API src

Found 375 results.

WMS Moor

Das Moorkataster ist kein amtliches Verzeichnis, auch wenn dieser Eindruck entstehen kann. Kartiergrundlage für die Flächen der Moore, der überdeckten Moore und teilweise von Anmooren ist im ehemals selbstständigen Baden die DGK5 (Deutsche Grundkarte 1:5000) und im ehemals selbstständigen Württemberg teilweise die Katasterkarte 1: 2500. Für Oberschwaben wurde als Digitalisiergrundlage die Moorkarte im Maßstab 1 : 50000 verwendet. Neben den Moorflächen werden die bei der Erkundung erstellten Beschreibungen der gezogenen Bohrprofile in einer Datenbank erfasst. Bohrprofile werden mit Rechts-/Hochwert erfasst und können, wenn erforderlich, in Kartendarstellungen eingebunden werden. Diese erfassen die Schichtenfolge von der Oberfläche bis zum mineralischen Untergrund. Die Schichten werden ausgewiesen nach Lagerungsdichte, Zersetzungsgrad, Mächtigkeit, Vegetationsinhalt, Körnung bei mineralischem Material und Art von Mudden. Maßstäbe: 1:2500, 1:5000, 1:50000

WFS Moorkataster

Das Moorkataster ist kein amtliches Verzeichnis, auch wenn dieser Eindruck entstehen kann. Kartiergrundlage für die Flächen der Moore, der überdeckten Moore und teilweise von Anmooren ist im ehemals selbstständigen Baden die DGK5 (Deutsche Grundkarte 1:5000) und im ehemals selbstständigen Württemberg teilweise die Katasterkarte 1: 2500. Für Oberschwaben wurde als Digitalisiergrundlage die Moorkarte im Maßstab 1 : 50000 verwendet. Neben den Moorflächen werden die bei der Erkundung erstellten Beschreibungen der gezogenen Bohrprofile in einer Datenbank erfasst. Bohrprofile werden mit Rechts-/Hochwert erfasst und können, wenn erforderlich, in Kartendarstellungen eingebunden werden. Diese erfassen die Schichtenfolge von der Oberfläche bis zum mineralischen Untergrund. Die Schichten werden ausgewiesen nach Lagerungsdichte, Zersetzungsgrad, Mächtigkeit, Vegetationsinhalt, Körnung bei mineralischem Material und Art von Mudden. Bitte beachten Sie folgende Hinweise zu Vollständigkeit und Qualität der bereitgestellten Daten: aufgrund von Ungenauigkeiten bei der Erfassung von Fachobjekten kommt es vereinzelt zu nicht validen Geometrien gemäß OGC-Schema-Validierung. Da GIS-Server wie ArcGIS-Server, GeoServer oder UMN MapServer immer genauere Datengrundlagen verwenden/verarbeiten müssen, wird auch die Prüfroutine immer weiterentwickelt und mahnt im Toleranzbereich als auch in der topologischen Erfassung Ungenauigkeiten (bspw. durch Dritt-Software) an. Dies führt dazu, dass Geometrien nicht mehr dargestellt beziehungsweise erfasst werden können. Zu den beanstandeten Geometriefehlern gehören u.a. Selbstüberschneidungen (Selfintersections) oder doppelte Stützpunkte. Die LUBW kann daher keine Garantie für die Vollständigkeit und Stabilität des Download-Dienstes (WFS) geben. Bitte prüfen Sie daher im Bedarfsfall die Vollständigkeit anhand der ebenfalls angebotenen Darstellungsdienste (WMS).

Wildbiene des Jahres 2016 ist die Bunte Hummel

Der Arbeitskreis Wildbienen-Kataster gemeinsam mit dem Staatlichen Museum für Naturkunde Stuttgart, der Landesanstalt für Bienenkunde sowie den Imkerverbänden Badens und Württembergs machen mit der Wildbiene des Jahres auf das Schicksal einer Art aufmerksam, deren Lebensweise besonders spannend und die auch für Laien gut zu erkennen ist. 2016 wurde die Bunte Hummel bzw. Waldhummel (Bombus sylvarum) zur Wildbiene des Jahres gewählt. Die Bunte Hummel verdeutlicht stellvertretend für alle Wildbienen, wie problematisch heute die Lebensumstände für Insekten sind, die auf ein reiches Blütenangebot in der Landschaft angewiesen sind.

Lebendiger See des Jahres 2013: Mindelsee

Der Mindelsee bei Radolfzell in Baden Württemberg ist der "Lebendige See des Jahres 2013“. Vergeben wurde der Titel zum dritten Mal anlässlich des Weltwassertags am 22. März 2013 von der Umweltschutzorganisation Global Nature Fund. Der Mindelsee gehört zu den ältesten Naturschutzgebieten Deutschlands und weist eine große Artenvielfalt auf.

Wildbiene des Jahres 2014 ist die Garten-Wollbiene

Mit der Wildbiene des Jahres machen der Arbeitskreis Wildbienen-Kataster und die Landesanstalt für Bienenkunde sowie die Imkerverbände Badens und Württembergs auf das Schicksal einer Art aufmerksam, deren Lebensweise besonders spannend und die auch für Laien gut zu erkennen ist. 2014 wurde die Garten-Wollbiene (Anthidium manicatum) zur Wildbiene des Jahres gewählt.

Wildbiene des Jahres 2015 ist die Zaunrüben-Sandbiene

Der Arbeitskreis Wildbienen-Kataster und die Landesanstalt für Bienenkunde sowie die Imkerverbände Badens und Württembergs haben die Zaunrüben-Sandbiene (Andrena florea) zur Wildbiene des Jahres 2015 gewählt. Die Weibchen sammeln den für die Nachkommen überlebenswichtigen Pollen ausschließlich an den Blüten der Zaunrübe (Bryonia). Für das Überleben braucht die Zaunrüben-Sandbiene also ausreichend große Bestände ihrer Nahrungspflanze, die leider allzu häufig als Unkraut beseitigt wird. Die Wildbiene des Jahres 2015 ist in Deutschland mit Ausnahme des äußersten Nordens noch weit verbreitet. Am Beispiel von Baden-Württemberg zeigt sich, dass sie die tieferen Lagen und insbesondere die wärmebegünstigten Flussgebiete bevorzugt.

Abschätzung der in Deutschland noch vorhandenen Bleileitungen

Bleileitungen in der Trinkwasserversorgung sind ein Eintragspfad für das wahrscheinlich kanzerogene, reproduktions- und neurotoxische Schwermetall Blei in das Trinkwasser. Die vorliegende Studie hat den Restbestand an Bleileitungen in Deutschland abgeschätzt und liefert hiermit eine Entscheidungsgrundlage für die Umsetzung der EU-Trinkwasserrichtlinie (Richtlinie (EU) 2020/2184), nach der der Grenzwert für Blei von 10 mikrog/l auf 5 mikrog/l mit einer Übergangsfrist gesenkt werden soll und nach einer nationalen Risikobewertung u.a, Maßnahmen zur Entfernung noch vorhandener Bleileitungen geprüft werden müssen. Dazu wurden deutschlandweit drei Umfragen bei den Bundesländern, Wasserversorgungs unternehmen und Installationsfirmen durchgeführt. Demnach gibt es bundesweit noch ca. 15.000 Hausanschlussleitungen aus Blei (0,08 %). Diese Schätzung wird aus den Angaben der Wasserversorgungsunternehmen als sicher angesehen. Deutlich unsicherer ist die Schätzung, dass noch 38.000 Gebäude mit Bleileitungen in ihrer Trinkwasser-Installation vorhanden sind (0,20 %). Anteilig am stärksten betroffen sind Thüringen, Hamburg und Berlin. Der Restbestand an Bleileitungen der anderen Bundesländer liegt, abhängig von der Aktivität ihrer Gesundheitsämter, deutlich niedriger und ist teils schon vergleichbar mit dem Bestand in Baden Württemberg und Bayern, die historisch begründet als "bleifrei" angesehen werden. Der Austausch oder die Stilllegung aller Bleileitungen in Deutschland würden voraussichtlich maximal 100 Mio. Euro kosten. Je nach Lage der Leitung und den Austauschangeboten der Wasserversorgungsunternehmen wären ca. 3/4 der Kosten von den Gebäudeeigentümern zu tragen. Fast alle Bleileitungen im Gebäude sollten die normale Nutzungsdauer der Trinkwasser Installation von ca. 50 Jahren erreicht haben. Aufgrund der mechanischen Stabilität von Bleileitungen müsste aber ein Austausch verpflichtend werden, um in absehbarer Zeit Bleileitungen gesichert deutschlandweit aus dem Betrieb zu nehmen. Ein explizites Bleileitungsverbot in der Trinkwasserverordnung würde die Zeitspanne bis zu einem technisch notwendigen Austausch der Bleileitungen reduzieren, Verwaltungsaufwand sparen und bei allen Beteiligten für mehr Klarheit und eine zügige Umsetzung sorgen. Die Überwachung des gesenkten Bleigrenzwertes bleibt aber in jedem Fall ein wichtiges Instrument, um auch vereinzelte Bleileitungen in Trinkwasser-Installationen aufspüren zu können, andere Bleiquellen zu identifizieren und die Sanierung alter Trinkwasser-Installationen voranzutreiben. Quelle: Forschungsbericht

Teil 6

Das Projekt "Teil 6" wird vom Umweltbundesamt gefördert und von Stadtwerke Karlsruhe Netze GmbH durchgeführt. Baden-Württemberg hat die Kernziele formuliert, die Treibhausgas-Emissionen um 90 % bis 2050 mit Basis 1990 zu reduzieren. Dieses Ziel soll im Wesentlichen durch die zwei Maß- nahmen 'Verbrauchseinsparung' (50 % Reduktion des Endenergiebedarfs gegenüber 2010) und 'Erzeugung erneuerbarer Energien' (80 % des gesamten Endenergieverbrauchs) erreicht werden. Bei der Maßnahme 'Verbrauchseinsparung' werden große Möglichkeiten bei der Einsparung beim Wärmebedarf und in der Mobilität gesehen. Der hohe angestrebte Anteil an erneuerbarer Energie bedeutet, dass in allen Sektoren eine Umstellung auf regenerative Energien stattfinden muss. Hierbei werden die Bruttostromerzeugung mit Wind und Sonne in Baden- Württemberg sowie der Import von EE-Strom deutlich an Bedeutung gewinnen. 2016 basierte die Stromerzeugung in Baden-Württemberg mit 44,1 % auf Atomkraftwerken und 36,8 % auf Kohlekraftwerken überwiegend auf konventionellen Energiequellen (2). Aus heutigen Erfahrungen von Regionen in Deutschland und Baden-Württemberg führen allerdings bei einer Umstellung auf regenerative Stromerzeugung die hohe zeitliche Volatilität bei der Windenergie und der Photovoltaik (insbesondere im Binnenland) und eine hohe dezentrale Verteilung (Photovoltaik und kleine Windparks) der regenerativen Stromerzeugung zu einer zunehmenden zeitlichen und räumlichen Entkopplung von Stromerzeugung und -verbrauch. Die dadurch entstehende Diskrepanz zwischen Angebot und Nachfrage kann durch mehrere integrative technische Ansätze, z. B. Energieumwandlung, Stunden- bis saisonale Speicherung (zentral: Power to Gas - PtG und Pumpspeicherkraftwerke oder dezentral: flüssiges Biogas - LBG, Redox-Flow-Batterien, Fahrzeuge usw.), Warmwasser für Wärmenetze, Netzausbau, Lastverschiebung und Flexibilisierung der Stromerzeugung z. B. durch Bio- und Erdgas-KWK-Technologie ausgeglichen werden. Dabei ist davon auszugehen, dass das Potenzial eines einzelnen Lösungsansatzes nicht ausreichend ist, um die Versorgungssicherheit in Baden-Württemberg in Zukunft zu gewährleisten. Hierbei muss die Stromnetzstabilität bzgl. Frequenz und Spannung und Verluste beim Transport über weite Strecken beachtet werden, so dass eventuell die Nutzung von Gas für einen Teil der Stromversorgung sinnvoll sein kann. Zusätzlich kann es in der Übergangszeit zu einer Welt mit einer CO2-Einsparung von über 90 % gegenüber 1990 sinnvoll sein den regenerativen Strom zuerst in stark CO2-emittierende Sektoren (z. B. Mobilität) in Form von Gas (H2, CNG, LNG oder LBG) einzusetzen. In dieser Arbeit wurden daher die verschiedenen Ansätze für Baden-Württemberg- repräsentative Modellstandorte (z. B. ländliche Gebiete, Städte) betrachtet. Hierzu wird das Projekt in 7 Teilprojekte gegliedert, deren Verknüpfung in Abb. 2-1 dargestellt ist. (Text gekürzt)

Teil 1

Das Projekt "Teil 1" wird vom Umweltbundesamt gefördert und von DVGW-Forschungsstelle am Engler-Bunte-Institut des Karlsruher Instituts für Technologie (KIT) durchgeführt. Baden-Württemberg hat die Kernziele formuliert, die Treibhausgas-Emissionen um 90 % bis 2050 mit Basis 1990 zu reduzieren. Dieses Ziel soll im Wesentlichen durch die zwei Maß- nahmen 'Verbrauchseinsparung' (50 % Reduktion des Endenergiebedarfs gegenüber 2010) und 'Erzeugung erneuerbarer Energien' (80 % des gesamten Endenergieverbrauchs) erreicht werden. Bei der Maßnahme 'Verbrauchseinsparung' werden große Möglichkeiten bei der Einsparung beim Wärmebedarf und in der Mobilität gesehen. Der hohe angestrebte Anteil an erneuerbarer Energie bedeutet, dass in allen Sektoren eine Umstellung auf regenerative Energien stattfinden muss. Hierbei werden die Bruttostromerzeugung mit Wind und Sonne in Baden- Württemberg sowie der Import von EE-Strom deutlich an Bedeutung gewinnen. 2016 basierte die Stromerzeugung in Baden-Württemberg mit 44,1 % auf Atomkraftwerken und 36,8 % auf Kohlekraftwerken überwiegend auf konventionellen Energiequellen (2). Aus heutigen Erfahrungen von Regionen in Deutschland und Baden-Württemberg führen allerdings bei einer Umstellung auf regenerative Stromerzeugung die hohe zeitliche Volatilität bei der Windenergie und der Photovoltaik (insbesondere im Binnenland) und eine hohe dezentrale Verteilung (Photovoltaik und kleine Windparks) der regenerativen Stromerzeugung zu einer zunehmenden zeitlichen und räumlichen Entkopplung von Stromerzeugung und -verbrauch. Die dadurch entstehende Diskrepanz zwischen Angebot und Nachfrage kann durch mehrere integrative technische Ansätze, z. B. Energieumwandlung, Stunden- bis saisonale Speicherung (zentral: Power to Gas - PtG und Pumpspeicherkraftwerke oder dezentral: flüssiges Biogas - LBG, Redox-Flow-Batterien, Fahrzeuge usw.), Warmwasser für Wärmenetze, Netzausbau, Lastverschiebung und Flexibilisierung der Stromerzeugung z. B. durch Bio- und Erdgas-KWK-Technologie ausgeglichen werden. Dabei ist davon auszugehen, dass das Potenzial eines einzelnen Lösungsansatzes nicht ausreichend ist, um die Versorgungssicherheit in Baden-Württemberg in Zukunft zu gewährleisten. Hierbei muss die Stromnetzstabilität bzgl. Frequenz und Spannung und Verluste beim Transport über weite Strecken beachtet werden, so dass eventuell die Nutzung von Gas für einen Teil der Stromversorgung sinnvoll sein kann. Zusätzlich kann es in der Übergangszeit zu einer Welt mit einer CO2-Einsparung von über 90 % gegenüber 1990 sinnvoll sein den regenerativen Strom zuerst in stark CO2-emittierende Sektoren (z. B. Mobilität) in Form von Gas (H2, CNG, LNG oder LBG) einzusetzen. In dieser Arbeit wurden daher die verschiedenen Ansätze für Baden-Württemberg- repräsentative Modellstandorte (z. B. ländliche Gebiete, Städte) betrachtet. Hierzu wird das Projekt in 7 Teilprojekte gegliedert, deren Verknüpfung in Abb. 2-1 dargestellt ist. (Text gekürzt)

Teil 5

Das Projekt "Teil 5" wird vom Umweltbundesamt gefördert und von Hochschule Biberach, Institut für Gebäude- und Energiesysteme durchgeführt. Baden-Württemberg hat die Kernziele formuliert, die Treibhausgas-Emissionen um 90 % bis 2050 mit Basis 1990 zu reduzieren. Dieses Ziel soll im Wesentlichen durch die zwei Maß- nahmen 'Verbrauchseinsparung' (50 % Reduktion des Endenergiebedarfs gegenüber 2010) und 'Erzeugung erneuerbarer Energien' (80 % des gesamten Endenergieverbrauchs) erreicht werden. Bei der Maßnahme 'Verbrauchseinsparung' werden große Möglichkeiten bei der Einsparung beim Wärmebedarf und in der Mobilität gesehen. Der hohe angestrebte Anteil an erneuerbarer Energie bedeutet, dass in allen Sektoren eine Umstellung auf regenerative Energien stattfinden muss. Hierbei werden die Bruttostromerzeugung mit Wind und Sonne in Baden- Württemberg sowie der Import von EE-Strom deutlich an Bedeutung gewinnen. 2016 basierte die Stromerzeugung in Baden-Württemberg mit 44,1 % auf Atomkraftwerken und 36,8 % auf Kohlekraftwerken überwiegend auf konventionellen Energiequellen (2). Aus heutigen Erfahrungen von Regionen in Deutschland und Baden-Württemberg führen allerdings bei einer Umstellung auf regenerative Stromerzeugung die hohe zeitliche Volatilität bei der Windenergie und der Photovoltaik (insbesondere im Binnenland) und eine hohe dezentrale Verteilung (Photovoltaik und kleine Windparks) der regenerativen Stromerzeugung zu einer zunehmenden zeitlichen und räumlichen Entkopplung von Stromerzeugung und -verbrauch. Die dadurch entstehende Diskrepanz zwischen Angebot und Nachfrage kann durch mehrere integrative technische Ansätze, z. B. Energieumwandlung, Stunden- bis saisonale Speicherung (zentral: Power to Gas - PtG und Pumpspeicherkraftwerke oder dezentral: flüssiges Biogas - LBG, Redox-Flow-Batterien, Fahrzeuge usw.), Warmwasser für Wärmenetze, Netzausbau, Lastverschiebung und Flexibilisierung der Stromerzeugung z. B. durch Bio- und Erdgas-KWK-Technologie ausgeglichen werden. Dabei ist davon auszugehen, dass das Potenzial eines einzelnen Lösungsansatzes nicht ausreichend ist, um die Versorgungssicherheit in Baden-Württemberg in Zukunft zu gewährleisten. Hierbei muss die Stromnetzstabilität bzgl. Frequenz und Spannung und Verluste beim Transport über weite Strecken beachtet werden, so dass eventuell die Nutzung von Gas für einen Teil der Stromversorgung sinnvoll sein kann. Zusätzlich kann es in der Übergangszeit zu einer Welt mit einer CO2-Einsparung von über 90 % gegenüber 1990 sinnvoll sein den regenerativen Strom zuerst in stark CO2-emittierende Sektoren (z. B. Mobilität) in Form von Gas (H2, CNG, LNG oder LBG) einzusetzen. In dieser Arbeit wurden daher die verschiedenen Ansätze für Baden-Württemberg- repräsentative Modellstandorte (z. B. ländliche Gebiete, Städte) betrachtet. Hierzu wird das Projekt in 7 Teilprojekte gegliedert, deren Verknüpfung in Abb. 2-1 dargestellt ist. (Text gekürzt)

1 2 3 4 536 37 38