Das Projekt "3-MW-Windenergiewandler" wird vom Umweltbundesamt gefördert und von Messerschmitt-Bölkow-Blohm durchgeführt. Objective: Testing and demonstration of a 3 MW wind turbine to gain experience in technical and design approval, operational qualification and economics on the long term. Is the bladed wind turbine second generation large wecs intended for series production, important component innovation ultra light weight composite rotor. Expected annual yield: 6750 MWh. General Information: The design at AEOLUS II wind turbine is based on the existing AEOLUS WTS 75 which has been built on Gotland by Kamewa and MBB. The valuable experience gained will be used in order to improve and reduce cost of the AEOLUS II (WTS 80-3) which will have a nominal power of 3 MW, rotor diam of 80 m and a 86,6 m tower. The 2 blades are built of composite material (GRP/CRP). The nacelle is built in a very compact way thanks to a bevelled gear in the train. This system enables the generator to be placed on the top of the tower and do not yaw with the nacelle. The conical concrete tower has a total weight of 750 tons, with 10 m diameter at the bottom and 4,5 m at the top. It is an upwind type wind turbine with active yaw and fixed hub. Control of power is achieved by changing the pitch of the blades. Nacelle, hub and rotor are self-erecting in order to facilitate O and M. The 3000 kW generator is of asynchronous type connected to the grid via a 6KV-23KV transformer. Operational range of wind speeds is 6 to 25 m/s. Nominal power to be reached at about 15m/s. A detailed measurement phase will follow the installation and the commissioning , during which it will be possible to evaluable the performance of the machine and draw useful conclusions for the commercial machine. This project is a cooperation between MBB and Kamewa (Sweden) for the design and manufacturing, and between MBB and Preusenclektva (DE) for the demonstration phase and the follow-up, when the machine will operate as a power generating plan. The life time of this machine is calculated to be 30 years and the payback time has been estimated to 22 years.
Das Projekt "Studien zu Hydrologie, Einfluss und Variabilitaet des asiatischen Sommermonsuns" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für Meteorologie durchgeführt. Objective: To investigate the processes involved in the evolution of the Asian Summer Monsoon and in its intraseasonal and interannual variability, and thereby to improve their simulation in forecast and climate models. An over-riding theme is the goal of understanding the processes involved in seasonal and climate predictability. General Information: Over half the world's population live within the influence of the Asian Summer Monsoon where the reliable return of the summer rains is essential for life. Therefore the human implications of improved prediction for sub-seasonal, seasonal and climate timescales are enormous. The influence of the monsoon extends to many regions remote from SE-Asia; its importance in the global circulation and climate predictability has been recognised in the new CLIVAR (Climate Variability and Predictability) GOALS (Global Ocean-Atmosphere-Land System) programme of the WCRP. The proposed project is closely allied with the aims of CLIVAR-GOALS and will contribute to numerical experimentation within Europe in support of that programme. The project research involves common diagnosis of multi-year integrations and coordinated, idealised experiments using, primarily, atmospheric GCMs, but extending to coupled atmosphere-ocean GCMs during the later stages of the project. The idealised experimentation is designed to investigate possible mechanisms for monsoon variability. The processes which determine the behaviour of the Asian Summer Monsoon are varied and interactive. The dependence on horizontal resolution, on the parameterisation of physical processes, and on anomalies in boundary forcing, particularly sea surface temperatures, will be investigated. In addition, several supporting programmes have been identified which cover observational studies for model validation, ensemble techniques and palaeoclimate studies. The palaeoclimate studies will provide a broader parameter space within which to test physical parametrisations and potential mechanisms for monsoon variability. Close coordination exists between SHIVA and the seasonal prediction project, PROVOST, since a clear objective of SHIVA is to improve seasonal predictability for monsoon-affected countries. As well as undertaking joint numerical experimentation, the PROVOST and SHIVA projects will meet jointly each year. Prime Contractor: University of Reading, Department of Meteorology, Horticulture and Agriculture Centre for Global Atmospheric Moelling; Reading; United Kingdom.
Das Projekt "International Human Dimensions Programm of Global Environmental Change: Aufbau, Ausstattung und Betrieb des IHDP" wird vom Umweltbundesamt gefördert und von Universität Bonn, Institut für Wirtschaftsgeographie durchgeführt. Aufbau, Ausstattung und Betrieb des International Human Dimensions Programms (IHDP) of Global Environmental Change Sekretariats an der Universtitaet Bonn dienen den folgenden Aufgabenstellungen und Zielsetzungen: - Netzwerkbildung und Kommunikation zwischen IHDP und nationalen HDP-Aktivitaeten; - Oeffentlichkeitsarbeit, Dokumentation und Publikation internationaler IHDP-Forschung und deren wissenschaftliche Koordination; - Entwicklung und Durchfuehrung wissenschaftlicher 'cors projects', z.T. in Zusammenarbeit mit IGBP, WCRP u.a. Schwerpunkt der Arbeit des IHDP-Sekretariats ist indes die inhaltliche sowie konzeptionelle Weiterentwicklung der internationalen IHDP-Forschung. Dazu zaehlen die Entwicklung globaler und faecheruebergreifender angelegter Forschungsstrategien sowie die Konzeptualisierung der internationalen Umweltforschung auf dem Gebiet der 'Human Dimensions' als Verursacher und Betroffener globaler Umweltveraenderungen.