Although global pesticide use increases steadily, our field-data based knowledge regarding exposure of non-target ecosystems is very restricted. Consequently, this meta-analysis will for the first time evaluate the worldwide available peer-reviewed information on agricultural insecticide concentrations in surface water or sediment and test the following two hypotheses: I) Insecticide concentrations in the field largely exceed regulatory threshold levels and II) Additional factors important for threshold level exceedances can be quantified using retrospective meta-analysis. A feasibility study using a restricted dataset (n = 377) suggested the significance of the expected results, i.e. an threshold level exceedance rate of more than 50Prozent of the detected concentrations. Subsequent to a comprehensive database search in the peer-reviewed literature of the past 60 years, analysis of covariance with the relevant threshold level exceedance as the continuous dependent variable (about 10,000 cases) will be performed and the impact of significant predictor variables will be quantified. Parameters not yet considered in pesticide exposure assessment will be included as independent variables, such as compound class, environmental regulatory quality, and sampling design. The simultaneous presence of several insecticide compounds as a well as their metabolites will also be considered in the evaluation. The present approach may provide an innovative and integrated view on the potential environmental side effects of global high-intensity agriculture and in particular of pesticides use.
Rain-cracking limits the production of many soft and fleshy fruit including sweet cherries world wide. Cracking is thought to result from increased water uptake through surface and pedicel. Water uptake increases fruit volume, and hence, turgor of cells (Pcell) and the pressure inside the fruit (Pfruit) and subjects the skin to tangential stress and hence, strain. When the strain exceeds the limits of extensibility the fruit cracks. This hypothesis is referred to as the Pfruit driven strain cracking. Based on this hypothesis cracking is related to two independent groups of factors: (1) water transport characteristics and (2) the intrinsic cracking susceptibility of the fruit defined as the amount of cracking per unit water uptake. The intrinsic cracking susceptibility thus reflects the mechanical constitution of the fruit. Most studies focussed on water transport through the fruit surface (factors 1), but only little information is available on the mechanical constitution (i.e., Pfruit and Pcell, tensile properties such as fracture strain, fracture pressure and modulus of elasticity of the exocarp; factors 2). The few published estimates of Pfruit in sweet cherry are all obtained indirectly (calculated from fruit water potential and osmotic potentials of juice extracts) and unrealistically high. They exceed those measured by pressure probe techniques in mature grape berry by several orders of magnitude. The objective of the proposed project is to test the hypothesis of the Pfruit driven strain cracking. Initially we will focus on establishing systems of widely differing intrinsic cracking susceptibility by varying species (sweet and sour cherry, Ribes and Vaccinium berries, plum, tomato), genotype (within sweet cherry), stage of development and temperature. These systems will then be used for testing the hypothesis of Pfruit driven strain cracking. We will quantify Pfruit und Pcell by pressure probe techniques and compression tests and the mechanical properties of the exocarp using biaxial tensile tests. When the presence of high Pfruit and Pcell is confirmed by direct measurements, subsequent studies will focus on the mode of failure of the exocarp (fracture along vs. across cell walls) and the relationship between failure thresholds and morphometric characteristics of the exocarp. However, when Pfruit und Pcell are low, the hypothesis of Pfruit driven strain cracking must be rejected and the mechanistic basis for low pressures (presence of apoplastic solutes) clarified on a temporal (in the course of development) and a spatial scale (exocarp vs. mesocarp). We focus on sweet cherry, because detailed information on this species and experience in extending the short harvest period is available. Where appropriate, other cracking susceptible species (sour cherry, plum, Vaccinium, Ribes, tomato) will be included to further extend the experimental period and to maximize the range in intrinsic cracking susceptibility.
Perennial fodder cropping potentially increases subsoil biopore density by formation of extensive root systems and temporary soil rest. We will quantify root length density, earthworm abundance and biopore size classes after Medicago sativa, Cichorium intybus and Festuca arundinacea grown for 1, 2 and 3 years respectively in the applied research unit's Central Field Trial (CeFiT) which is established and maintained by our working group. Shoot parameters including transpiration, gas exchange and chlorophyll fluorescence will frequently be recorded. Precrop effects on oilseed rape and cereals will be quantified with regard to crop yield, nutrient transfer and H2-release. The soil associated with biopores (i.e. the driloshpere) is generally rich in nutrients as compared to the bulk soil and is therefore supposed to be a potential hot spot for nutrient acquisition. However, contact areas between roots and the pore wall have been reported to be low. It is still unclear to which extent the nutrients present in the drilosphere are used and which potential relevance subsoil biopores may have for the nutrient supply of crops. We will use a flexible videoscope to determine the root-soil contact in biopores. Nitrogen input into the drilosphere by earthworms and potential re-uptake of nitrogen from the drilosphere by subsequent crops with different rooting systems (oilseed rape vs. cereals) will be quantified using 15N as a tracer.
Existing models of soil organic matter (SOM) formation consider plant material as the main source of SOM. Recent results from nuclear magnetic resonance analyses of SOM and from own incubation studies, however, show that microbial residues also contribute to a large extent to SOM formation. Scanning electron microscopy showed that the soil mineral sur-faces are covered by numerous small patchy fragments (100 - 500 nm) deriving from microbial cell wall residues. We will study the formation and fate of these patchy fragments as continuously produced interfaces in artificial soil systems (quartz, montmorillonite, iron oxides, bacteria and carbon sources). We will quantify the relative contributions of different types of soil organisms to patchy fragment formation and elucidate the effect of redox con-ditions and iron mineralogy on the formation and turnover of patchy fragments. The develop-ment of patchy fragments during pedogenesis will be followed by studying soil samples from a chronosequence in the forefield of the retreating Damma glacier. We will characterize chemical and physical properties of the patchy fragments by nanothermal analysis and microscale condensation experiments in an environmental scanning electron microscope. The results will help understanding the processes at and characteristics of biogeochemical interfaces.
Im tropischen Afrika kommen ca. 180 Arten Myomorpha (mausartige Nagetiere i.w.S.) vor, deren Oekologie bis vor ca. 30 Jahren nahezu unerforscht war. Im Rahmen mehrerer Forschungsvorhaben seit 1963 wurden und werden schwerpunktmaessig die Gebiete Zaire und Rwanda bearbeitet; ferner Uganda, Kenia, Tanzania, Nord- und Suedsudan, Aethiopien. Dabei werden die Biome Feuchtsavanne, montane Gebiete und tropischer Regenwald und die darin enthaltenen Biotope auf die charakteristischen Myomorpha-Arten und deren habitatmaessige Zusammensetzung untersucht. Spezielle Fragen gelten der Ernaehrung, der Fortpflanzung und der Populationsdynamik. Ausserdem werden die Beziehungen zum Menschen, besonders in landwirtschaftlicher und medizinisch-hygienischer Hinsicht untersucht.
Background and Objectives: The project area is located in the Ashanti Region of Ghana / West Africa in the transition zone of the moist semideciduous forest and tropical savannah zone. Main land use in this region is subsistence agriculture with large fallow areas. As an alternative land-use, forest plantations are under development by the Ghanaian wood processing company DuPaul Wood Treatment Ltd. Labourers from the surrounding villages are employed as permanent or casual plantation workers. Within three forest plantation projects of approximately 6,000 ha, DuPaul offers an area of 164 ha (referred to as Papasi Plantation) - which is mainly planted with Teak (Tectona grandis) - for research purposes. In return, the company expects consultations to improve the management for sustainable timber and pole production with exotic and native tree species. Results: In a first research approach, the Papasi Plantation was assessed in terms of vegetation classification, timber resources (in qualitative and quantitative terms) and soil and site conditions. A permanent sampling plot system was established to enable long-term monitoring of stand dynamics including observation of stand response to silvicultural treatments. Site conditions are ideally suited for Teak and some stands show exceptionally good growth performances. However, poor weed management and a lack of fire control and silvicultural management led to high mortality and poor growth performance of some stands, resulting in relative low overall growth averages. In a second step, a social baseline study was carried out in the surrounding villages and identified landowner conflicts between some villagers and DuPaul, which could be one reason for the fire damages. However, the study also revealed a general interest for collaboration in agroforestry on DuPaul land on both sides. Thirdly, a silvicultural management concept was elaborated and an improved integration of the rural population into DuPaul's forest plantation projects is already initiated. If landowner conflicts can be solved, the development of forest plantations can contribute significantly to the economic income of rural households while environmental benefits provide long-term opportunities for sustainable development of the region. Funding: GTZ supported PPP-Measure, Foundation
Comprehension of belowground competition between plant species is a central part in understanding the complex interactions in intercropped agricultural systems, between crops and weeds as well as in natural ecosystems. So far, no simple and rapid method for species discrimination of roots in the soil exists. We will be developing a method for root discrimination of various species based on Fourier Transform Infrared (FTIR)-Attenuated Total Reflexion (ATR) Spectroscopy and expanding its application to the field. The absorbance patterns of FTIR-ATR spectra represent the chemical sample composition like an individual fingerprint. By means of multivariate methods, spectra will be grouped according to spectral and chemical similarity in order to achieve species discrimination. We will investigate pea and oat roots as well as maize and barnyard grass roots using various cultivars/proveniences grown in the greenhouse. Pea and oat are recommendable species for intercropping to achieve superior grain and protein yields in an environmentally sustainable manner. To evaluate the effects of intercropping on root distribution in the field, root segments will be measured directly at the soil profile wall using a mobile FTIR spectrometer. By extracting the main root compounds (lipids, proteins, carbohydrates) and recording their FTIR-ATR spectra as references, we will elucidate the chemical basis of species-specific differences.
DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]
Ziel der Forschungsarbeit im Projekt ist die oekologisch angepasste Intensivierung der kleinbaeuerlichen Landwirtschaft Rwandas mit Hilfe der Methoden des Standortgerechten Landbaus ('Oekologischer Landbau', 'Agroforstwirtschaft'). Hierzu werden seit 1985 gemeinsam mit Kollegen von der Faculte d'Agronomie der Universite Nationale du Rwanda Langzeitversuche auf Modellfeldern in Butare/Rwanda durchgefuehrt. Derzeitige Forschungsschwerpunkte sind: - Vergleichende Untersuchungen zur Integration unterschiedlicher Agroforstbaumarten in die landwirtschaftlich genutzte Flaeche; - Optimierung der Umsetzung der von Baeumen und Hecken produzierten Biomasse; - Verbesserung des Erosionsschutzes mit biologischen Methoden (z.B. alley cropping mit Leguminosenhecken); - Feinanpassung des Systems an die Erfordernisse der Kleinbauern.
DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]
| Origin | Count |
|---|---|
| Bund | 206 |
| Land | 12 |
| Type | Count |
|---|---|
| Ereignis | 5 |
| Förderprogramm | 183 |
| Taxon | 2 |
| Text | 15 |
| unbekannt | 10 |
| License | Count |
|---|---|
| geschlossen | 22 |
| offen | 189 |
| unbekannt | 4 |
| Language | Count |
|---|---|
| Deutsch | 134 |
| Englisch | 106 |
| Resource type | Count |
|---|---|
| Datei | 5 |
| Dokument | 4 |
| Keine | 168 |
| Webseite | 45 |
| Topic | Count |
|---|---|
| Boden | 151 |
| Lebewesen und Lebensräume | 192 |
| Luft | 124 |
| Mensch und Umwelt | 215 |
| Wasser | 126 |
| Weitere | 209 |