Das Projekt "Waste heat utilization of a blast furnace by the use of a heat pump" wird vom Umweltbundesamt gefördert und von Krupp Hoesch Stahl durchgeführt. Objective: To utilize the waste heat of blast furnace using a heat pump. The temperature of the coolant circuits is 57 deg. C which is raised to 90 deg. C by means of a heat pump and so waste heat is fed into the existing hot water heating networks. It is expected to achieve a 2265 TOE//year energy saving at project level. Payback time estimated at 3.1 years. In case of success, this technology could be transferred to about 100 blast furnaces in the Community, corresponding to an available waste heat potential of about 885 000 TOE/year. General Information: Blast furnaces are generally cooled by three cooling water circuits: the circuit for cooling the blast tuyerers, the hot blast slide valves, and the staves. About 42 GJ/h of waste heat are dissipated today unutilized by the water/air cooling systems. The cooling water temperature at the blast furnace No 7 of the Hoesch Stahl AG is about 57 deg. C, and the heat pump proposed to be installed will raise the temperature level at 90 deg. C, and feed the waste heat into the existing hot water heating networks. The heat pump will be powered by a back pressure turbine. With this turbine the unutilized steam energy (enthalpy) of the reduction station between the existing 33 bar and 12 bar steam network can be utilized. The first step of the project is to combine the separately operated heating centers. After the installation of the heat pump unit and the integration of the heating centres, the heat pump will supply the hot water network with heat. The construction costs are estimated at 3.8Million DM (year 85). Costs reduction of up to 20 per cent are expected for units of this type. In addition to the energy saving the annual operating and maintenance costs will decrease significantly by establishing a central hot water network. Compared to the units operating today, a saving of about 225 000 DM (year 85) is taken into account for operating and maintenance costs.
Das Projekt "Teil 1" wird vom Umweltbundesamt gefördert und von Consolar Solare Energiesysteme GmbH durchgeführt. Insbesondere im Gebäudebestand sind die Aufstell- und Einbringmöglichkeiten für Solarspeicher mit der notwendigen Speicherkapazität häufig durch den bereits vorhandenen Baukörper beschränkt. Ziel dieses F&E-Projektes ist die wirtschaftliche Realisierung eines modularen Speichersystems für kostengünstige solarthermische Kombianlagen. Durch das geplante Modulsystem verbessert sich wesentlich die Einbringbarkeit und Platzausnutzung gegenüber herkömmlicher Technik. Durch eine größere Speicherkapazität und reduzierte Wärmeverluste gegenüber einer herkömmlichen Mehrspeicherlösung sind größere solare Deckungsanteile möglich. Mit dem in diesem Vorhaben zu entwickelnden modularen Speicherkonzept sowie der entsprechenden Systemtechnik kann ein deutlicher Beitrag zur Solarisierung des Gebäudebestands und damit zur Reduktion der CO2-Emissionen und zur Ressourcenschonung geleistet werden. Das Speichersystem wird so konzipiert werden, dass es sowohl zur Wärmeversorgung von Einfamilienhäusern (hier v.a. Häuser mit hohen solaren Deckungsanteilen) als auch von Mehrfamilienhäusern eingesetzt werden kann.
Das Projekt "18 Reihenhaeuser 'Am Lindenwaelde' in Freiburg" wird vom Umweltbundesamt gefördert und von Siedlungsgesellschaft Freiburg durchgeführt. Objective: To demonstrate that the energy consumption of a single family house can be reduced by 40 per cent in comparison to conventional built terrace houses without increasing the building cost. General Information: The 18 houses are constructed in three fan shaped terraces, designed so that the south facade is wider than the north facade. There are unheated buffer sheds to the north side to reduce heat losses and provide shelter. A double glaced sunspace is attached to the south elevation. The living rooms are orientated to the south with large windows. The passive solar features are increased solar penetration into the interior by split floor levels and an open staircase to allow the warm air to rise into the building and the cooler air into the sunspace. To make the passive solar system function, the doors to the sunspace and to the stair case have to be opened. The houses have 200 mm thick fairfaced on-site casted concrete party walls which are unplastered but painted. The rest of the house is of lightweight construction. The wooden floor joist, which are of untreated timber, are supported on wall plates fixed to the party walls. The external walls are clad with timber and insulated with100 mm rockwool between batterns to give an average U-value of 0.38 W/m2k. The global calculated heat loss coefficient is 347 W/k for a middle house and 406 W/k for a corner house. The concrete pary walls and the stone floor in the living area serve as a heat buffer. The gas boiler for the conventional heating system is installed in the gable to avoid a chimney and to facilitate the later installation of a solar domestic hot water system. The heating system includes a storage tank of 300 l to avoid frequent switching of the gas boiler. The costs of the houses are 30 per cent less than those for a conventionally designed and built terrace house. Achievements: Monitoring was from July 1985 to June 1987 with two of the houses being extensively monitored. The individual total energy demand varied in 17 of the 18 houses from 13,000 kWh/yr to 22,000 kWh. The remaining house had an extremely high consumption of 41,000 kWh/yr, as the inhabitants like room temperatures above 23 C. The averages of the 17 normal houses was approximately: total :15,000 kWh/yr; electricity: 4 4,000 KWh/yr; domestic hot water: 3,000 to 4,000 kWh/yr; space heating: 8,000 to 9,000 kWh/yr. The specific values are: 50 to 60 kWh/m2 heated floor area or 15 to 16 kWh/m3 heated volume. The solar contribution to space heating was approximately 15 per cent. The savings due to improved design and insulation is estimated to be 45 per cent in comparison with a conventional built terrace house. In 1986 the bill for electricity was higher than for gas. Further energy savings would be only possible with forced ventilation systems combined with heat recovery from the exhaust air. The users respond was mixed. All the owners enjoy the lightness and warmth of the houses and the sunspace which is used ...
Das Projekt "Phase III" wird vom Umweltbundesamt gefördert und von Dornier System GmbH durchgeführt. Das Programm 'Lueftung im Wohnungsbau' verfolgt das Ziel, die Lueftungswaermeverluste unter Beruecksichtigung der wirtschaftlichen, physiologischen und soziologischen Anforderungen durch bautechnische und systemtechnische Massnahmen zu verringern. Mit den hier angebotenen Arbeiten werden die Projekte ET 5361 A (Lueftung im Wohnungsbau-Basisuntersuchungen) und ET 5361 B (Lueftung im Wohnungsbau-Demonstrationsobjekte) abgeschlossen, in ihren Konsequenzen dargestellt und der Umsetzung in die Praxis zugefuehrt.
Das Projekt "Passive Solarenergie fuer die Beheizung von Wohn- und Gewerberaeumen" wird vom Umweltbundesamt gefördert und von Ingenieurbüro Welker durchgeführt. Objective: The aim of the project is to demonstrate the reduction of energy need of a mixed building complex (commercial use and dwellings) by strict application of advanced energy saving construction principles. The remaining energy requirement of the dwellings will be met by use of waste heat from the commercially used part of the building with the help of a gas driven heat pump and by intensive use of passive solar energy. General Information: The project provides the construction of a building covering a surface of 3 000 m2, comprising different floors: three sub-basement floors for parkings, ground-floor and 1-floor for commercial use, 2. and 3. floor comprising 42 social dwellings. The building is situated in the center of Heppenheim, a small town on the Westside of the Odenwald (Hessen). The reduction in energy requirement is mainly obtained by the reduction of heat-transfer coefficients for walls, windows and roofs which are more severe than these imposed by the official German regulations in this field. The average in values are: outside wall: 0,3 W/m3 K - roof: 0,3 W/m3 K - windows day: 2,6 W/m3 K - windows night: 1.3 W/m3 K - walls to the solar courtyard: 0,6 W/m3 K. The back-up heating system of the building is based on gas-fired conventional boilers of a total capacity of 915 kW feeding into a hot air heating system. The heat of the exhaust air of this part of the building is used, by the means of gas driven heat pump to heat the dwellings with a maximum heating capacity of 471 kW. The use of passive solar energy takes place by increased glass surfaces of the dwellings to the south and a large common patio on the level of the dwellings covered by an important glass structure. The heat captured by this kind of greenhouse is partly (if the temperature is high enough) used for space heating or serves as a heat source for the heat-pumps. Shadowing facilities for high insolation periods are provided. It is expected that the energy need for space-heating of the dwellings for the months of October till March will be reduced by 50 per cent. An extensive 2-years monitoring programme will be carried out considering the energetic aspects of the project as well as the acceptance behaviour of the inhabitants of the dwellings. Achievements: The Fraunhofer Institute Freiburg is responsible for the monitoring campaign. A first study of the results of the solar passive system has been submitted by the Technische Universität Darmstadt, Insitute for Thermal Systems Prof. Dr.-Ing. W. Kast, reporting period March 15th to April 14th 1987. The gas driven heat pump was unfortunately not performing during this period. The passive solar impact of the solar courtyard on the adjacent dwellings is minimal and is smaller than the impact of the individual heating patterns of the tenants. Further monitoring results are needed to investigate the solar contribution to space heating. The building is finished; all space used for commercial purposes and as ...
Das Projekt "Einbau einer Abdeckung an der Breitbandwarmwalzanlage in den Eisen- und Stahlwerken Bremen" wird vom Umweltbundesamt gefördert und von Klöckner-Werke, Hütte Bremen durchgeführt. Objective: The aim of the project is to use hydraulic movable covering hoods in the cogging train area of the hot wide strip mill to reduce the energy losses from the strip through radiation. General Information: The hot wide strip mill in Bremen produces about 3.3 million tons per year. The produced strips are of widths ranging from 600 to 2150 mm with thicknesses ranging from 1.5 to 30 mm. This fully continuous rolling mill has an unusually long path length of 400 m from the walking beam heating furnaces to the end shears. The material takes about 3 minutes to cover this distance during which time a large temperature loss occurs. In order to minimise this loss of energy the last 90 metres, up to the end shears, will be covered with insulating hood segments, each 6 metre in length and hydraulically controlled. The reflective lining of the hoods will be designed to withstand the strong radiation from the strip, mechanical movement and large temperature changes. They must also be resistant to the water vapour produced by cooling the rollers, although this problem could be alleviated by installing inside-cooled rollers. Installation of these hoods will mean either that to maintain the same temperature at the finishing mill, a lower temperature in the walking beam furnace can be used. Or, if the temperature of the walking beam furnace is kept the same as now, the material will reach the finishing mill at a higher temperature which reduces its deformation resistance resulting in a reduction in the amount of deformation energy required in the finishing mill. Achievements: The covering hoods in the cogging train area of the hot wide strip mill are operating since 14.09.1988 and they are used permanently. It came to light there were no problems with the hood design as well as with the insulating material. The expected improvement on rolling has been reached. So far, it has only been possible to roughly estimate the electrical energy savings, since the time the covering hoods were installed, the levels at the specific energy consumption have been reduced by approx. 4 per cent as predicted.
Das Projekt "Teilprojekt 1: ISFH" wird vom Umweltbundesamt gefördert und von Institut für Solarenergieforschung GmbH durchgeführt. Im Projekt soll ein neuer solarthermischer Kollektor mit selektivem Absorber im Labormaßstab qualifiziert werden, der mindestens die Qualität (Effizienz, Lebensdauer) heute üblicher Kollektoren erreicht. Zusätzlich soll die Stagnationstemperatur deutlich reduziert werden (heute übliche Absorber 200 bis 220 C) um den Wärmeträger zu schützen und die Dampfbildung zu vermeiden (Ziel unter 140 C). Zur Effizienzbewertung wird der Jahresertrag einer typischen Warmwasseranlage mit heute üblichen Werten verglichen. Der solare Deckungsgrad (typisch 60Prozent) soll bei gleicher Kollektorfläche erreicht werden. Die Prototypen aus verschiedenen Ansätzen werden weiterentwickelt. Die Bewertung der Einsatzfähigkeit in Solarkollektoren (Absorption von Solarstrahlung, Wärmeverluste durch Abstrahlung, Lebensdauer unter Temperatur und Witterungseinfluss) erfolgt nach europäischen Normen. Spezielle Richtlinien sind entsprechend der Solarkollektor-Entwicklung anzupassen. In einem weiteren Themenkomplex soll die Korrosionsfestigkeit der selektiven Schicht verbessert werden. Dabei werden optische und rasterelektronmikroskopische Verfahren zur Bewertung der Schicht eingesetzt.
Das Projekt "Nutzung der Abwaerme von Fahrzeugmotoren" wird vom Umweltbundesamt gefördert und von Mercedes-Benz Group AG durchgeführt. General Information: Between 60 per cent and 80 per cent of the applied fuel energy in heat engines is lost to the ambient environment as waste exhaust heat. Suitable equipment could turn some of that heat into useful mechanical energy, e.g. an exhaust gas turbine, a Stirling engine or a steam-driven system. Daimler-Benz AG carried out a feasibility study of the possible application of a diesel engine coupled with a rankine bottoming cycle. It is shown that a 38 t heavy-duty truck of 206 kw on a long haul (Rotterdam-Verona) can reduce its fuel consumption for the same output by 10.5 per cent (using the working fluid fluorinol-50). According to rough estimates this corresponds to approx. 90,000 t of diesel fuel per year on fuel savings in the federal republic of Germany (based on the figures for 1980). The payback time of this system is however too long under the present technical and economic conditions. The unrealistic limit case of the adiabatic diesel engine (no heat exchange between gas and wall) with bottoming cycle was also included in the calculations as the theoretical limit and the results indicated fuel savings of 25 per cent. If we consider a trend to higher energy prices, the insulated diesel engine (reduced heat exchange between gas and wall) operating at higher temperatures and efficiency together with a rankine bottoming cycle may have a chance in future even from an economic point of view.
Das Projekt "Waermetauscher zum Vorheizen gebrauchter Lauge mit heisser neutraler Lauge in der elektrolytischen Produktion von Zink" wird vom Umweltbundesamt gefördert und von Ruhr-Zink durchgeführt. Objective: The energy content of neutral lye, which to date has been discharged via cooling towers, is to be recovered using suitable heat exchangers and returned to the process. It is to be expected that this process will lead to an annual energy saving of about 2000 toe at project level. General Information: The electrolytic production of zinc includes a loop process for solutions. During electrolysis so-called neutral lye is partially dezincified under formation of sulphuric acid. The solution discharged from the zinc electrolysis cells, which contains sulphuric acid, is called spent. It is used in the leaching process to dissolve zinc from roasted material. Then enriched with zinc, it is returned to the electrolysis as so-called neutral lye. The leaching and cleaning process takes place at a temperature of between 80 and 90 degree C to obtain higher yields. To date, the spent has been heated up to this temperature level by adding steam before the leaching process. However, only cold solutions can be used for electrolysis. The neutral lye therefore has to be cooled down to the required temperature level in atmospheric cooling towers. By means of spiral counter flow heat exchangers, which guarantee a high exchange flux, the heat content of the neutral lye is to be recovered and used for the direct heating of the spent. This means that it will no longer be necessary to heat the spent with steam from the factory's steam network. A suitable alternating flow between the inlet and outlet channels of the heat exchangers should prevent the accumulation of gypsum deposits in the narrow channels of the heat exchangers. The purpose of the measuring and demonstration programme which is planned after erection and commissioning is to provide information on the corrosion resistance of the heat exchanger materials and on the precipitation of solid matter in the heat exchangers. The latter will have a decisive effect on the operating efficiency and hence on the commercial efficiency of the project. Achievements: For the demonstration phase TWO spiral counter current heat exchangers, each with a energy potential of 2140 x 103 kcal/h, were installed. The encrustation from the neutral solution forms in a then layer inside the pipes and hence with the frequent swapping of medium sides, requiring a problematic program controlled switching of numerous isolation valves, the problem can be solved. In continuous operation it was found that due to filtration problems in the following process steps, the planned final temperature of 67 degree C for the neutral solution had to be raised to 70 degree C. This resulted in more favourable conditions for avoiding encrustation, however it also resulted in lower than expected energy savings. At the end of the demonstration the following results were obtained: - The selected construction material (1.4563) is corrosion resistant to the heated dilute sulphuric acid, up to a corrosion inhibitor. - The final temperature of 70 ...
Das Projekt "Teilvorhaben: Entwicklung des VEMS" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Bauphysik durchgeführt. Im Rahmen dieses Forschungsvorhabens soll eine neue Regelungstechnologie für Biomasseheizkessel (VEMS - Verbrennungs- und Energiemanagementsystem für eine effiziente und schadstoffarme Bereitstellung und Nutzung von Wärme aus Biomasseheizkesseln) entwickelt und erprobt werden. Im Gegensatz zu den herkömmlichen Reglern soll die Regelung der Energiebereitstellung bei der VEMS-Technologie nicht über die Temperatur im Pufferspeicher, sondern über den tatsächlichen Energiebedarf im Gebäude erfolgen, welcher auf Basis von energetischen Berechnungen nach DIN V 18599, DIN V 4108-6 und DIN V 4701-1 festgestellt und durch die Einstellung der thermischen Leistung des modulierbaren Biomasseheizkessels gedeckt wird. Die VEMS-Technologie soll so entwickelt werden, dass die gewünschte Verbesserung der Effizienz im gesamten Gebäude unabhängig von der Art und den Eigenschaften der Gebäude erreicht werden kann. Bei der Bereitstellung der thermischen Leistung soll zudem die Energie aus anderen erneuerbaren Energien (z. B. Solarthermie, Geothermie usw.) im Gebäude berücksichtigt werden, wobei nur so viel Brennstoff verbrannt werden soll, wie für die Deckung des Energiebedarfs tatsächlich benötigt wird. Wärmeverluste lassen sich außerdem durch die Anwendung eines neuen Modularwärmeregulators vermeiden.
Origin | Count |
---|---|
Bund | 270 |
Type | Count |
---|---|
Förderprogramm | 270 |
License | Count |
---|---|
open | 270 |
Language | Count |
---|---|
Deutsch | 270 |
Englisch | 33 |
Resource type | Count |
---|---|
Keine | 199 |
Webseite | 71 |
Topic | Count |
---|---|
Boden | 137 |
Lebewesen & Lebensräume | 128 |
Luft | 120 |
Mensch & Umwelt | 270 |
Wasser | 102 |
Weitere | 270 |