API src

Found 191 results.

Related terms

Richtig heizen mit Holz schont Umwelt, Gesundheit und Ressourcen

Holz wird als Brennstoff immer beliebter. Viele entscheiden sich in der aktuellen Knappheit fossiler Brennstoffe bewusst für die Alternative Holz. Mit dem nachwachsenden Rohstoff Holz können fossile Brennstoffe eingespart und der Ausstoß von klimaschädlichen Treibhausgasen gemindert werden. Dennoch belasten die Schadstoffe insbesondere aus händisch mit Holz beschickten Öfen und Kaminen die Atemluft in unseren Städten. Das betrifft besonders den Feinstaub. In NRW gelangen etwa 2.300 Tonnen Feinstaub pro Jahr aus Feststoffheizungen und -öfen in die Luft. Daran haben mit Scheitholz handbeschickte Einzelöfen maßgeblichen Anteil. Insbesondere bei unsachgemäßem Betrieb der Holzöfen entstehen auch vermehrt unerwünschte Stoffe wie Stickoxide, Kohlenmonoxid und Krebs erzeugende Polyzyklische Aromatische Kohlenwasserstoffe im Ofenabgas. Für moderne Scheitholz befeuerte Einzelöfen, die seit dem 01.01.2015 errichtet wurden, gelten gemäß Typprüfung für den Schadstoffausstoß Obergrenzen von 1,25 Gramm Kohlenmonoxid und 0,04 Gramm Feinstaub pro Kubikmeter Abgas, die der Hersteller vor dem Inverkehrbringen entsprechend deklarieren muss. Darüber hinaus können viele ältere Modelle nachgerüstet werden, um die Schadstoffobergrenzen der geltenden Ersten Bundes-Immissionsschutzverordnung wieder einhalten zu können. Mit einem Herstellernachweis oder einer Vor-Ort-Messung kann die Einhaltung der Grenzwerte bestätigt werden, sodass der Ofen weiter betrieben werden kann. Öfen, die nicht mehr nachgerüstet werden können, müssen zu bestimmten Stichtagen stillgelegt werden. Anlagen, auf deren Typenschild ein Zulassungsdatum vor dem 01.01.1995 verzeichnet ist, dürfen ohne Nachrüstung seit dem 01.01.2021 nicht mehr betrieben werden. Zu Beginn der Heizperiode sollte unbedingt geprüft werden, ob der Schornstein und das Rauchrohr des Ofens frei sind. Wenn der Kamin länger nicht benutzt wurde, könnte sich beispielsweise ein Vogelnest darin befinden. Wenn Abgase nicht ungehindert durch den Schornstein abziehen können, dringen sie in den Wohnraum ein und können schwere Vergiftungen verursachen. Auch die Dichtungen des Ofens müssen deshalb überprüft werden. Die Auskleidung des Feuerraums darf nicht beschädigt sein, damit es nicht zu Überhitzungen kommt. Wenn die Feuerstätte sauber und intakt ist, kommt es darauf an, sie korrekt entsprechend der Bedienungsanleitung zu betreiben. Dazu wird ausschließlich trockenes, unbehandeltes Holz verwendet. Unter ausreichender Luftzufuhr wird das Holz von oben angezündet. So ist das Feuer nach kurzer Zeit rauchfrei. Brennt der Ofen optimal, entstehen weniger Schadstoffe. Die Verknappung und Verteuerung von Holz mag dazu verleiten, auf andere brennbare Stoffe zurückzugreifen. Dies stellt jedoch einen Verstoß gegen die Erste Bundes-Immissionsschutzverordnung dar, die nur die Verbrennung der in der Verordnung genannten Brennstoffe in jeweils dafür geeigneten Feuerungsanlagen zulässt. So dürfen z.B. keinesfalls feuchtes oder behandeltes (imprägniertes, lasiertes, lackiertes, beschichtetes) Holz, Holzfaser- oder Pressplatten sowie fossile Brennstoffe in Holzfeuerungsanlagen verbrannt werden. Auch Papierbriketts oder die Verbrennung von Altpapier sind nicht erlaubt. Die Verbrennung von Abfall, wie zum Beispiel Hausmüll, setzt gesundheitsgefährdende Gase frei und ist darüber hinaus verboten. Außerdem können Schäden an den Schamotte- und Metallteilen des Kaminofens sowie am Schornstein entstehen. „Private Müllverbrennung“ ist nicht erlaubt und darüber hinaus gesundheitsschädlich. Sie verursacht eine enorme Geruchsbelästigung, die häufig zu berechtigten Nachbarschaftsbeschwerden führt. Bei der Verbrennung unzulässiger Stoffe handelt es sich um einen Verstoß, der auch als solcher geahndet und mit hohen Bußgeldern mit bis zu 1.500 Euro je Fall bestraft wird. Auch das Wetter spielt eine Rolle. In den Wintermonaten kommt es häufiger zu austauscharmen Wetterlagen. Bei diesen – so genannten Inversionswetterlagen – befindet sich über der kalten Luft in Bodennähe eine wärmere Luftschicht in der Höhe. Das verhindert eine gute Luftdurchmischung. Die Schadstoffe, die in Bodennähe entstehen, reichern sich an und sorgen für hohe Konzentrationen. Vor allem in Städten tragen verkehrsbedingte Emissionen, aber auch Feuerungsanlagen zur Schadstoffbelastung bei. Das LANUV empfiehlt deshalb, an solchen Tagen aus Gründen der Luftreinhaltung wenn möglich auf das zusätzliche Heizen mit Holz ganz zu verzichten. Es ist aufgrund der Energiekrise davon auszugehen, dass im bevorstehenden Winter mehr Einzelraumfeuerungsanlagen betrieben werden als in den vorhergehenden Jahren. Wichtig ist, dass der Kamin, vor der Inbetriebnahme fachkundig überprüft wird. Der Landesfachverband des Schornsteinfegerhandwerks weist in diesem Zusammenhang auf die Gefahren von Schornsteinbränden hin. Schornsteinbrände sind sehr gefährlich, denn durch Funkenflug und Wärmestrahlung besteht die Gefahr der Brandausbreitung. So können z. B. Funken durch Undichtigkeiten der Dachhaut den Dachstuhl in Brand setzen. Durch die Wärmeentwicklung kann der Schornstein einstürzen und das Rauchrohr durch Ausglühen zerstört werden. Die Wärmestrahlung kann Möbel in der Nähe des Schornsteines entzünden. Eine weitere Gefahr liegt in der Quellfähigkeit: Da Ruß sehr stark aufquellen kann, besteht die Gefahr, dass der Schornstein die heißen Gase und Dämpfe nicht mehr ungehindert abführen kann. Dann können die Abgase durch Reinigungsklappen oder durch die Feuerstätte austreten. Schlimmstenfalls wird der gesamte Schornstein zerstört, wodurch sich das Feuer weiter ausbreiten kann. Ein Rußbrand im Schornstein kann in der Regel nicht gelöscht werden. Deshalb ist es so wichtig, dass eine Fachkraft des Schornsteinfegerhandwerks den Kamin vor der Inbetriebnahmen prüft und freigibt. Wenn der Schornsteinfeger ins Haus kommt, bringt er immer wieder Rat und Informationen mit. Es geht um die Sicherheit der Feuerstätten, aber auch um den umweltschonenden Betrieb. Das Landesamt für Natur, Umwelt und Verbraucherschutz und der Landesfachverband des Schornsteinfegerhandwerks haben deshalb gemeinsam eine Broschüre herausgegeben, in der alle wichtigen Informationen rund um das Thema Holzfeuerung leicht verständlich dargestellt werden. Verschiedene Ofentypen, ihre unterschiedlichen Funktionsweisen sowie geeignete und nicht zulässige Brennstoffe werden beschrieben und natürlich geht es um die richtige Handhabung, die letztlich über den sicheren und sauberen Betrieb entscheidet. Hier wird auch erklärt, was Sie tun können, wenn Ihr Kamin oder Ofen nicht mehr den gesetzlichen Bestimmungen entspricht. Zur Online-Broschüre Download: Pressemitteilung

Glossar

Abklingbecken Ein mit Wasser befülltes Becken, in dem Brennelemente nach dem Reaktoreinsatz so lange lagern, bis die Aktivität und Wärmeentwicklung auf einen gewünschten Wert gesunken ist, so dass eine Handhabung, u.a. zum Abtransport möglich wird. Ableitung radioaktiver Stoffe Ist die Abgabe flüssiger, an Schwebstoffe gebundener oder gasförmiger radioaktiver Stoffe auf hierfür vorgesehenen Wegen. (§ 1 Abs. 1 StrlSchV ). Ein Beispiel ist die geordnete und überwachte Abgabe von Fortluft aus Anlagengebäuden. Ableitungswerte Sind Angaben über die Aktivität (also Menge) radioaktiver Stoffe als auch über die hervorgerufene Dosis (also Wirkung) von Ableitungen. Für die durch Ableitung freigesetzten radioaktiven Stoffe hat der Gesetzgeber Grenzwerte festgesetzt (§§ 99 ff. StrlSchV ). Die in Genehmigungen festgelegten Werte (nach § 102 StrlSchV ) liegen in Berlin deutlich unterhalb dieser Grenzwerte. Die tatsächlich freigesetzten radioaktiven Stoffe unterschreiten wiederum in der Regel die genehmigten Werte deutlich. Äquivalentdosis Äquivalentdosis ist die mit einem Qualitätsfaktor gewichtete (multiplizierte) Energiedosis . Der Qualitätsfaktor berücksichtigt die relative biologische Wirksamkeit (die Wirkung ist bei verschiedenen Geweben nicht gleich) der unterschiedlichen Strahlenarten. Die Äquivalentdosis ist deshalb die Messgröße für die biologische Wirkung ionisierender Strahlung auf den Menschen. Ihre Einheit ist J/kg mit dem speziellen Namen Sievert (Sv). Aktivität Aktivität ist die Anzahl von Atomkernen eines radioaktiven Stoffes , die in einem bestimmten Zeitintervall zerfallen. Die Aktivität wird in Becquerel (Einheit im Internationalen Einheitssystem) gemessen und beschreibt die Anzahl der Kernzerfälle eines radioaktiven Stoffes in einer Sekunde. Siehe auch Erläuterung unter Dosis . Anlage, kerntechnische siehe „ kerntechnische Anlage Becquerel Das Becquerel (Kurzzeichen: Bq) ist die Maßeinheit der Aktivität eines “radioaktiven Stoffes”/sen/uvk/umwelt/strahlenmessstelle/glossar/#radioaktiver: und gibt an, wie viele Kernzerfälle pro Sekunde stattfinden. Betreiber/in Der Inhaber einer Genehmigung gemäß § 7 Atomgesetz zum Betrieb einer kerntechnischen Anlage . Brennelemente Brennelemente enthalten Kernbrennstoff . Sie bestehen meist aus einer Vielzahl von Brennstäben und sind wesentlicher Bestandteil des Reaktorkerns einer kerntechnischen Anlage . Dekontamination Alle Maßnahmen und Verfahren zur Beseitigung einer möglichen radioaktiven Verunreinigung einer Person oder eines Objekts (z.B. Geräte, Kleidung, Körperteile). Dialoggruppe Gesprächskreis durch ein Vorhaben direkt oder indirekt berührter Bürgerinnen und Bürger aus der Umgebung, Vertreterinnen und Vertreter von Parteien, Initiativen und Umweltorganisationen sowie sonstige interessierte Personen aus der Öffentlichkeit. Ziel ist es, das Vorhaben aktiv mit dem Vorhabenträger zusammen zu diskutieren und evtl. mitzugestalten. Darüber hinaus treffen sich die am Dialogverfahren des BER II Beteiligten ohne Vertreter des HZB im Rahmen der sogenannten Begleitgruppe. Dosimetrie Lehre von den Verfahren zur Messung der Dosis bzw. der Dosisleistung bei der Wechselwirkung von ionisierender Strahlung mit Materie. Dosis Die Dosis ist ein Maß für die Strahlenwirkung. Siehe auch die Erläuterungen zu Energiedosis , Organdosis , Effektive Dosis . Dosisleistung Dosis, die in einem bestimmten Zeitintervall erzeugt wird. Die Einheit ist Sievert oder Gray pro Zeitintervall. Effektive Dosis Die Effektive Dosis berücksichtigt die unterschiedliche Empfindlichkeit der Organe und Gewebe bezüglich stochastischer (zufallsgesteuert auftretender) Strahlenwirkungen. Dazu werden die spezifizierten Organdosen mit einem Gewebe-Wichtungsfaktor multipliziert. Die Effektive Dosis erhält man durch Summation der gewichteten Organdosen aller spezifizierten Organe und Gewebe, wobei die Summe der Gewebe-Wichtungsfaktoren 1 ergibt. Die Gewebe-Wichtungsfaktoren bestimmen sich aus den relativen Beiträgen der einzelnen Organe und Gewebe zum gesamten stochastischen Strahlenschaden (Detriment) des Menschen bei gleichmäßiger Ganzkörperbestrahlung. Die Einheit der Effektiven Dosis ist J/kg mit dem speziellen Namen Sievert (Sv). In der Praxis des Strahlenschutzes werden in der Regel Bruchteile der Dosiseinheit verwendet, zum Beispiel Millisievert oder Mikrosievert Elektromagnetische Strahlung Elektromagnetische Strahlung ist nicht an Materie gebundene Strahlung (kein “Teilchenstrom”), die sich mit Lichtgeschwindigkeit ausbreitet und je nach Energieinhalt (charakterisiert durch die Frequenz oder die Wellenlänge) unterschiedliche Eigenschaften hat. Von den langen zu den kurzen Wellen unterscheidet man Ultralangwelle, Langwelle, Mittelwelle, Kurzwelle, Mikrowelle, Wärmestrahlung (Infrarot), sichtbares Licht, Ultraviolett, Röntgenstrahlung, Gammastrahlung. Für Infrarot und für sichtbares Licht besitzen wir Sinnesorgane, die anderen Strahlungsarten können nur über ihre Wirkung oder mit Messgeräten wahrgenommen werden. Im Ultraviolettbereich liegt die Grenze der ionisierenden Strahlung : kürzerwellige Strahlung ionisiert, längerwellige nicht. Gammastrahlung ist die kürzestwellige und energiereichste dieser Strahlungsarten, sie tritt bei Vorgängen in Atomkernen auf. Energiedosis Die Energiedosis beschreibt die Energie, die einem Material mit einer bestimmten Masse durch ionisierende Strahlung zugeführt wird, dividiert durch diese Masse. Die Einheit der Energiedosis ist J/kg mit dem speziellen Namen Gray (Kurzzeichen: Gy). Entlassung aus dem Atomgesetz Mit der Entlassung aus dem Atomgesetz liegt keine kerntechnische Anlage nach § 2 Abs. 3a Atomgesetz mehr vor. EURATOM-Vertrag Der EURATOM-Vertrag ist einer der Römischen Verträge und damit Bestandteil der Gründungsvereinbarung der Europäischen Union. Das Ziel ist nach Artikel 1 die Schaffung der für die rasche Bildung und Entwicklung von Kernindustrien erforderlichen Voraussetzungen zur Hebung der Lebenshaltung in den Mitgliedstaaten und zur Entwicklung der Beziehungen mit den anderen Ländern. Kapitel 3 regelt Maßnahmen zur Sicherung der Gesundheit der Bevölkerung. Fernüberwachungssystem (Reaktorfernüberwachungssystem – RFÜ) Für die deutschen Kernkraftwerke existieren komplexe Messsysteme zur Erfassung von Anlagendaten und Werten der Umweltradioaktivität (KFÜ). Im Falle des Berliner Forschungsreaktors ist ein der KFÜ analog aufgebautes Reaktorfernüberwachungssystem (RFÜ) vorhanden. Das RFÜ erfasst und überwacht vollautomatisch rund um die Uhr Messwerte zum aktuellen Betriebszustand des Forschungsreaktors BER II einschließlich der Abgaben (Emissionen) in die Luft sowie den Radioaktivitätseintrag in die Umgebung (Immission). Freigabe Die Freigabe ist ein Verwaltungsakt (§ 33 Abs. 2 StrlSchV), der die Entlassung von u.a. beweglichen Gegenständen, Gebäuden, Räumen oder Anlagenteilen aus dem Regelungsbereich des Strahlenschutzgesetzes (und auf diesem beruhender Rechtsverordnungen) bewirkt. Er kann Vorgaben zum weiteren Umgang oder zur Verwendung, Verwertung oder Beseitigung der freigegebenen und damit rechtlich als nicht radioaktiv anzusehenden Stoffe enthalten. Freigabeverfahren Nach §§ 31 ff. Strahlenschutzverordnung (StrlSchV) kann die Entlassung von u.a. beweglichen Gegenständen, Gebäuden, Räumen oder Anlagenteilen aus dem Regelungsbereich des “Strahlenschutzgesetzes“https://www.gesetze-im-internet.de/strlschg/: (und auf diesem beruhenden Rechtsverordnungen) auf Antrag bewirkt werden. Voraussetzung hierfür ist, dass die zuständige Behörde einen Freigabebescheid erteilt. Dieser wird erst dann erteilt, wenn festgestellt worden ist, dass die Materialien oder Objekte nicht so stark strahlen, dass durch sie ein Mitglied der Bevölkerung gefährdet werden könnte. Hierfür müssen bestimmte Anforderungen erfüllt werden, die (z. B. durch Messung) überprüft werden. Der Freigabebescheid kann zusätzliche Festsetzungen enthalten, wonach die freigegebenen Objekte nur dann als nicht radioaktive Objekte gelten, wenn mit ihnen in bestimmter Weise weiter umgegangen wird. Durch die freigegebenen Stoffe darf für Einzelpersonen der Bevölkerung nur eine effektive Dosis bis zu 10 Mikrosievert im Kalenderjahr auftreten (10-Mikrosievert-Konzept). Formelles Verfahren Ist ein auf Antrag erfolgendes behördliches Prüfungsverfahren mit dem Ziel einer Bescheidung durch die zuständige Behörde. Je nach Thematik können sich formelle Genehmigungsverfahren über Jahre erstrecken. Fortluft Der Begriff Fortluft stammt aus der Lüftungs- und Klimatechnik und bezeichnet den Teil der geführten Abluft, welcher nicht weitergenutzt und in die Atmosphäre abgegeben wird. Halbwertszeit Die Zeit, in der die Hälfte der Menge der Atomkerne eines bestimmten radioaktiven Stoffes zerfallen ist. Nach zwei Halbwertszeiten liegt demnach noch ein Viertel der Anfangsmenge vor, nach drei Halbwertszeiten ein Achtel usw. Nach zehn Halbwertszeiten ist die Menge und die Aktivität eines radioaktiven Stoffes auf 1/1024 oder rund ein Promille des Anfangswertes gesunken usw. Die Halbwertszeit ist charakteristisch für eine bestimmte radioaktive Atomkernsorte („Nuklid“). Herausgabeverfahren Nicht jeder Stoff oder Gegenstand in einer kerntechnischen Anlage , der von einer Genehmigung nach § 7 Atomgesetz umfasst ist, ist zwingend radioaktiv kontaminiert oder aktiviert . Stoffe, Gegenstände, Gebäude oder Bodenflächen, die nachweislich von Vornherein weder radioaktiv kontaminiert noch aktiviert sind, fallen nicht unter das in der Strahlenschutzverordnung geregelte Freigabeverfahren . Ein klassisches Beispiel ist ein Anlagenzaun, der in der Genehmigung gefordert wird (also zum genehmigten Bereich gehört), aber nie mit Strahlung oder radioaktiven Stoffen in Verbindung stand. Das Herausgabeverfahren stellt daher ergänzend sicher, dass die Entlassung auch dieser Materialien aus dem atomrechtlichen Genehmigungsbereich überwacht wird. Das Verfahren wird behördlich begleitet. Das Herausgabeverfahren wird grundsätzlich in der Genehmigung zu Stilllegung und Abbau einer kerntechnischen Anlage festgelegt und im atomrechtlichen Aufsichtsverfahren, d.h. bei der nachfolgenden Stilllegung und dem Abbau der kerntechnischen Anlage, angewendet. IAEA Internationale Atomenergie-Organisation IMIS Das Integrierte Mess- und Informationssystem zur Überwachung der Radioaktivität in der Umwelt ( IMIS ) dient dazu, die Radioaktivität in der Umwelt zum Schutz der Bevölkerung zu überwachen, und ist im Strahlenschutzgesetz verankert. Die Überwachungsaufgaben werden zwischen Bund und Ländern aufgeteilt. INES INES steht für International Nuclear and Radiological Event Scale und ist eine Internationale Bewertungsskala für nukleare Ereignisse in kerntechnischen Anlagen (Kernkraftwerken, Zwischenlager etc.), aber auch allgemein bei sämtlichen Ereignissen im Zusammenhang mit radioaktiven Stoffen . Informelles Verfahren Das informelle Verfahren ist vom formellen Genehmigungsverfahren zu unterscheiden. Es dient zunächst ausschließlich der frühzeitigen Information aller potentiell Betroffenen eines bestimmten Vorhabens und steht in der alleinigen Verantwortung des Vorhabenträgers. Das informelle Verfahren umfasst z.B. Informationsveranstaltungen oder eine erweiterte Medienpräsenz. Es steht dem Vorhabenträger weiterhin zu, bei Bedarf eine Dialoggruppe einzurichten, der eine aktive Mitwirkung vorbehalten sein kann. Iodblockade Bei einem Unfall in einer kerntechnischen Anlage kann unter anderem auch radioaktives Iod freigesetzt werden. Durch die rechtzeitige Einnahme von hochdosierten Iodid-Tabletten kann die – Iod speichernde – Schilddrüse mit nicht radioaktivem Iod gesättigt und so die Aufnahme radioaktiven Iods verhindert werden. Siehe auch: Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit ionisierende Strahlung Strahlung, die so energiereich ist, dass sie beim Auftreffen auf Luftmoleküle aus diesen Elektronen herausschlagen, also sie ionisieren kann. Dabei wird üblicherweise bei dem Begriff “Strahlung” nicht zwischen lichtartiger Strahlung (Röntgenstrahlung oder Gammastrahlung) und Strömen energiereicher Teilchen (Alphastrahlung, Betastrahlung, Neutronenstrahlung usw.) unterschieden – für die Naturwissenschaft ist ein Scheinwerferstrahl ein “Strahl”, ein Wasserstrahl aber auch (diese beiden sind aber nicht ionisierend). Mehr zu ionisierender Strahlung und deren Wirkung beim Bundesamt für Strahlenschutz . Katastrophenschutzplan Er beschreibt Maßnahmen zum Schutz der Bevölkerung in der Umgebung des Forschungsreaktors BER II und dient dem Zweck, die Zeit zwischen einem Schadensereignis und den zu treffenden Einsatzmaßnahmen optimal zu nutzen und damit die Schäden in der Umgebung zu begrenzen, die bei einem schweren Unfall entstehen können. Dabei beschreibt der Katastrophenschutzplan die der Planung zugrundeliegende Ausgangslage, das gefährdete Gebiet, die Aufgaben der Gefahrenabwehr und die Zusammenarbeit der zuständigen Behörden und Einrichtungen. Kerntechnische Anlage Kerntechnische Anlagen sind ortsfeste Anlagen, die eine Genehmigung nach Atomgesetz benötigen. Hierunter fallen im eigentlichen Sinn Anlagen zur Erzeugung, Bearbeitung, Verarbeitung, Spaltung oder Aufbewahrung von Kernbrennstoffen oder zur Aufarbeitung bestrahlter Kernbrennstoffe, die alle eine Genehmigung nach § 7 des Atomgesetzes benötigen. Gemäß § 2 Abs. 3a des Atomgesetzes gelten außerdem folgende Einrichtungen als „kerntechnische Anlagen“: Anlagen zur Aufbewahrung von bestrahlten Kernbrennstoffen nach § 6 Abs. 1 oder Abs. 3 Atomgesetz, Anlagen zur Zwischenlagerung für radioaktive Abfälle, wenn die Zwischenlagerung direkt mit einer vorstehend bezeichneten kerntechnischen Anlage in Zusammenhang steht und sich auf dem Gelände der Anlage befindet. Einrichtungen, in denen mit Kernbrennstoffen sonst umgegangen wird (nach § 9 des Atomgesetzes), werden gelegentlich als „kerntechnische Einrichtung im weiteren Sinn“ in die Definition einbezogen. Kernbrennstoffe Was unter den Begriff „Kernbrennstoff“ zu verstehen ist, wird in § 2 Abs. 1 des Atomgesetzes genauer definiert. Danach sind Kernbrennstoffe eine Teilgruppe der radioaktiven Stoffe , und zwar “besondere spaltbare Stoffe“ u.a. in Form von Plutonium 239, Plutonium 241 oder mit den Isotopen 235 oder 233 angereichertem Uran. Mehr zu Kernbrennstoffen wird hier angeboten. Kerntechnisches Regelwerk Die Nutzung der Kernenergie ist in Deutschland durch verschiedene Gesetze, Verordnungen, Regelungen, Leit- und Richtlinien geregelt. Unterhalb der Gesetzes- und Verordnungsebene werden die Anforderungen durch das kerntechnische Regelwerk weiter konkretisiert. Weitere Informationen, u.a. auch zur Regelwerkspyramide, finden sich auf den Internetseiten des Bundesamtes für die Sicherheit der nuklearen Entsorgung (BASE) . Kontamination Gemäß § 3 Abs. 2 Nr. 19 der Strahlenschutzverordnung eine Verunreinigung von Arbeitsflächen, Geräten, Räumen, Wasser, Luft usw. durch radioaktiven Stoffe . Unter Oberflächenkontamination versteht man die Verunreinigung einer Oberfläche mit radioaktiven Stoffen. Für Zwecke des Strahlenschutzes wird bei der Oberflächenkontamination zwischen festhaftender und nicht festhaftender (ablösbarer) Kontamination unterschieden. Bei nicht festhaftender Oberflächenkontamination kann nicht ausgeschlossen werden, dass sich radioaktive Stoffe ablösen und verbreitet werden.“ Kontrollbereich siehe Strahlenschutzbereich Landessammelstelle Berlin (ZRA) Der Gesetzgeber verpflichtet jedes Bundesland eine Landessammelstelle für radioaktive Abfälle einzurichten. Diese nimmt Abfälle aus Medizin, Industrie und Forschung an, jedoch Betriebs- oder Stilllegungsabfälle von Kernkraftwerken oder anderen kerntechnischen Anlagen nur in speziell gelagerten Fällen mit besonderer Erlaubnis. Das Land Berlin hat dem Helmholtz-Zentrum Berlin den gesetzlichen Auftrag zum Betrieb der Berliner Landessammelstelle für radioaktive Abfälle, genannt „Zentralstelle für radioaktive Abfälle“, ZRA , übertragen. Die ZRA übernimmt folglich als Berliner Landessammelstelle schwach- und mittelradioaktive Abfälle , die z.B. bei Anwendern radioaktiver Stoffe in der Industrie, in der Medizin sowie in Forschung und Lehre des Landes Berlin anfallen. Mediator*in Der Begriff stammt aus dem Lateinischen und bedeutet “Vermittler“. Umgangssprachlich wird ein Mediator*in auch als Streitschlichter*in bezeichnet, da die Aufgabe darin besteht, einen Konflikt zwischen mehreren Parteien friedlich zu lösen. Meist gestaltet sich die Lösung in Form eines Kompromisses oder eines Vergleichs. Megawatt (MW) siehe Watt . Meldekategorien (siehe auch meldepflichtiges Ereignis ) Gemäß der Atomrechtlichen Sicherheitsbeauftragten- und Meldeverordnung werden meldepflichtige Ereignisse nach der Frist, in der die Aufsichtsbehörden unterrichtet werden müssen, in unterschiedliche Meldekategorien unterteilt. Sie werden im Einzelnen in den Anlagen 1 bis 5 der Atomrechtlichen Sicherheitsbeauftragten- und Meldeverordnung aufgeführt. Meldepflichtiges Ereignis Vorkommnis, das nach der Atomrechtlichen Sicherheitsbeauftragten- und Meldeverordnung der zuständigen Aufsichtsbehörde zu melden ist. Es handelt sich dabei bei weitem nicht nur um Unfälle oder Störfälle; diese machen erfahrungsgemäß nur einen sehr kleinen Bruchteil der meldepflichtigen Ereignisse aus. Zu melden sind (als „Normalmeldung“) unter anderem alle Abweichungen vom Normalzustand, die eine sicherheitswichtige Einrichtung beeinträchtigen könnten, auch wenn selbst deren Ausfall noch keine Gefahr darstellen würde. Ein Beispiel für eine Normalmeldung bei einem Forschungsreaktor (Bericht Seite 3 und 7) finden Sie hier . Wesentlichere Befunde sind als Eilmeldung oder gar als Sofortmeldung in das Meldesystem einzubringen. Meldepflichtige Ereignisse werden entsprechend in verschiedene Meldekategorien unterteilt. Weitere Informationen stellt das Bundesamt für die Sicherheit der nuklearen Entsorgung (BASE) hier . Mikrosievert Sievert ist die Maßeinheit der effektiven Dosis , benannt nach dem schwedischen Mediziner und Physiker Rolf Sievert. 1 Mikrosievert (µSv) sind 0,000 0001 Sievert (Sv). Bsp.: Eine Zahnaufnahme erzeugt pro Anwendung eine Dosis von weniger als 10 µSv. Millisievert 1 Millisievert (mSv) sind 1000 Mikrosievert (µSv) oder 0,001 Sievert (Sv). Bsp.: Die Dosis einer Ganzkörper-Computertomographie eines Erwachsenen beträgt pro Anwendung ca. 10 mSv. Mittelradioaktive Abfälle siehe Radioaktiver Abfall Neutronen Neutronen sind ungeladene Elementarteilchen. Sie werden insbesondere bei der Kernspaltung freigesetzt. Die Kernspaltung ist nur für schwere Atomkerne (z.B. vom Element Uran) charakteristisch. Die Neutronenstrahlung besitzt wie die Gammastrahlung ein hohes Durchdringungsvermögen und erfordert zur Abschirmung ebenfalls einen stärkeren Einsatz von Abschirmmaterialien. Mehr zu Neutronen und Neutronenstrahlung finden Sie hier . Organdosis Die Organdosis berücksichtigt die unterschiedliche biologische Wirksamkeit verschiedener Arten ionisierender Strahlung (bei gleicher Energiedosis). Sie ist das Produkt aus der Organ-Energiedosis und dem Strahlungs-Wichtungsfaktor. Beim Vorliegen mehrerer Strahlungsarten ist die gesamte Organdosis die Summe der ermittelten Einzelbeiträge. Die Einheit der Organdosis ist J/kg mit dem speziellen Namen Sievert (Sv). Ortsdosis Ortsdosis ist eine operative Messgröße zur Abschätzung der Strahlenmenge an einem Ort und ist definiert als die Äquivalentdosis für Weichteilgewebe (z.B. Fettgewebe und Muskelgewebe), gemessen an einem bestimmten Ort. Ortsdosisleistung (ODL) Die Ortsdosisleistung ist die pro Zeitintervall erzeugte Ortsdosis. Die Ortsdosis ist die Äquivalentdosis für Weichteilgewebe (z.B. Muskelgewebe oder Fettgewebe), gemessen an einem bestimmten Ort. Personendosis Personendosis ist eine operative Messgröße zur Abschätzung der von einer Person erhaltenen Dosis und ist definiert als die Äquivalentdosis gemessen an einer repräsentativen Stelle der Körperoberfläche. Personendosimeter Messgeräte zur Bestimmung der Personendosis als Schätzwert für die Körperdosis einer Person durch externe Bestrahlung (§§ 66 und 172 StrlSchV ). Radioaktiver Stoff Radioaktive Stoffe ( Kernbrennstoffe und sonstige radioaktive Stoffe) im Sinne von § 2 Abs. 1 des Atomgesetzes sind alle Stoffe, die folgende Bedingungen erfüllen: Sie enthalten ein oder mehrere Radionuklide und ihre Aktivität oder spezifische Aktivität kann im Zusammenhang mit der Kernenergie oder dem Strahlenschutz nicht außer Acht gelassen werden. Wann die Aktivität oder spezifische Aktivität eines Stoffes nicht außer Acht gelassen werden kann ist in den Regelungen des Atomgesetzes (§ 2 Absatz 2 AtG) oder der Strahlenschutzverordnung festgeschrieben. In der Bundesrepublik sind Stoffe mit zerfallenden Atomkernen daher kein „radioaktiver Stoff“, wenn in der Strahlenschutzverordnung festgelegt ist, festgelegt ist, dass die entstehende Strahlung unwesentlich ist. Solche Festlegungen findet man z.B. in § 5 der Strahlenschutzverordnung (StrlSchV). Das neue Strahlenschutzgesetz greift in seinem § 3 diese Definition aus dem Atomgesetz auf. Mehr zu Grenzwerten im Strahlenschutz finden Sie hier . Radioaktivität Radioaktivität ist die Eigenschaft bestimmter Stoffe, sich spontan (ohne äußere Wirkung) umzuwandeln (zu „zerfallen“) und dabei charakteristische Strahlung (ionisierende Strahlung) auszusenden. Die Radioaktivität wurde 1896 von Antoine Henri Becquerel an Uran entdeckt. Wenn die Stoffe, genauer gesagt, die Radionuklide, in der Natur vorkommen, spricht man von natürlicher Radioaktivität; sind sie ein Produkt von Kernumwandlungen in Kernreaktoren oder Beschleunigern, so spricht man von künstlicher Radioaktivität. Mehr über die Wirkung ionisierender Strahlung finden Sie hier . Röntgenstrahlung Durchdringende elektromagnetische Strahlung mit einem Frequenzspektrum (und Energie) zwischen Ultraviolettstrahlung und Gammastrahlung. Mehr zum Thema „Wie wirkt Röntgenstrahlung?“ finden Sie hier . Auch bei Röntgenstrahlung gelten die Grundsätze des Strahlenschutzes. Mehr dazu wird hier angeboten. Rückbauverfahren Der Abbauprozess einer kerntechnischen Anlage , welcher typischerweise aus verschiedenen Verfahrensschritten besteht, z.B. Dekontamination, Demontage, Gebäudeabriss. Sicherheitsbericht Der Sicherheitsbericht ist Teil der einzureichenden Antragsunterlagen zu Stilllegung und Rückbau einer kerntechnischen Anlage . Er legt die relevanten Auswirkungen des Vorhabens im Hinblick auf die kerntechnische Sicherheit und den Strahlenschutz dar. Er soll außerdem Dritten die Beurteilung ermöglichen, ob die mit der Stilllegung und dem Abbau verbundenen Auswirkungen sie in ihren Rechten verletzen könnten. Sperrbereich siehe Strahlenschutzbereich Stilllegung Die Stilllegung einer kerntechnischen Anlage besteht hauptsächlich aus dem Rückbau (siehe Rückbauverfahren ) des nuklearen Teils und der Entsorgung des radioaktiven Inventars „(Gesamtheit der in einer kerntechnischen Anlage enthaltenen radioaktiven Stoffe). Zielsetzung ist die Beseitigung der Anlage und Verwertung der Reststoffe so weit wie möglich. Stilllegungsverfahren Der Begriff „Stilllegungsverfahren“ bezeichnet den Gesamtprozess von der Einreichung des Grundantrages bis zur endgültigen Entlassung der kerntechnischen Anlage aus dem Atomgesetz. Strahlendosis siehe Dosis Strahlenexposition Ist ein Synonym für Strahlenbelastung. Bezeichnung für die Einwirkung ionisierender Strahlung auf Lebewesen oder Materie. Strahlenschutz (nur bezogen auf die schädigende Wirkung ionisierender Strahlung) Strahlenschutz dient dem Schutz von Menschen und Umwelt vor den schädigenden Wirkungen ionisierender Strahlung aus natürlichen oder künstlichen Strahlenquellen. Strahlenschutzbeauftragter Nach § 43 bis 44 der Strahlenschutzverordnung ( StrlSchV ) die Person, die neben dem Strahlenschutzverantwortlichen (Genehmigungsinhaber) in einem Betrieb für die Einhaltung der Strahlenschutzvorschriften im Rahmen seiner Befugnisse verantwortlich ist. Strahlenschutzbereich Strahlenschutzbereiche sind räumlich abgrenzbare Bereiche, die aus Strahlenschutzaspekten besonders überwacht und kontrolliert werden. Sie unterteilen sich in Überwachungsbereich, Kontrollbereich und Sperrbereich. Überwachungsbereich Nicht zum Kontrollbereich (und nicht zum Sperrbereich) gehörende betriebliche Bereiche, in denen Personen im Kalenderjahr eine effektive Dosis von mehr als 1 Millisievert oder eine Organ-Äquivalentdosis von mehr als 50 Millisievert für die Hände, die Unterarme, die Füße oder Knöchel oder eine lokale Hautdosis von mehr als 50 Millisievert: erhalten können. Der Zutritt zu einem Überwachungsbereich darf aus gesundheitlichen Gründen nur erlaubt werden, wenn Personen eine dem Betrieb dienende Aufgabe wahrnehmen oder ihr Aufenthalt in diesem Bereich zur Anwendung ionisierender Strahlung oder radioaktiver Stoffe an ihnen selbst oder als Betreuungs-, Begleit- oder Tierbegleitperson erforderlich ist, sie Auszubildende oder Studierende sind und der Aufenthalt in diesem Bereich zur Erreichung ihres Ausbildungszieles erforderlich ist oder sie Besucher sind. Kontrollbereich Sind Strahlenschutzbereiche, die aus Strahlenschutzaspekten besonders überwacht und kontrolliert werden und in denen Personen im Kalenderjahr eine effektive Dosis von mehr als 6 Millisievert oder eine Organ-Äquivalentdosis von mehr als 15 Millisievert für die Augenlinse oder 150 Millisievert für die Hände, die Unterarme, die Füße oder Knöchel oder eine lokale Hautdosis von mehr als 150 Millisievert erhalten können. Der Zutritt zu einem Kontrollbereich darf aus gesundheitlichen Gründen Personen nur erlaubt werden, wenn sie zur Durchführung oder Aufrechterhaltung der in diesem Bereich vorgesehenen Betriebsvorgänge tätig werden müssen, ihr Aufenthalt in diesem Bereich zur Anwendung ionisierender Strahlung oder radioaktiver Stoffe an ihnen selbst oder als Betreuungs-, Begleit- oder Tierbegleitperson erforderlich ist und eine zur Ausübung des ärztlichen, zahnärztlichen oder tierärztlichen Berufs berechtigte Person, die die erforderliche Fachkunde im Strahlenschutz besitzt, zugestimmt hat oder bei Auszubildenden oder Studierenden dies zur Erreichung ihres Ausbildungszieles erforderlich ist. Sperrbereich Bereiche des Kontrollbereichs, in denen die Ortsdosisleistung höher als 3 Millisievert (mSv) durch Stunde sein kann. Der Zutritt zu einem Sperrbereich darf aus gesundheitlichen Gründen nur erlaubt werden, wenn sie zur Durchführung der in diesem Bereich vorgesehenen Betriebsvorgänge oder aus zwingenden Gründen tätig werden müssen und sie unter der Kontrolle eines Strahlenschutzbeauftragten oder einer von ihm beauftragten Person, die die erforderliche Fachkunde im Strahlenschutz besitzt, stehen oder ihr Aufenthalt in diesem Bereich zur Anwendung ionisierender Strahlung oder radioaktiver Stoffe an ihnen selbst oder als Betreuungs- oder Begleitperson erforderlich ist und eine zur Ausübung des ärztlichen oder zahnärztlichen Berufs berechtigte Person, die die erforderliche Fachkunde im Strahlenschutz besitzt, schriftlich zugestimmt hat. Es gelten spezielle Reglungen für Schwangere. Umweltverträglichkeitsprüfung (UVP) Umweltverträglichkeitsprüfung im Stilllegungsgenehmigungsverfahren des Forschungsreaktors BER II: Die Durchführung einer UVP dient der frühzeitigen Feststellung, Erkennung und Bewertung der möglichen Auswirkungen des Rückbaus des Reaktors für Menschen, Tiere, Pflanzen sowie auf die Qualität der Böden, Luft, Gewässer, Klima, Landschaft, Kulturgüter und sonstige Schutzgüter. Die Durchführung der UVP ist bei der Stilllegung von Reaktoranlagen ab 1 kW thermischer Dauerleistung gesetzlich vorgeschrieben (vgl. der Forschungsreaktor BER II hat eine thermische Dauerleistung von 10 Megawatt ). Überwachungsbereich siehe Strahlenschutzbereich Watt Maßeinheit für Leistung. Der Forschungsreaktor BER II hat eine Nennleistung von 10 MW. Zum Vergleich: Ein mittleres Kernkraftwerk hat eine Nennleistung von ca. 1.400 MW. 1 Megawatt (MW) = 1.000.000 Watt (W) > 1 Gigawatt (GW) = 1.000 Megawatt (MW) = 1.000.000 Kilowatt (kW) = 1.000.000.000 Watt (W) Wetterparameter Ist eine Größe wie Temperatur, Windstärke oder Niederschlagsmenge, mit deren Hilfe eine Aussage über die Wetterverhältnisse gewonnen werden kann. Das spielt eine Rolle zum Beispiel bei der Vorhersage der Ausbreitung radioaktiver Stoffe nach einer Freisetzung. ZRA Die Zentralstelle für radioaktive Abfälle (ZRA) betreibt als Institution der Helmholtz-Zentrum Berlin GmbH die Landessammelstelle Berlin. Das Atomgesetz verpflichtet jedes Bundesland, eine Landessammelstelle zur Zwischenlagerung der in seinem Gebiet angefallenen radioaktiven Abfälle einzurichten. Zwischenlager Lagerort für radioaktive Abfälle, die aufbewahrt werden müssen, bis man sie an ein Endlager abgeben kann. Es werden Zwischenlager für hochradioaktive Abfälle ( Brennelemente und Wiederaufarbeitungsabfälle) und Zwischenlager für schwach- und mittelradioaktive Abfälle unterschieden.

Oberflächentemperaturen bei Tag und Nacht 1991

Großstädte sind dem Klimawandel besonders ausgesetzt. Die dichte Bebauung sorgt dafür, dass aus natürlichen Landschaften häufig Oberflächen aus Stein und Beton werden. Um einem ungünstigen Stadtklima entgegenzuwirken, werden in Berlin zahlreiche Messverfahren angewendet und ausgewertet, um auch auf diese Weise die Stadt-und Landschaftsplanung zu unterstützen. Eine Möglichkeit der beinahe zeitgleichen Erfassung eines großen Raumes ist die Nutzung von Satellitendaten. Zur Erfassung der Temperaturen von einzelnen Oberflächenelementen wie Dächer, Straßen und Baumkronen werden Aufnahmesysteme mit sogenannten Thermal-Infrarot (IR)-Rasteraufnahmen genutzt. Hierbei wird die Landschaft aus großer Höhe abgetastet. Dieser Art der Messung liegt das physikalische Prinzip zugrunde, dass alle Körper entsprechend ihrer Oberflächentemperatur Wärmestrahlung abgeben: Tagsüber ist der kurzwellige Strahlungsbereich bestimmend, er zeigt vor allem die direkte Einstrahlung der Sonnenenergie und ihre Absorption sowie Reflexion. Nachts beeinflusst der langwellige Bereich mit dem Bodenwärmestrom ausschließlich das thermische Ausstrahlungsverhalten eines Körpers. Der Berliner Raum wird etwa alle 14 Tage, jeweils am Abend und folgenden Vormittag überflogen, so dass damit ein Bild von den unterschiedlichen Tag- und Nacht-Oberflächentemperaturen auswertbar war. In bebauten Bereichen wie der Innenstadt kommt es zu hohen Temperaturwerten. Die kältesten Orte sind weitläufige Äcker und Felder außerhalb der Stadt. Sie möchten mehr über die Oberflächentemperaturen bis 2000 erfahren? Hier finden Sie Arbeitsergebnisse und Karten dazu. Die Inhalte dieses Jahrgangs sind historisch und nicht mehr aktuell. Einleitung Datengrundlage Methode Kartenbeschreibung Literatur Karten Download

Oberflächentemperaturen bei Tag und Nacht 2000

Großstädte sind dem Klimawandel besonders ausgesetzt. Die dichte Bebauung sorgt dafür, dass aus natürlichen Landschaften häufig Oberflächen aus Stein und Beton werden. Um einem ungünstigen Stadtklima entgegenzuwirken, werden in Berlin zahlreiche Messverfahren angewendet und ausgewertet, um auch auf diese Weise die Stadt-und Landschaftsplanung zu unterstützen. Eine Möglichkeit der beinahe zeitgleichen Erfassung eines großen Raumes ist die Nutzung von Satellitendaten. Zur Erfassung der Temperaturen von einzelnen Oberflächenelementen wie Dächer, Straßen und Baumkronen werden Aufnahmesysteme mit sogenannten Thermal-Infrarot (IR)-Rasteraufnahmen genutzt. Hierbei wird die Landschaft aus großer Höhe abgetastet. Dieser Art der Messung liegt das physikalische Prinzip zugrunde, dass alle Körper entsprechend ihrer Oberflächentemperatur Wärmestrahlung abgeben: Tagsüber ist der kurzwellige Strahlungsbereich bestimmend, er zeigt vor allem die direkte Einstrahlung der Sonnenenergie und ihre Absorption sowie Reflexion. Nachts beeinflusst der langwellige Bereich mit dem Bodenwärmestrom ausschließlich das thermische Ausstrahlungsverhalten eines Körpers. Der Berliner Raum wird etwa alle 14 Tage, jeweils am Abend und folgenden Vormittag überflogen, so dass damit ein Bild von den unterschiedlichen Tag- und Nacht-Oberflächentemperaturen auswertbar war. In bebauten Bereichen wie der Innenstadt kommt es zu hohen Temperaturwerten. Die kältesten Orte sind weitläufige Äcker und Felder außerhalb der Stadt. Sie möchten mehr über die Oberflächentemperaturen bis 2000 erfahren? Hier finden Sie Arbeitsergebnisse und Karten dazu. Die Inhalte dieses Jahrgangs sind aktuell. Einleitung Datengrundlage Methode Kartenbeschreibung Literatur Karten Download

Beheizung von Gebaeuden und Wasser mit der Abwaerme einer Zementfabrik

Das Projekt "Beheizung von Gebaeuden und Wasser mit der Abwaerme einer Zementfabrik" wird vom Umweltbundesamt gefördert und von INTERATOM durchgeführt. Objective: Partial utilization of rotary kiln jacket waste heat to heat buildings and water for industrial use, by way of a radiation absorber. Concurrently a measuring programme is to take place for the long term evaluation of the following: - availability; - operating behaviour; - influencing kiln jacket temperature; - real energy saving costs; - operating costs; - commercial efficiency. Annual heating oil saving of +-130,000 litres is anticipated. General Information: Absorber design is to the following specifications: - heat transfer surface 103 m2; - length 6 m; - power at 370 deg C jacket; - temperature 650 kW; - power at 300 deg C jacket; - temperature 400 kW. The absorber is comprised of 12 single, level heat exchanger thermo plates. The plates are coated with black absorbent lacquer on the kiln side and equipped with weather-proof thermal insulation on the rear. The absorber plates, mounted on 2 swivel steel constructions, form two heptagonal half-shells completely enclosing the kiln over a length of 6 m at a distance of 0,5 m. The absorber loop absorbs heat from the radiation absorber, transferring it to hydraulically decoupled heating loops via three intermediate heat exchangers. A glycol-water mixture acts as heat transfer medium in the absorber loop. If less heat is required inlet temperature is limited by a 3-way valve whereby heat surplus to requirements is discharged to the cooling loop. In normal circumstances the absorber provides 100 per cent of the heat supply. The intermediate heat exchanger is by-passed at temperatures below 60 deg. C. In the event of heating loop failure the cooling loop acts as emergency cooling system and is designed for removal of total absorber output. Achievements: Acceptance tests were performed on the radiation absorber for different inlet temperatures of the heat transfer medium into the absorber, and for different absorber positions. Relevant input data for the absorber were inlet and outlet temperatures at the absorber, and its throughput. At a measuring cycle of two measures/min. power was recorded. The average hourly power was automatically printed. Kiln temperature was measured in the vicinity of the absorber at initially three, then five and in most cases seven almost equidistant positions. Kiln shell temperature was between 256 deg.C and 369 deg.C; absorber power, at different positions and inlet temperatures, was between 121 kW and 401 kW. The fact that the anticipated power of 600 kW was not achieved is due primarily to the inadequate tightness of the absorber system, in particular at the lower and upper 12 cm gap between the half shells. A vertical flow velocity of 2 m/s was measured there with an anemometer. With heat transfer coefficients of 6.4W/m2K for the kiln and 5.7W/m2K for the absorber for free connective flow, a convection loss of 180 kW results for the kiln and of 40 kW for the absorber. This is a total of 220 kW. 50 per cent of this can certainly be used with adequate ...

Oberflächentemperaturen bei Tag und Nacht 1991

Die Einbeziehung klimatologischer Gesichtspunkte in die Bewertung der Umweltsituation städtischer Ballungsgebiete und deren räumliche Planung setzt zunächst eine Definition des Begriffes Stadtklima voraus. Unter Stadtklima versteht man nach Schirmer et al. (1987) “das gegenüber dem Umland stark modifizierte Mesoklima von Städten und Industrieballungsräumen. Es umfasst das gesamte Volumen der bodennahen Luftschicht oberhalb und in unmittelbarer Umgebung der Stadt bzw. der städtischen Grenzschicht. Verursacht wird es durch die Art und Dichte der Bebauung, das Wärmespeicherungsvermögen der Baustoffe, die Versiegelung des Bodens, das Fehlen von Vegetation, durch einen veränderten Wasserhaushalt und die vermehrte Emission von Abgasen, Aerosolen und Abwärme.” Für die Bewertung der jeweiligen Klimasituation fehlen verbindliche Grenz- und Richtwerte. Als Idealzustand sollte ein Stadtklima angestrebt werden, das weitgehend frei von Schadstoffen ist und den Stadtbewohnern eine möglichst große Vielfalt an Atmosphärenzuständen unter Vermeidung von Extremen bietet (vgl. Deutsche Meteorologische Gesellschaft 1989). Zur Erfassung des städtischen Klimas bietet sich neben der Anwendung der Methoden der klassischen klimatologischen Forschung mit Messfahrten und Messgängen (vgl. Karten 04.02 – 04.05) auch die Berechnung der Temperaturen der einzelnen Oberflächenelemente (Dächer, Straßen, Baumkronen usw.) mittels Thermal-Infrarot(IR)-Rasteraufnahmen an. Dabei wird von dem physikalischen Prinzip ausgegangen, dass alle Körper entsprechend ihrer Oberflächentemperatur Wärmestrahlung abgeben (vgl. Methode). Als Steuerungsgröße für den Wärmehaushalt der Erdoberfläche kommt der Wärmestrahlung und damit der Oberflächentemperatur als Bestandteil der Strahlungsbilanz jedes Körpers eine große Bedeutung zu. Während tagsüber der kurzwellige Strahlungsbereich vor allem mit der direkten Einstrahlung der Sonnenenergie und ihrer Absorption bzw. Reflexion (Albedo, vgl. Tab.1) an der Körperoberfläche bestimmend ist, beeinflusst nachts der langwellige Bereich mit dem Bodenwärmestrom ausschließlich das thermische Ausstrahlungsverhalten eines Körpers. Je nach Art und Beschaffenheit von Oberflächen ergeben sich deshalb bei gleichen Einstrahlungs- und Ausstrahlungsbedingungen u.U. erhebliche Unterschiede in der Oberflächentemperatur (vgl. Abb.1). Für (städtische) Klimaanalysen liegt der wesentliche Nutzen von Thermalkarten in ihrem flächenhaften, digital verarbeitbaren Informationsgehalt . Es ist zu unterscheiden zwischen Infrarot-Aufnahmen mit Thermal-Scannern von Flugzeugen aus und den für die vorliegenden Karten benutzten Satellitendaten . Unter Berücksichtigung der Größe Berlins und des engeren Verflechtungsraumes von fast 2 000 km2 ermöglicht nur ein satellitengestütztes Verfahren die jeweils fast zeitgleiche Erfassung der langwelligen Eigenstrahlung der Erde (Oberflächentemperatur) in einer aufeinanderfolgenden Nacht-/Tagsituation. Andererseits sind die Überfliegungszeiten des Satelliten nicht beeinflussbar und in diesem Falle für den Berliner Raum als nicht optimal einzuschätzen (vgl. Datengrundlage). Die Interpretation der IR-Thermalbilder erlaubt es, einzelnen Oberflächenelementen und Raumeinheiten über die spezielle erfasste Situation hinaus qualitativ allgemeine thermische Eigenschaften zuzuordnen. Diese Umsetzung setzt jedoch großes klimatisches Fachwissen und die Nutzung weiterer Datengrundlagen wie Nutzungs- und Reliefkarten voraus, da die Ausprägung der Oberflächentemperatur verschiedener Nutzungsstrukturen im Rasterbild stets das Ergebnis komplexer physikalischer Prozesse ist, an denen verschiedene horizontale und vertikale Wärmeflüsse und Energieumsätze (Verdunstung, Kondensation) beteiligt sind. Unter Einbeziehung weiterer klimatologischer Parameter wie Lufttemperatur und Windgeschwindigkeit können Oberflächentemperaturkarten zusätzlich als Unterstützung für die Bestimmung von Klimafunktionsräumen herangezogen werden (vgl. Karte 04.07).

Oberflächentemperaturen bei Tag und Nacht 2000

Die Einbeziehung klimatologischer Gesichtspunkte in die Bewertung der Umweltsituation städtischer Ballungsgebiete und deren räumliche Planung setzt zunächst eine Definition des Begriffes Stadtklima voraus. Unter Stadtklima versteht man nach Schirmer et al. (1987) “das gegenüber dem Umland stark modifizierte Mesoklima von Städten und Industrieballungsräumen. Es umfasst das gesamte Volumen der bodennahen Luftschicht oberhalb und in unmittelbarer Umgebung der Stadt bzw. der städtischen Grenzschicht. Verursacht wird es durch die Art und Dichte der Bebauung, das Wärmespeicherungsvermögen der Baustoffe, die Versiegelung des Bodens, das Fehlen von Vegetation, durch einen veränderten Wasserhaushalt und die vermehrte Emission von Abgasen, Aerosolen und Abwärme.” Bewertungs- und Untersuchungsansätze Für die Bewertung der jeweiligen Klimasituation fehlen verbindliche Grenz- und Richtwerte analog den Luftgüte-Werten des Bundes-Immissionsschutz-Gesetzes. Empfehlenden Charakter besitzt eine Richtlinie der Kommission Reinhaltung der Luft im VDI (vgl. Verein Deutscher Ingenieure (VDI) 3787 Blatt 2 1998). Diese hat das Ziel, Bewertungsverfahren der Human-Biometeorologie als Standard für die auf Menschen bezogene Berücksichtigung von Klima und Lufthygiene (Bioklima) bei der Stadt- und Regionalplanung bereitzustellen. Die Human-Biometeorologie beschäftigt sich mit den Wirkungen von Wetter, Witterung, Klima und Lufthygiene auf den menschlichen Organismus. Im vorliegenden ersten Teil dieser Richtlinie werden die human-biometeorologischen Wirkungskomplexe zusammengestellt und die empfohlenen Bewertungsmethoden für den Bereich “Klima” erläutert. Insbesondere steht hierbei der thermische Wirkungskomplex im Vordergrund, der in der Stadt- und Regionalplanung mit dem Ziel eingesetzt werden soll, gesunde Wohn- und Arbeitsbedingungen zu sichern. Mit seiner Hilfe können planerische Fragestellungen aus bioklimatologischer Sicht behandelt werden. Als Idealzustand sollte ein Stadtklima angestrebt werden, das weitgehend frei von Schadstoffen ist und den Stadtbewohnern eine möglichst große Vielfalt an Atmosphärenzuständen unter Vermeidung von Extremen bietet (vgl. Deutsche Meteorologische Gesellschaft 1989). Zur Erfassung des städtischen Klimas bietet sich neben der Anwendung der Methoden der klassischen klimatologischen Forschung mit Messfahrten und Messgängen (vgl. Karten 04.02 – 04.05) auch die Berechnung der Temperaturen der einzelnen Oberflächenelemente (Dächer, Straßen, Baumkronen usw.) mittels Thermal-Infrarot (IR)-Rasteraufnahmen an. Dabei wird von dem physikalischen Prinzip ausgegangen, dass alle Körper entsprechend ihrer Oberflächentemperatur Wärmestrahlung abgeben (vgl. Methode). Indikatoren Als Steuerungsgröße für den Wärmehaushalt der Erdoberfläche kommt der Wärmestrahlung und damit der Oberflächentemperatur als Bestandteil der Strahlungsbilanz jedes Körpers eine große Bedeutung zu. Während tagsüber der kurzwellige Strahlungsbereich vor allem mit der direkten Einstrahlung der Sonnenenergie und ihrer Absorption bzw. Reflexion (Albedo, vgl. Tab. 1) an der Körperoberfläche bestimmend ist, beeinflusst nachts der langwellige Bereich mit dem Bodenwärmestrom ausschließlich das thermische Ausstrahlungsverhalten eines Körpers. Je nach Art und Beschaffenheit von Oberflächen ergeben sich deshalb bei gleichen Einstrahlungs- und Ausstrahlungsbedingungen u.U. erhebliche Unterschiede in der Oberflächentemperatur (vgl. Abb. 1). Digitale Thermalkarten Für (städtische) Klimaanalysen liegt der wesentliche Nutzen von Thermalkarten in ihrem flächenhaften, digital verarbeitbaren Informationsgehalt . Es ist zu unterscheiden zwischen Infrarot-Aufnahmen mit Thermal-Scannern von Flugzeugen aus und den für die vorliegenden Karten benutzten Satellitendaten . Unter Berücksichtigung der Größe Berlins und des engeren Verflechtungsraumes von fast 2 000 km² ermöglicht nur ein satellitengestütztes Verfahren die jeweils fast zeitgleiche Erfassung der langwelligen Eigenstrahlung der Erde (Oberflächentemperatur) in einer aufeinanderfolgenden Nacht-/Tagsituation. Andererseits sind die Überfliegungszeiten des Satelliten nicht beeinflussbar und in diesem Falle für den Berliner Raum als nicht optimal einzuschätzen (vgl. Datengrundlage). Die Interpretation der IR-Thermalbilder erlaubt es, einzelnen Oberflächenelementen und Raumeinheiten über die spezielle erfasste Situation hinaus qualitativ allgemeine thermische Eigenschaften zuzuordnen. Diese Umsetzung setzt jedoch großes klimatisches Fachwissen und die Nutzung weiterer Datengrundlagen wie Nutzungs- und Reliefkarten voraus, da die Ausprägung der Oberflächentemperatur verschiedener Nutzungsstrukturen im Rasterbild stets das Ergebnis komplexer physikalischer Prozesse ist, an denen verschiedene horizontale und vertikale Wärmeflüsse und Energieumsätze (Verdunstung, Kondensation) beteiligt sind. Unter Einbeziehung weiterer klimatologischer Parameter wie Lufttemperatur und Windgeschwindigkeit können Oberflächentemperaturkarten zusätzlich als Unterstützung für die Bestimmung von Klimafunktionsräumen herangezogen werden (vgl. Karte 04.07).

Oberflächentemperaturen bei Tag und Nacht

2000 (aktuell) | 1991 Großstädte sind dem Klimawandel besonders ausgesetzt. Die dichte Bebauung sorgt dafür, dass aus natürlichen Landschaften häufig Oberflächen aus Stein und Beton werden. Um einem ungünstigen Stadtklima entgegenzuwirken, werden in Berlin zahlreiche Messverfahren angewendet und ausgewertet, um auch auf diese Weise die Stadt-und Landschaftsplanung zu unterstützen. Eine Möglichkeit der beinahe zeitgleichen Erfassung eines großen Raumes ist die Nutzung von Satellitendaten. Zur Erfassung der Temperaturen von einzelnen Oberflächenelementen wie Dächer, Straßen und Baumkronen werden Aufnahmesysteme mit sogenannten Thermal-Infrarot (IR)-Rasteraufnahmen genutzt. Hierbei wird die Landschaft aus großer Höhe abgetastet. Dieser Art der Messung liegt das physikalische Prinzip zugrunde, dass alle Körper entsprechend ihrer Oberflächentemperatur Wärmestrahlung abgeben: Tagsüber ist der kurzwellige Strahlungsbereich bestimmend, er zeigt vor allem die direkte Einstrahlung der Sonnenenergie und ihre Absorption sowie Reflexion. Nachts beeinflusst der langwellige Bereich mit dem Bodenwärmestrom ausschließlich das thermische Ausstrahlungsverhalten eines Körpers. Der Berliner Raum wird etwa alle 14 Tage, jeweils am Abend und folgenden Vormittag überflogen, so dass damit ein Bild von den unterschiedlichen Tag- und Nacht-Oberflächentemperaturen auswertbar war. In bebauten Bereichen wie der Innenstadt kommt es zu hohen Temperaturwerten. Die kältesten Orte sind weitläufige Äcker und Felder außerhalb der Stadt. Sie möchten mehr über die Oberflächentemperaturen bis 2000 erfahren? Hier finden Sie Arbeitsergebnisse und Karten dazu. 04.10.03 Strahlungstemperatur

Cloud-scale Uncertainties - B4: Radiative heating and cooling at cloud scale and its impact on dynamics

Das Projekt "Cloud-scale Uncertainties - B4: Radiative heating and cooling at cloud scale and its impact on dynamics" wird vom Umweltbundesamt gefördert und von Ludwig-Maxililians-Universität München, Meteorologisches Institut, Lehrstuhl für Experimentelle Meteorologie durchgeführt. Clouds are important sources and sinks of diabatic heat, not only in terms of latent heat release but also with respect to absorption of solar radiation as well as absorption and emission of thermal radiation. Additionally, cloud shadows on the ground modify surface heating and thus sensible and latent heat fluxes. Although it has been demonstrated that cloud top cooling may reach values of several 100 K/day and that this may have a strong impact on cloud microphysics and local cloud evolution, it has not been demonstrated that there is actually an effect on weather, larger scale dynamics, and on atmospheric flow. This is even more true for radiative cooling from cloud sides which has been shown to reach values comparable to cloud top cooling but is completely neglected by any (one-dimensional) radiation scheme in current NWP or climate models. Radiation firstly affects the growth of cloud droplets, increasing (in case of thermal cooling) or decreasing (in case of solar heating) the rate by which they dissipate the energy released by latent heat. Secondly, the surrounding air is cooled or heated which directly feeds back on dynamics. The aim of the project is to study the question if realistic, three-dimensional radiative heating rates have an impact on cloud formation, and if there is an impact on atmospheric flow beyond cloud scale. To answer these questions, a reasonably fast but accurate representation of radiative heating rates in clouds will be developed for a cloud scale (EULAG) and an NWP model (COSMO). The project builds upon our previous work on three-dimensional heating and cooling rates and on development of reasonably fast approximations. A parameterization of heating rates depends strongly on the scale. For a cloud-resolving model like EULAG with a 100 m grid size and smaller, different approaches are needed compared to a numerical weather forecast model like COSMO: A cloud-resolving model allows properly resolving the radiation processes, but three-dimensional radiation transport requires interaction between many grid columns in the calculation which is a challenge for parallelization. The resolution of COSMO, on the other hand, requires parameterization of un-resolved cloud edge effects and sub-pixel cloudiness, but would need less interaction between individual grid columns. As a first step, we will study the impact of radiative heating and cooling in clouds on local circulation at cloud scale. For that purpose, an accurate yet fast approximation for 3D solar and thermal heating and cooling rates will be developed for the EULAG model in order to systematically study effects for a set of cloud-resolving simulations. (abridged text)

Messung des Wasserdampf-Treibhauseffekts in der Arktis und den Alpen

Das Projekt "Messung des Wasserdampf-Treibhauseffekts in der Arktis und den Alpen" wird vom Umweltbundesamt gefördert und von Bayerisches Staatsministerium für Umwelt und Verbraucherschutz durchgeführt. Obwohl Wasserdampf als Treibhausgas Nr. 1 für unser Klimasystem von großer Bedeutung ist, ist die Datenlage für Wasserdampf unzureichend. Durch hochauflösende Langzeitmessungen am hochalpinen Standort der Umweltforschungsstation Schneefernerhaus (UFS) und am arktischen Standort des Arctic Lidar Observatory for Middle Atmosphere Research (ALOMAR) in Norwegen soll der Einfluss der Vertikalverteilung von Wasserdampf auf die bodengerichtete Wärmestrahlung untersucht werden, um so Defizite in den bestehenden Modellen identifizieren und Klimaprognosen verbessern zu können. Das Institut für Meteorologie und Klimaforschung (IMK-IFU) des Karlsruher Instituts für Technologie (KIT) führt das FuE-Projekt in Kooperation mit der norwegischen Forschungsstation ALOMAR durch (Know-how-Transfer).

1 2 3 4 518 19 20