Bekleidung wird zwischen sommerlich leichter und winterlich dicker stets so variiert, dass sich der Mensch möglichst behaglich fühlt. In Tabelle 1 sind die Gefühlten Temperaturen dem thermischen Empfinden des Menschen sowie den jeweiligen Belastungsstufen zugeordnet. Da die Anpassungsmöglichkeiten unter warmen bzw. heißen Bedingungen eher begrenzt sind und eine Entlastung sich nur durch Ausweichen in eine kühlere Umgebung (im Extremfall in klimatisierte Räume) realisieren lässt, es außerdem in Städten gegenüber dem Umland zu einer Zunahme von Wärmebelastung kommt, besitzt der Wärme- bzw. Hitzbelastungsanteil des Bioklimas bei Fragen des menschlichen Wohlbefindens, u.U. auch mit gesundheitlicher Relevanz, eine besondere Bedeutung. UBIKLIM nutzt das erwähnte Klima-Michel-Verfahren und ermöglicht die lokalen Unterschiede im Bioklima zu erfassen und gemäß Richtlinie 3787 Blatt 2 (VDI 2008) über die Gefühlte Temperatur zu bewerten. Um einen Bezug nicht nur zur lokalen städtischen Situation, sondern auch zum regionalen Bioklima herzustellen, auf dessen Grundlage dann auch die Verknüpfung zu den Klimaszenarien der Zukunft hergestellt werden kann, war die Erweiterung des Stadtbioklimamodells zu einem “Kombinierten Stadtbioklimamodell” erforderlich (vgl. weitere Erläuterungen im Kapitel Methode). Verwendung von Landnutzungsdaten Die Anwendung von Simulationsmodellen erfordert eine über das eigentliche Untersuchungsgebiet hinausgehende räumliche Erfassung der Grundlagendaten und meteorologischen Randbedingungen. Daher untergliederte sich das Untersuchungsgebiet in das etwa 890 km² große Stadtgebiet von Berlin sowie einen rund 850 km² großen Bereich des Umlandes und besaß damit eine Ausdehnung von 46,1 × 38,0 km (vgl. Abbildung 2). Die Bereitstellung der Daten erfolgte in einem Raster von 25 m x 25 m, so dass sich insgesamt rund 2.800.000 Einzelflächen ergaben. Die verwendeten Parameter für das Stadtgebiet Berlin wurden dem Datenbestand des Informationssystems Stadt und Umwelt (ISU) entnommen, der für vielfältige Auswertungen und Berechnungen zur Verfügung steht. Das Informationssystem Stadt und Umwelt (ISU) der Senatsverwaltung für Stadtentwicklung enthält ca. 25.000 Einzelflächen in einem räumlichen Bezugssystems, die für die Berechnungen aufgerastert werden mussten: Flächennutzung Die Daten der Flächennutzung geben den Nutzungsstand von Ende 2005 wieder und beruhen auf der Auswertung von Luftbildern, bezirklichen Flächennutzungskarten, Ortsbegehungen und weiteren Unterlagen für den Umweltatlas (vgl. Karte 06.01 und Karte 06.02, SenStadt 2008a). Es werden etwa 30 Nutzungsarten unterschieden. Stadtstrukturtypen (Karte 06.07, SenStadt 2008b). Eine weitere Verfeinerung dieser Daten fand über die Nutzungsdatei des ISU statt, die u.a. typenspezifische Angaben zur Höhe der Gebäude und Vegetationsstrukturen innerhalb der einzelnen Stadtstrukturtypen enthält. Versiegelung (Karte 01.02, SenStadt 2007). Aus den Vorarbeiten zur Umsetzung der EU-Richtlinie zum Umgebungslärm konnte eine mit Höhenangaben aufbereitete Gebäudedatei eingespeist werden, welche mit Datenstand 2005 sämtliche 550.000 Gebäude der Automatisierten Liegenschaftskarte (ALK) des Landes Berlin sowie in einem Abstand von 3 km um das Stadtgebiet 231.445 Gebäude aus dem Land Brandenburg enthält. Die Liegenschaftskarte ALK bildet als darstellender Teil des so genannten Liegenschaftsbuches neben den Flurstücken vor allem die Gebäude einschließlich ihrer Geschossanzahl flächenscharf ab und ist daher als Basisinformation zur Abbildung von Hochbaustrukturen gut geeignet (vgl. Karte 04.10, Abbildung 2). Im Hinblick auf die Einbindung der ALK-Daten in den Auswertungsprozess ist zu beachten, dass Anlagen auf Bahngelände und S-Bahnhöfe, Gebäude auf Industrie- und Gewerbeflächen sowie Gartenhäuser in Kleingartengebieten nicht in allen Fällen erfasst sind Um dem Modellansatz der Anwendung des 1-dimensionalen Modells MUKLIMO_1 gerecht zu werden, müssen die Flächen der einzelnen Areale deutlich größer als ein 25 m x 25 m-Pixel sein. Das bedeutet, dass kleine Straßen nicht aufgelöst, sondern der umliegenden Nutzung zuzuordnen sind. Auswertung klimatologischer Zeitreihen Auch für Berlin liegen Zeitreihen klimatologischer Parameter verschiedener Stationen – teilweise über einen langen Zeitraum – vor. Wie sich diese Situation im Mittel über ein Jahr bzw. bei extremen Wetterlagen auf die Wärmebelastung auswirkt, zeigen Auswertungen charakteristischer Parameter der Lufttemperatur an verschiedenen Standorten im Stadtgebiet mit unterschiedlichem Stadteinfluss. Die Karte (vgl. Abbildung 3) zeigt die Lage der verwendeten Stationen Berlin-Tegel und Berlin-Tempelhof. In beiden Fällen repräsentieren sie als Stationen auf einem Flughafengelände inmitten Berlins eine Stadtlage mit relativ offener Bebauung. Durch dichte Bebauung und einen in hohem Maße versiegelten Innenstadtbereich wird der Standort der Station Berlin-Alexanderplatz geprägt. Die weiteren Stationen zeichnen sich durch Merkmale einer Stadtrandlage aus. Abbildung 4 zeigt den Verlauf der Lufttemperatur an der Station Tempelhof 1949-2008. Deutlich erkennbar ist der positive Trend insbesondere der letzten 20 Jahre. Nach einem noch mal kalten Jahr 1996, lagen seither alle Jahresmittel der Lufttemperatur über dem langjährigen Jahresmittelwert von 9,6 °C. Das wärmste Jahr der gesamten Beobachtungsreihe war das Jahr 2000 mit 11,1 °C. Die zunehmende Erwärmung betrifft den gesamten Ballungsraum, jedoch ist die thermische Ausprägung in den einzelnen Stadtteilen von Berlin sehr unterschiedlich. Das Auftreten von Tropennächten ist in Deutschland ein seltenes Ereignis. Im Folgenden wird an der Anzahl der Tropennächte (Temperaturminimum >= 20 °C) die Zunahme des Wärmeinseleffektes mit Vordringen in den unmittelbaren Stadtkernbereich von Berlin deutlich. Die unterschiedlichen Zeiträume liefern darüber hinaus Angaben über die Zunahme der Wärmebelastung insbesondere in der überhitzten Innenstadt. Tabelle 3 zeigt im Zeitraum 1999-2008 gegenüber dem Zeitraum 1967-1990 eine mittlere Zunahme um 5 Tropennächte in der Innenstadt, in offen bebautem Stadtgebiet um 0,2 und am Stadtrand eine geringfügige Abnahme um 0,1 (vgl. Tabelle 3). Extreme Hitzeperioden – wie während des Sommers 2003 – führen zu extremer Wärmebelastung in dicht bebauten Stadtgebieten. An der Station Alexanderplatz wurden 10 Tropennächte registriert, noch 3 in offen bebautem Stadtgebiet, während im angrenzenden Umland dieses Ereignis gar nicht auftrat. Die Station Berlin-Alexanderplatz charakterisiert die Lage in einer städtischen Wärmeinsel. Da aber die Stadtstrukturen räumlich nicht homogen sind, bilden sich auch in anderen Teilen der Stadt mit hoher Bebauungsdichte, hohem Versiegelungsgrad und/oder mit sehr geringem Grünflächenanteil weitere Wärmeinseln aus. Andererseits werden in Gebieten mit großen Parkanlagen Temperaturen erreicht, die kaum von denen des Umlandes abweichen.
Das Projekt "Exzellenzcluster 80 (EXC): Ozean der Zukunft" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Troposphärenforschung e.V. durchgeführt. 95% of the incoming solar radiation at the sea surface is absorbed by the ocean body. This process is an integral part of the oceanic heat budget, drives most of the global biological production and, thus, almost all major nutrient and carbon cycles in the ocean. This emphasizes the need of a proper understanding of the transport of solar radiation into the ocean. While previous research has been devoted to the mean energy input by solar radiation into the ocean, effects of the temporal and spatial fluctuations of the incoming solar radiation including its distribution with depth are poorly known, although certainly of large importance. Such fluctuations are caused by variations in the atmospheric transmission, sea surface roughness and spray, turbulent fluctuations in density, plankton, gelbstoff and other biological parameter. Since both the radiative transfer and the physical, biological and chemical response in the upper ocean are non-linear processes, temporal and spatial variability in the radiation yields a systematically different mean response compared to more homogeneous forcing. An existing Monte-Carlo radiative transfer code will be modified to simulate variability in light penetration through observed and simulated physical and biological states of the upper ocean. The results will be applied to ocean circulation models and to models of biological and chemical tracer cycles. Furthermore, the effect of radiation variability on algal physiology, i.e. photosynthetic performance and physiological acclimation, will be explored.
Die Einbeziehung klimatologischer Gesichtspunkte in die Bewertung der Umweltsituation städtischer Ballungsgebiete und deren räumliche Planung setzt zunächst eine Definition des Begriffes Stadtklima voraus. Unter Stadtklima versteht man nach Schirmer et al. (1987) “das gegenüber dem Umland stark modifizierte Mesoklima von Städten und Industrieballungsräumen. Es umfasst das gesamte Volumen der bodennahen Luftschicht oberhalb und in unmittelbarer Umgebung der Stadt bzw. der städtischen Grenzschicht. Verursacht wird es durch die Art und Dichte der Bebauung, das Wärmespeicherungsvermögen der Baustoffe, die Versiegelung des Bodens, das Fehlen von Vegetation, durch einen veränderten Wasserhaushalt und die vermehrte Emission von Abgasen, Aerosolen und Abwärme.” Für die Bewertung der jeweiligen Klimasituation fehlen verbindliche Grenz- und Richtwerte. Als Idealzustand sollte ein Stadtklima angestrebt werden, das weitgehend frei von Schadstoffen ist und den Stadtbewohnern eine möglichst große Vielfalt an Atmosphärenzuständen unter Vermeidung von Extremen bietet (vgl. Deutsche Meteorologische Gesellschaft 1989). Zur Erfassung des städtischen Klimas bietet sich neben der Anwendung der Methoden der klassischen klimatologischen Forschung mit Messfahrten und Messgängen (vgl. Karten 04.02 – 04.05) auch die Berechnung der Temperaturen der einzelnen Oberflächenelemente (Dächer, Straßen, Baumkronen usw.) mittels Thermal-Infrarot(IR)-Rasteraufnahmen an. Dabei wird von dem physikalischen Prinzip ausgegangen, dass alle Körper entsprechend ihrer Oberflächentemperatur Wärmestrahlung abgeben (vgl. Methode). Als Steuerungsgröße für den Wärmehaushalt der Erdoberfläche kommt der Wärmestrahlung und damit der Oberflächentemperatur als Bestandteil der Strahlungsbilanz jedes Körpers eine große Bedeutung zu. Während tagsüber der kurzwellige Strahlungsbereich vor allem mit der direkten Einstrahlung der Sonnenenergie und ihrer Absorption bzw. Reflexion (Albedo, vgl. Tab.1) an der Körperoberfläche bestimmend ist, beeinflusst nachts der langwellige Bereich mit dem Bodenwärmestrom ausschließlich das thermische Ausstrahlungsverhalten eines Körpers. Je nach Art und Beschaffenheit von Oberflächen ergeben sich deshalb bei gleichen Einstrahlungs- und Ausstrahlungsbedingungen u.U. erhebliche Unterschiede in der Oberflächentemperatur (vgl. Abb.1). Für (städtische) Klimaanalysen liegt der wesentliche Nutzen von Thermalkarten in ihrem flächenhaften, digital verarbeitbaren Informationsgehalt . Es ist zu unterscheiden zwischen Infrarot-Aufnahmen mit Thermal-Scannern von Flugzeugen aus und den für die vorliegenden Karten benutzten Satellitendaten . Unter Berücksichtigung der Größe Berlins und des engeren Verflechtungsraumes von fast 2 000 km2 ermöglicht nur ein satellitengestütztes Verfahren die jeweils fast zeitgleiche Erfassung der langwelligen Eigenstrahlung der Erde (Oberflächentemperatur) in einer aufeinanderfolgenden Nacht-/Tagsituation. Andererseits sind die Überfliegungszeiten des Satelliten nicht beeinflussbar und in diesem Falle für den Berliner Raum als nicht optimal einzuschätzen (vgl. Datengrundlage). Die Interpretation der IR-Thermalbilder erlaubt es, einzelnen Oberflächenelementen und Raumeinheiten über die spezielle erfasste Situation hinaus qualitativ allgemeine thermische Eigenschaften zuzuordnen. Diese Umsetzung setzt jedoch großes klimatisches Fachwissen und die Nutzung weiterer Datengrundlagen wie Nutzungs- und Reliefkarten voraus, da die Ausprägung der Oberflächentemperatur verschiedener Nutzungsstrukturen im Rasterbild stets das Ergebnis komplexer physikalischer Prozesse ist, an denen verschiedene horizontale und vertikale Wärmeflüsse und Energieumsätze (Verdunstung, Kondensation) beteiligt sind. Unter Einbeziehung weiterer klimatologischer Parameter wie Lufttemperatur und Windgeschwindigkeit können Oberflächentemperaturkarten zusätzlich als Unterstützung für die Bestimmung von Klimafunktionsräumen herangezogen werden (vgl. Karte 04.07).
Die Einbeziehung klimatologischer Gesichtspunkte in die Bewertung der Umweltsituation städtischer Ballungsgebiete und deren räumliche Planung setzt zunächst eine Definition des Begriffes Stadtklima voraus. Unter Stadtklima versteht man nach Schirmer et al. (1987) “das gegenüber dem Umland stark modifizierte Mesoklima von Städten und Industrieballungsräumen. Es umfasst das gesamte Volumen der bodennahen Luftschicht oberhalb und in unmittelbarer Umgebung der Stadt bzw. der städtischen Grenzschicht. Verursacht wird es durch die Art und Dichte der Bebauung, das Wärmespeicherungsvermögen der Baustoffe, die Versiegelung des Bodens, das Fehlen von Vegetation, durch einen veränderten Wasserhaushalt und die vermehrte Emission von Abgasen, Aerosolen und Abwärme.” Bewertungs- und Untersuchungsansätze Für die Bewertung der jeweiligen Klimasituation fehlen verbindliche Grenz- und Richtwerte analog den Luftgüte-Werten des Bundes-Immissionsschutz-Gesetzes. Empfehlenden Charakter besitzt eine Richtlinie der Kommission Reinhaltung der Luft im VDI (vgl. Verein Deutscher Ingenieure (VDI) 3787 Blatt 2 1998). Diese hat das Ziel, Bewertungsverfahren der Human-Biometeorologie als Standard für die auf Menschen bezogene Berücksichtigung von Klima und Lufthygiene (Bioklima) bei der Stadt- und Regionalplanung bereitzustellen. Die Human-Biometeorologie beschäftigt sich mit den Wirkungen von Wetter, Witterung, Klima und Lufthygiene auf den menschlichen Organismus. Im vorliegenden ersten Teil dieser Richtlinie werden die human-biometeorologischen Wirkungskomplexe zusammengestellt und die empfohlenen Bewertungsmethoden für den Bereich “Klima” erläutert. Insbesondere steht hierbei der thermische Wirkungskomplex im Vordergrund, der in der Stadt- und Regionalplanung mit dem Ziel eingesetzt werden soll, gesunde Wohn- und Arbeitsbedingungen zu sichern. Mit seiner Hilfe können planerische Fragestellungen aus bioklimatologischer Sicht behandelt werden. Als Idealzustand sollte ein Stadtklima angestrebt werden, das weitgehend frei von Schadstoffen ist und den Stadtbewohnern eine möglichst große Vielfalt an Atmosphärenzuständen unter Vermeidung von Extremen bietet (vgl. Deutsche Meteorologische Gesellschaft 1989). Zur Erfassung des städtischen Klimas bietet sich neben der Anwendung der Methoden der klassischen klimatologischen Forschung mit Messfahrten und Messgängen (vgl. Karten 04.02 – 04.05) auch die Berechnung der Temperaturen der einzelnen Oberflächenelemente (Dächer, Straßen, Baumkronen usw.) mittels Thermal-Infrarot (IR)-Rasteraufnahmen an. Dabei wird von dem physikalischen Prinzip ausgegangen, dass alle Körper entsprechend ihrer Oberflächentemperatur Wärmestrahlung abgeben (vgl. Methode). Indikatoren Als Steuerungsgröße für den Wärmehaushalt der Erdoberfläche kommt der Wärmestrahlung und damit der Oberflächentemperatur als Bestandteil der Strahlungsbilanz jedes Körpers eine große Bedeutung zu. Während tagsüber der kurzwellige Strahlungsbereich vor allem mit der direkten Einstrahlung der Sonnenenergie und ihrer Absorption bzw. Reflexion (Albedo, vgl. Tab. 1) an der Körperoberfläche bestimmend ist, beeinflusst nachts der langwellige Bereich mit dem Bodenwärmestrom ausschließlich das thermische Ausstrahlungsverhalten eines Körpers. Je nach Art und Beschaffenheit von Oberflächen ergeben sich deshalb bei gleichen Einstrahlungs- und Ausstrahlungsbedingungen u.U. erhebliche Unterschiede in der Oberflächentemperatur (vgl. Abb. 1). Digitale Thermalkarten Für (städtische) Klimaanalysen liegt der wesentliche Nutzen von Thermalkarten in ihrem flächenhaften, digital verarbeitbaren Informationsgehalt . Es ist zu unterscheiden zwischen Infrarot-Aufnahmen mit Thermal-Scannern von Flugzeugen aus und den für die vorliegenden Karten benutzten Satellitendaten . Unter Berücksichtigung der Größe Berlins und des engeren Verflechtungsraumes von fast 2 000 km² ermöglicht nur ein satellitengestütztes Verfahren die jeweils fast zeitgleiche Erfassung der langwelligen Eigenstrahlung der Erde (Oberflächentemperatur) in einer aufeinanderfolgenden Nacht-/Tagsituation. Andererseits sind die Überfliegungszeiten des Satelliten nicht beeinflussbar und in diesem Falle für den Berliner Raum als nicht optimal einzuschätzen (vgl. Datengrundlage). Die Interpretation der IR-Thermalbilder erlaubt es, einzelnen Oberflächenelementen und Raumeinheiten über die spezielle erfasste Situation hinaus qualitativ allgemeine thermische Eigenschaften zuzuordnen. Diese Umsetzung setzt jedoch großes klimatisches Fachwissen und die Nutzung weiterer Datengrundlagen wie Nutzungs- und Reliefkarten voraus, da die Ausprägung der Oberflächentemperatur verschiedener Nutzungsstrukturen im Rasterbild stets das Ergebnis komplexer physikalischer Prozesse ist, an denen verschiedene horizontale und vertikale Wärmeflüsse und Energieumsätze (Verdunstung, Kondensation) beteiligt sind. Unter Einbeziehung weiterer klimatologischer Parameter wie Lufttemperatur und Windgeschwindigkeit können Oberflächentemperaturkarten zusätzlich als Unterstützung für die Bestimmung von Klimafunktionsräumen herangezogen werden (vgl. Karte 04.07).
Das Projekt "Veränderungen im Süßwassergehalt des Arktischen Ozeans in den Jahren 2006-2008 im Vergleich zu 1992-1999" wird vom Umweltbundesamt gefördert und von Stiftung Alfred-Wegener-Institut für Polar- und Meeresforschung e.V. in der Helmholtz-Gemeinschaft (AWI) durchgeführt. Die Studie kommt zu dem Ergebnis, dass der Süßwassergehalt des oberen Arktischen Ozeans seit den 1990er Jahren um etwa 20 Prozent zugenommen hat. Das entspricht einem Anstieg von ca. 8.400 Kubikkilometern und hat dieselbe Größenordnung wie die Menge an Süßwasser, die im Mittel jährlich aus diesem Meeresgebiet in flüssiger oder gefrorener Form exportiert wird. Der Gehalt an Süßwasser im oberflächennahen Arktischen Ozean steuert, ob Wärme vom Ozean an die Atmosphäre oder an Eis abgegeben wird. Er wirkt sich auch auf die globale Ozeanzirkulation aus. Etwa zehn Prozent der globalen Festlandsabflüsse münden über die sibirischen und nordamerikanischen Flüsse in die Arktis, dazu kommt relativ salzarmes Wasser aus dem Pazifik. Dieses Süßwasser legt sich als leichte Schicht auf die tieferen salzreichen Ozeanschichten und koppelt damit auch deren Wärme von Eis und Atmosphäre weitgehend ab. Veränderungen dieser Schicht sind daher wichtige Steuergrößen für den sensiblen Wärmehaushalt der Arktis. Es ist zu erwarten, dass die zusätzliche Süßwassermenge im oberflächennahen Arktischen Ozean in den kommenden Jahren in den Nordatlantik ausströmen wird. Die Menge des aus der Arktis strömenden Süßwassers beeinflusst die Tiefenwasserbildung in der Grönlandsee und der Labradorsee, und hat damit Auswirkungen auf die globale Umwälzzirkulation des Ozeans. Insgesamt über 5.000 gemessene Salzgehaltsprofile wurden ausgewertet. Um die Tiefenverteilung des Salzgehalts zu messen, wurden Sonden von Schiffen aus eingesetzt oder an großen Eisschollen angebracht, so dass die Daten während der Eisdrift aufgezeichnet wurden. Auch Messwerte von U-Booten gingen in die Analysen ein. Ein Großteil der Daten stammt aus Expeditionen während des Internationalen Polarjahres 2007/08.Die starken Veränderungen in den oberen Wasserschichten bestehen in erster Linie aus einer Abnahme des Salzgehalts. Ein weiterer aber geringerer Effekt ist, dass die salzarmen Schichten mächtiger sind als früher. Der Süßwassergehalt des Arktischen Ozeans kann durch vermehrte Meereis- oder Gletscherschmelze, Niederschläge, oder über Flusseinträge zunehmen. Ein geringerer Export von Süßwasser aus der Arktis - in Form von Meereis oder flüssig - führt ebenfalls dazu, dass der Süßwassergehalt steigt. Die Autoren der Studie nennen veränderten Export von Süßwasser und veränderte Einträge aus den küstennahen Bereichen Sibiriens in den zentralen Arktischen Ozean als wahrscheinlichste Gründe. Mit Hilfe des gekoppelten Ozean-Meereis-Modells NAOSIM wurden die beobachteten Vorgänge simuliert. Die Modellexperimente erlauben, längere Zeiträume zu untersuchen, also auch Zeiten abzubilden, für die keine Messdaten vorliegen. Das Modell liefert auch wichtige Einblicke in die Ursachen des an- und abschwellenden Süßwassergehaltes und zeigt die große Bedeutung des lokalen Windfeldes. Messungen und Modell zeigen darüber hinaus, dass die Veränderungen des arktischen Süßwassergehaltes weit größere Gebiete umfassen als bisher angenommen.
Das Projekt "Zuschlaege auf Messwerte fuer Mauerwerk" wird vom Umweltbundesamt gefördert und von Forschungsinstitut für Wärmeschutz e.V. München durchgeführt. Messung des Feuchteeinflusses auf die Waermeleitfaehigkeit von Mauerwerksprobekoerpern.
Origin | Count |
---|---|
Bund | 246 |
Land | 18 |
Type | Count |
---|---|
Förderprogramm | 241 |
Kartendienst | 1 |
Text | 19 |
unbekannt | 3 |
License | Count |
---|---|
closed | 21 |
open | 241 |
unknown | 2 |
Language | Count |
---|---|
Deutsch | 264 |
Englisch | 38 |
Resource type | Count |
---|---|
Bild | 1 |
Dokument | 3 |
Keine | 202 |
Webseite | 62 |
Topic | Count |
---|---|
Boden | 180 |
Lebewesen & Lebensräume | 195 |
Luft | 162 |
Mensch & Umwelt | 264 |
Wasser | 174 |
Weitere | 259 |