Das Projekt "HC-Rohemissionen beim Kaltstart, in der Warmlaufphase sowie bei Last- und Drehzahl-sprüngen" wird vom Umweltbundesamt gefördert und von Universität Karlsruhe (TH), Institut für Kolbenmaschinen durchgeführt. Die unvollständige Verbrennung von Kohlenwasserstoffen in Ottomotoren, vor allem beim Kaltstart, in der Warmlaufphase und bei Last- und Drehzahlsprüngen, führt neben höherem Kraftstoffverbrauch auch zum Ausstoß von Kohlenwasserstoffen verschiedener Art. Zur toxischen Wirkung einiger Kohlenwasserstoffe auf den menschlichen Organismus werden vor allem die emittierten Alkene für die Entstehung von Ozon und für die Smogbildung verantwortlich gemacht. Durch zahlreiche Untersuchungen wurden mehrere Ursachen für das Auftreten unverbrannter Kohlenwasserstoffe bei ottomotorischer Verbrennung erkannt: Flame-Quenching in Spalten, an Wänden und im wandentfernten Bereich; Absorption und Desorption von Kraftstoff im Öl; flüssiger Kraftstoff im Brennraum bei kaltem oder instationärem Motorbetriebszuständen, wie z.B. Beschleunigungsvorgängen. In diesem Forschungsvorhaben sollen die Bildungsmechanismen unverbrannter Kohlenwasserstoffe in der Kaltstart und Warmlaufphase, sowie im instationären Motorbetrieb untersucht werden. Dabei sollen qualitative Aussagen über die Einflüsse verschiedener Verbrennungsparameter auf die HC-Emissionen, wie z.B. Ladungsbewegung und Flammenausbreitung, in diesen Betriebszuständen gemacht werden. Dies geschieht mit Hilfe modernster Messtechniken, wie der zyklusaufgelösten Messung unverbrannter Kohlenwasserstoffe mittels eines schnellen Flammen Ionisations Detektors, der Lichtleit-Messtechnik zur Erfassung der Flammenausbreitung, sowie das Verfahren Particle Tracking Velocimetry zur Beschreibung der Gasbewegung.
Das Projekt "Simulation des Wärmetransportes in Verbrennungsmotoren zur Reduzierung der Reibung und der CO2-Emissionen unter Warmlaufbedingungen" wird vom Umweltbundesamt gefördert und von Universität Magdeburg, Institut für Strömungstechnik und Thermodynamik durchgeführt. Die endlichen Vorräte fossiler Energien erfordern einen effizienten Umgang mit ihnen. Dies zwingt auch zu einer weiteren Optimierung konventioneller Verbrennungsmotoren und zur Entwicklung neuer Antriebskonzepte mit dem Ziel, den Kraftstoffverbrauch zu senken und damit auch einen verminderten CO2 - Ausstoß. Dieses Ziel verfolgen die Motorenentwickler durch Verbesserung der Gemischbildung und Brennverfahren sowie der Reduzierung der Reibungsverluste und des Leistungsbedarfs der Nebenaggregate seit vielen Jahren erfolgreich. Hinzu kommen heute Downsizing - Auslegungen sowie Fahrzeugkonzepte, die einerseits den Verbrennungsmotor nach wie vor ausschließlich und unmittelbar für den Antrieb nutzen als auch indirekt zur Erzeugung elektrischer Energie für hybride Antriebe verwenden. Diese neuen Konzepte haben Veränderungen des Thermomanagements zur Folge, die sowohl Wärmeströme und Flussrichtungen im Fahrzeugmotor beeinflussen als auch Baugruppen wie die Kühlaggregate im Gesamtfahrzeug. Aber auch bei den weiterentwickelten Verbrennungsmotoren für den direkten Standardantrieb ergeben sich Verbrauchs - Einsparpotenziale durch örtlich und zeitlich gezielt geführte Wärmeströme zu den Reibstellen des Motors, die besonders unter Warmlaufbedingungen von Bedeutung sind. Das beantragte Forschungsvorhaben soll einen Beitrag zur Reibungsverminderung und damit zur Reduzierung des Kraftstoffverbrauches und der CO2 - Emission während des Warmlaufes nach einem Kaltstart, dem Warmlauf nach einem Warmstart und der Lastwechselphasen durch eine optimale Steuerung des Wärmeflusses zu 'verbrauchskritischen' Lagerstellen des Motors liefern. Aus stationären Messungen ist z.B. bekannt, dass der Reibmitteldruck bei Erhöhung der Öltemperatur von 20 ºC auf ca. 90 ºC um etwa 50Prozent reduziert werden kann. Nach Schwaderlapp bietet die Motorreibung ein hohes Verbrauchssenkungspotenzial von über 12Prozent. Um bereits in der Konstruktionsphase den zeitlich veränderlichen Wärmefluss abschätzen und gezielt beeinflussen zu können, wird ein geeignetes Simulationsmodell erstellt, das durch Messungen an einem 4-Zylinder Motor verifiziert wird und das sich durch eine gute Übertragbarkeit auszeichnet. Die diesbezügliche Methodenentwicklung ist wesentlicher Bestandteil des Projektes.