API src

Found 38 results.

Heat recovery in the production of phosphoric acid

Das Projekt "Heat recovery in the production of phosphoric acid" wird vom Umweltbundesamt gefördert und von BK Ladenburg GmbH durchgeführt. Objective: The combustion of yellow phosphorus generates 24,350 kJ of heat per kg of the substance. The large-scale production of phosphoric acid involves the combustion of yellow phosphorus. The considerable amounts of heat generated in this process have been evacuated by means of cooling water. The project suggests to utilize this heat, in the future, for the generation of steam and to have it converted into electric power. This process-heat recovery enables considerable savings of primary energy (coal, oil, gas). General Information: The heat generated by the large-scale combustion of phosphorus is absorbed, in an acid tower, by recirculating acid. The recirculating acid then releases the heat previously absorbed into a heat exchanger (cooling water). The amounts of heat thus transferred are subsequently released, mainly in the form of steam, from the cooling tower into the atmosphere. Now, the new method suggests an upstream combustion chamber before the acid tower, thus utilizing a major part of the heat generated in the combustion of yellow phosphorus for the production of energy. The new method represents an energy-recovery process on a very high temperature level, with the possibility to produce high-pressure to medium-pressure steam with subsequent power/heat coupling. The estimated energy generation, at 8000 hours, would be as follows: Steam 15 t/h = 120,000 t/a with steam-pressure reduction from 80 bars/550 degree of Celsius to 40 bars/450 degree of Celsius. Electric power: 550 kWh = 4,400 mWh/a. Achievements: The project cannot be carried on, for the following reasons: - The capital expense (investment), in view of the actual cost level, will be approx. 30-40 per cent higher than estimated at the time of submission. - The capital payback period, due to the price decline for primary energy, will be excessively long (7 years); longer than there is an assured supply of phosphorus. - Since 1985, in view of a modified strategy, our company has increased its efforts to manufacture speciality products rather than to produce mass phosphates (commodities); this will lead to a reduced demand of phosphorus in the future. - A drastic collapse, since early 1986, in the sale of phosphate salts used in washing powers, detergents, and cleaning agents, will further reduce the amounts of phosphorus needed in the manufacture of our product line. - A major aspect of the project was the purchase of energy by Joh. A. Benckiser, with whom we have a joint network. Joh. A. Benckiser are no longer prepared to purchase any such energy.

Beheizung von Gebaeuden und Wasser mit der Abwaerme einer Zementfabrik

Das Projekt "Beheizung von Gebaeuden und Wasser mit der Abwaerme einer Zementfabrik" wird vom Umweltbundesamt gefördert und von INTERATOM durchgeführt. Objective: Partial utilization of rotary kiln jacket waste heat to heat buildings and water for industrial use, by way of a radiation absorber. Concurrently a measuring programme is to take place for the long term evaluation of the following: - availability; - operating behaviour; - influencing kiln jacket temperature; - real energy saving costs; - operating costs; - commercial efficiency. Annual heating oil saving of +-130,000 litres is anticipated. General Information: Absorber design is to the following specifications: - heat transfer surface 103 m2; - length 6 m; - power at 370 deg C jacket; - temperature 650 kW; - power at 300 deg C jacket; - temperature 400 kW. The absorber is comprised of 12 single, level heat exchanger thermo plates. The plates are coated with black absorbent lacquer on the kiln side and equipped with weather-proof thermal insulation on the rear. The absorber plates, mounted on 2 swivel steel constructions, form two heptagonal half-shells completely enclosing the kiln over a length of 6 m at a distance of 0,5 m. The absorber loop absorbs heat from the radiation absorber, transferring it to hydraulically decoupled heating loops via three intermediate heat exchangers. A glycol-water mixture acts as heat transfer medium in the absorber loop. If less heat is required inlet temperature is limited by a 3-way valve whereby heat surplus to requirements is discharged to the cooling loop. In normal circumstances the absorber provides 100 per cent of the heat supply. The intermediate heat exchanger is by-passed at temperatures below 60 deg. C. In the event of heating loop failure the cooling loop acts as emergency cooling system and is designed for removal of total absorber output. Achievements: Acceptance tests were performed on the radiation absorber for different inlet temperatures of the heat transfer medium into the absorber, and for different absorber positions. Relevant input data for the absorber were inlet and outlet temperatures at the absorber, and its throughput. At a measuring cycle of two measures/min. power was recorded. The average hourly power was automatically printed. Kiln temperature was measured in the vicinity of the absorber at initially three, then five and in most cases seven almost equidistant positions. Kiln shell temperature was between 256 deg.C and 369 deg.C; absorber power, at different positions and inlet temperatures, was between 121 kW and 401 kW. The fact that the anticipated power of 600 kW was not achieved is due primarily to the inadequate tightness of the absorber system, in particular at the lower and upper 12 cm gap between the half shells. A vertical flow velocity of 2 m/s was measured there with an anemometer. With heat transfer coefficients of 6.4W/m2K for the kiln and 5.7W/m2K for the absorber for free connective flow, a convection loss of 180 kW results for the kiln and of 40 kW for the absorber. This is a total of 220 kW. 50 per cent of this can certainly be used with adequate ...

Gasmotorgetriebene Waermepumpe mit Waermeextraktion aus dem Boden fuer die Raumheizung

Das Projekt "Gasmotorgetriebene Waermepumpe mit Waermeextraktion aus dem Boden fuer die Raumheizung" wird vom Umweltbundesamt gefördert und von Kreis Warendorf, Kreisdirektor durchgeführt. Objective: The aim of the project is to demonstrate the use of a gas compression heat pump with the soil as heat source in the heating range power above 1 000 kW. Energy savings of 50 per cent compared with a conventional boiler plant are envisaged. General Information: The heating plant of the district building in Warendorf consists of a combination of two gas heat pump units with three gas boilers to cover the peak load and produce hot water. The heat pumps are dimensioned for coverage of the transmission heat demand of 1 150 kW, two soil heat exchangers (6 800 m2, 2 100 m2) are used as heat source for the heat pumps, the heat exchangers consist of pe-tubings in parallel one besides the other in plane, they are installed in 2 depths of 0.8 and 1.8 beneath the soil surface. The building under consideration having 17.700 square m. of heated area, was designed to have a K value of 0.2 W/square m.K. and the load was calculated under 21 Deg. C inside and 12 Deg. C outside design temperatures. The infiltration coefficient was taken as 9,4 cubic m/h sq. m. of window surface, corresponding to an air charge of 1 time per hour. At present energy price levels the heat pump heating capacity was designed to be about 60 per cent of the total transmission heat demand. The construction of the plant implies the combination of both heat pumps connected to a common evaporator and condenser. Each screw compressor used, being slide valve regulated, is directly coupled to gas-Otto 6 cylinder drive engine rated at 13 kW output. The refrigerant R-12 is evaporated in a flooded type evaporator of 440 kW capacity, at 10 Deg. C evaporating temperature. The condenser is an ordinary bundle type condenser, rated as 680 kW, at 55 Deg. C condensing temperature. Heat is extracted from soil and rain water using a brine circuit operating at 2 to 5 Deg. C lower than corresponding soil temperature, and 5 Deg. C temperature differential across the evaporator. The maximum heat absorption coefficient amounts to 49 W/sq. m. of soil area. Heating water flows first through a low temperature circuit operating at 50.9 Deg. C, and consisting of the oil-coolers, condenser and gear coolers. A partial flow of the heating water is then passed through the high temperature circuit operating at 63.5 Deg. C, consisting of the motor jacket heat exchanger and waste gas heat exchangers. A buffer store integrated into the heat pump system stores the high temperature heat and supplies the impulses for switching on and off the heat pumps and the boiler. A special characteristic of this installation is that the mechanical room is located in the attic of the building and sound proofing is ascertained by a proper design. Saving of 51.5 per cent versus 55 per cent expected. Achievements: During the heating periods 1982/83 and 83/84 there were longer non-availability periods of the plant mainly due to damage of the soil heat exchangers, corrosion problems in motor heat exchangers, motors failures etc. ...

Compact porous medium burner and heat exchanger for household applications

Das Projekt "Compact porous medium burner and heat exchanger for household applications" wird vom Umweltbundesamt gefördert und von PKO-OSMO Telcom GmbH durchgeführt. General Information/Objectives: The objective of the present project is to advance development work on a porous medium burner with an integrated heat exchanger. This burner does not work as a catalytic combustor, but burns with flames within the pores of a porous medium. Combustion in porous media offers an interesting and potentially promising route towards burners with high power density, high power dynamic range and very small amounts of emission products. Technical Approach The research and development work of this project is based on results of Porous Medium Burner with integrated Heat Exchanger (PMB-HE) developments at the LSTM-ERLANGEN. In a first step, VIESSMANN will build burner prototypes, consisting of a water-cooled housing with an integrated heat exchanger spiral in a porous medium. INSULCON will provide the ceramic materials for all the PMB-HE prototypes and develop special forms of the ceramics materials, so that combustion, heat exchange and mechanical and thermal stability of the ceramic parts are optimised. A first set of tests will be run for this first prototype, in order to ensure that it provides low-emission combustion (CO smaller than 5ppm, NOx smaller than 5ppm) and high efficiency. Then, detailed radiation heat transfer computations will be carried out at IST-LISBON. Computations using full detailed chemistry will be performed at IC-LONDON to provide the theoretical background for the study of emission characteristics. The combustion control systems will be established by PKO-OSMO. In a second step of the project, the burner design towards a ceramic burner will be improved by all partners. The final stage of the project aims at a burner that has as many ceramic parts as possible and is technically and economically sensible. Expected Achievements and Exploitation Within 18 months, the goal of the present project is to provide compact gas burner and heat exchanger units with the following advantages in comparison to existing household heating systems: The system will be of the order 10-15 times smaller in volume than the existing burner and heat exchanger systems. The porous medium burner will show a dynamic range of 20:1 and will, hence, provide the wide-ranged power control needed in household heating systems. The burner will provide excellent emission values comparable to the best gas burners currently on the market, and with the scope for significant improvements depending on the mode of operation. Stable combustion is ensured for a wide range of gas properties and a wide range of air/fuel ratios, hence, being insensitive to variations in gas mixture properties. Prime Contractor: PKO-OSMO Telcom GmbH, Research and Development; Georgsmarienhütte; Germany.

Dampferzeugung mithilfe eines Waermewandlers

Das Projekt "Dampferzeugung mithilfe eines Waermewandlers" wird vom Umweltbundesamt gefördert und von GEA Luftkühlergesellschaft Happel, Hauptabteilung Forschung und Entwicklung durchgeführt. Objective: To install a heat transformer for the recovery of waste heat contained in wet steam (70-120 degree C.) which is at present not used, to produce steam at 130-150 degree C. The project is expected to confirm, if not improve upon, results already obtained with an existing pilot installation. Operating 8,000 hrs/yr a steam production of 31,600 tons/yr at 2.5 bar corresponding to 2046 TEP/yr is expected. Payback is estimated at 4.2 yrs. General Information: The heat transformer is fed by process waste heat at a temperature of about 100 degree C. A part of this energy is transformed to a higher temperature heat (ca 130 degree C.) and constitutes that fraction which can be recovered, the remainder being exhausted at a lower temperature of about 40 degree C. The working fluid is a solution of water mixed lithium bromide (LiBr). In comparison with ammonia (NH3), this solution allows operation either under vacuum or slight over pressure in the transformer's internal circuits thus avoiding the high pressures (up to 40 bar) seen when NH3 is used. LiBr leaks are almost completely avoided. The heat transformer will be installed in a chemical firm (Degussa works, in Wesseling, Cologne) where the steam coming from a dehydration unit will be used as the heat source. The transformer will extract 4.7 Mw from the heat potential available in this steam. Of this 4.7 Mw, 2.3 Mw will substitute 3.52 ton/hr of steam at 3 bar of the boiler production. The remainder, 2.4 Mw will serve to heat 110 m3/hr of water from 15 to 34 degree C. The efficiency of the transformer, defined as the ratio of the energy transformed to the highest temperature (2.3 Mw) and the waste energy supplied at lower temperature (4.7 Mw), is 48 per cent. Achievements: The planning, mechanical design, and the erection was finished in June 1988. There were problems from the very beginning of the first test series under design conditions with 100 degree C waste steam. From the recorded data, small leakages could be detected at high temperature, but no leakage could be detected on the cooled down heat transformer. Due to these leakages, pitting corrosion occurred in the absorber tubes. This generated some small holes in some of the stainless steel tubes. During the demonstration phase of the project several performance tests were executed. Due to varying steam production of the dryer and varying composition (air content) of the exhaust steam, the efficiency of the heat transformer (that is the recovered heat in the form of produced steam of 130-150 degree C) varies too. The cop was found to be between 0.33 to 0.4. Typical values are Exhaust Steam Produced Steam Steam Pressure Cop: t/hr t/hr bar, 6,45 2,1 3,4 0,33; 7,4 2,8 3,0 0.38; 5,0 2,03 3,0 0,4.

Modelica Model Library Development Part I (MoMolib)

Das Projekt "Modelica Model Library Development Part I (MoMolib)" wird vom Umweltbundesamt gefördert und von XRG Simulation GmbH durchgeführt. The modelling language Modelica and libraries based upon it are excellently suited for model-based design of future aircraft systems, e.g. more electric aircraft or sustainable air-conditioning systems. To enable those design tasks, Modelica Libraries tor media models, electromagnetic devices such as transformers and electrical machines and for wavelet analysis shall be developed or extended by a consortium of three partners. XRG Simulation will provide two fluid property models according to the Modelica.Media specification, one model tor R134a and one model tor humid air. Both models shall be used for complex air conditioning System simulation e.g. of aircraft. Technische Universität Dresden, where the Modelica.Magnetic.FluxTubes library was originally developed, will extend this library with hysteresis models. Simulation of static (ferromagnetic) arid dynamic (eddy current) hysteresis allows tor estimation of iron losses in transformers and electrical machines and hence, e.g., tor subsequent simulation of heating. In addition, Modelica models of one- and three-phase transformers will be developed. Compared to the simple transformer models already included in the Modelica Standard library, the models to be developed include a transformer s magnetic subsystem and hence consider saturation and core losses. The developed hysteresis and transformer models will be validated with in-house measurements. Furthermore, the Modelica.Magnetic library will be extended by electrical machine models based on look-up tables. These models allow tor dynamic simulation of machines with saturation and non-linear torque-currentangle characteristics. Technische Universität München will develop a Modelica Wavelet library for capture, identification and analysis of processes. This library will allow new Signal processing methods for analysis, reconstruction and modelling of signals. That will improve the power quality assessment in physical systems, e.g. in electrical systems of aircraft.

Teilprojekt: Gebäude und Stadtquartier

Das Projekt "Teilprojekt: Gebäude und Stadtquartier" wird vom Umweltbundesamt gefördert und von Universität der Künste Berlin, Institut für Architektur und Städtebau, Lehrstuhl für Versorgungsplanung und Versorgungstechnik durchgeführt. 1. Vorhabenziel Das übergeordnete Ziel des Verbundvorhabens besteht in der Entwicklung eines standortunabhängigen Planungskonzeptes, um die Planung verlässlicher und effizienter thermischer Aquiferspeicher zu ermöglichen und so einen Beitrag zum zukünftigen Ausbau dieser Technologie zu leisten. Im Teilprojekt der UdK Berlin soll untersucht werden, wie die Energieeffizienz und die energetische Gebäudetechnik der Bestandsgebäude von Stadtquartieren für den Einsatz von Aquiferwärmespeichern in Verbindung mit Energiewandlungssystemen angepasst werden sollte. Hierfür soll ein vereinfachtes Stadtquartiersmodell entwickelt werden, so dass für das Gesamtsystem aus Aquifer, Energiewandlung und Stadtquartier eine maximale Energieeffizienz bei einem vertretbaren ökonomischen Aufwand ermittelt werden kann. 2. Arbeitsplanung Das entwickelte Planungskonzept soll an einem Praxisbeispiel evaluiert und optimiert werden. Hierfür soll ein Energiekonzept mit saisonaler Energiespeicherung für den Hochschulcampus TU Berlin/UdK Berlin entworfen werden. Die Umsetzbarkeit dieses Energiekonzepts wird anschließend unter wirtschaftlichen und technischen Aspekten geprüft und abschließend bewertet. Für die erfolgreiche Projektumsetzung ist die Verknüpfung verschiedener Fachgebiete erforderlich. Hierfür wird das Projekt in die vier Arbeitsbereiche Gesamtsystembetrachtung (GFZ), Aquiferspeicher (GFZ), Energieanlagentechnik (TU Berlin) sowie Stadtquartier (UdK Berlin) unterteilt. Die Koordination und Gesamtsystembetrachtung erfolgt durch das GFZ.

Teilvorhaben A

Das Projekt "Teilvorhaben A" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Institut für Technische Thermodynamik und Thermische Verfahrenstechnik durchgeführt. Die endlichen Ressourcen fossiler Energietraeger und die Problematik des Treibhauseffekts durch CO2-Emissionen werden in zunehmendem Masse eine wesentlich effizientere Energienutzung und Waermerueckgewinnung erfordern. Eine interessante Form der Waermerueckgewinnung ist die Waermetransformation, die es ermoeglicht, einen Teil einer auf mittlerem Temperaturniveau anfallenden Abwaerme zu hoeheren Temperaturen zu transformieren und damit wieder sinnvoll in Produktionsprozesse einzubinden, wobei gleichzeitig die Restwaerme bei niedriger Temperatur abgefuehrt wird. Ziel des Vorhabens ist es, die Schluesselkomponenten des Waermetransformators (Austreiber und Absorber) zu verbessern, mit dem neuen Arbeitsgemisch TFE - Wasser - E 181 zu erproben und geeignete Rechenmodelle fuer die Kreislaufkomponenten und den Gesamtprozess zu entwickeln.

Nutzung der Rotteabwärme aus einer Bioabfallkompostieranlage durch den Einbau einer Erdgas betriebenen Absorptionswärmepumpe - Demonstrationsvorhaben

Das Projekt "Nutzung der Rotteabwärme aus einer Bioabfallkompostieranlage durch den Einbau einer Erdgas betriebenen Absorptionswärmepumpe - Demonstrationsvorhaben" wird vom Umweltbundesamt gefördert und von VIVO Gesellschaft für Abfall-Vermeidung, Information und Verwertung im Oberland GmbH durchgeführt. Zielsetzung und Anlass des Vorhabens: Um den steigenden Energiebedarf des Gewerbegebiets Birkerfeld langfristig decken zu können, musste die Wärmeerzeugungskapazität zur Versorgung des angeschlossenen Nahwärmenetzes erhöht werden. Die VIVO GmbH setzt zu diesem Zweck im Energieversorgungssystem des Wertstoffzentrums Warngau eine Erdgas betriebene Absorptionswärmepumpe zur Abwärmenutzung an einer Biomüllkompostieranlage ein. Die aus dem aeroben Abbau der Bioabfallverrottung entstehende Abwärme wird auf Heiztemperaturniveau (Vorlauftemperatur 82 Grad Celsius) angehoben und so eine direkte Nutzung im Nahwärmenetz ermöglicht werden. Durch die Integration der Absorptionswärmepumpe kann ein Großteil der durch die Spitzenlast-Ölkessel erzeugten Heizwärme substituiert und somit fossiler Brennstoff einspart werden. Fazit: Es ist gelungen, eine speziell angepasste Absorptionswärmepumpe für die Nutzung von Niedertemperaturabwärme im Energieversorgungssystem der VIVO GmbH einzusetzen. Die Nutzwärmeabgabe erfolgt mit einer Vorlauftemperatur zum Heizsystem von 82 Grad Celsius. Der Einsatz einer Absorptionswärmepumpe verspricht eine deutlich höhere Effizienz, bezogen auf die zum Antrieb der Wärmepumpe eingesetzte Primärenergie, im Vergleich zur Verwendung einer Standard-Gasheizkesselanlage. Basierend auf einer durchschnittlichen Verdampferleistung von 195 kW - entspricht einer Heizleistung der Wärmepumpe von 500 kW - und einer Laufzeit von 3.500 Betriebsstunden (Heizperiode von Mitte Oktober bis Mitte April) ergibt sich eine jährliche Kosteneinsparung für den Betrieb von 26.000 Euro pro Jahr im Vergleich zum Referenzsystem (Gasheizkesselanlage mit einem Kesselwirkungsgrad von 90 Prozent). Folglich wird bei einem angenommenen Zinssatz von 0 Prozent eine Amortisationszeit von 6,7 Jahren erreicht. Bei einer jährlichen Heizwärmeerzeugung von 1.750 MWh kann der Brennstoffverbrauch gegenüber dem Referenzsystem um 37,5 Prozent und der CO2-Ausstoß um ca. 160 Tonnen gesenkt werden.

4 MW Waermetransformator

Das Projekt "4 MW Waermetransformator" wird vom Umweltbundesamt gefördert und von NTP TechnoProdukt durchgeführt. Es soll ein 4 Megawatt Waermetransformator mit Zusatzabsorber fuer erhoehte Temperaturspreizung entwickelt, gebaut und zur Nutzdampferzeugung im Muellheizkraftwerk der Bremerhavener Entsorgungsgesellschaft eingesetzt werden.

1 2 3 4