With the introduction of mobile mapping technologies, geomonitoring has become increasingly efficient and automated. The integration of Simultaneous Localization and Mapping (SLAM) and robotics has effectively addressed the challenges posed by many mapping or monitoring technologies, such as GNSS and unmanned aerial vehicles, which fail to work in underground environments. However, the complexity of underground environments, the high cost of research in this area, and the limited availability of experimental sites have hindered the progress of relevant research in the field of SLAM-based underground geomonitoring. In response, we present SubSurfaceGeoRobo, a dataset specifically focused on underground environments with unique characteristics of subsurface settings, such as extremely narrow passages, high humidity, standing water, reflective surfaces, uneven illumination, dusty conditions, complex geometry, and texture less areas. This aims to provide researchers with a free platform to develop, test, and train their methods, ultimately promoting the advancement of SLAM, navigation, and SLAM-based geomonitoring in underground environments. SubSurfaceGeoRobo was collected in September 2024 in the Freiberg silver mine in Germany using an unmanned ground vehicle equipped with a multi-sensor system, including radars, 3D LiDAR, depth and RGB cameras, IMU, and 2D laser scanners. Data from all sensors are stored as bag files, allowing researchers to replay the collected data and export it into the desired format according to their needs. To ensure the accuracy and usability of the dataset, as well as the effective fusion of sensors, all sensors have been jointly calibrated. The calibration methods and results are included as part of this dataset. Finally, a 3D point cloud ground truth with an accuracy of less than 2 mm, captured using a RIEGL scanner, is provided as a reference standard.
Gewinnung von analytischen Daten ueber die Schadstoffbelastung von Oberflaechengewaessern in Zusammenhang mit der Sicherung der Trinkwasserversorgung und zur Verbesserung der Wasseraufbereitungstechnologie durch Identifizierung und quantitative Bestimmung organischer Mikroverunreinigungen. Selektive quantitative Analyse von Schadstoffen, die Heteroelemente enthalten (z.B. F, Cl, Br, N, P, S) durch spezifische Detektoren (Mikrowellenplasmadetektor). Dadurch besteht die Moeglichkeit, gezielt spezielle Substanzklassen von hygienischer und toxikologischer Bedeutung zu analysieren.
Die Analytik und Bewertung von Spurenverunreinigungen und deren Transformationsprodukten in der aquatischen Umwelt sowie in technischen Wasseraufbereitungsverfahren im Spuren- und Ultraspurenbereich ist einer der Hauptschwerpunkte in Forschung und Lehre der Wasserchemie am Engler-Bunte-Institut des KIT (KIT-EBI). Das vorhandene Triple-Quad (Anschaffungsdatum: 2000) entspricht nicht mehr dem aktuellen Stand der Technik und Forschung. Zudem steigen die Reparaturkosten überproportional und Ersatzteile werden nicht mehr hergestellt. Daher wird der Service des Gerätes auch in absehbarer Zukunft eingestellt werden. Die Triple-Quad Geräte der neuesten Generation weisen eine um den Faktor 200-500 (substanzspezifisch) höhere Sensitivität auf, als das vorhandene Gerät. Das beantragte Gerät soll daher u.a. auch zur Direktinjektion und online Anreicherung von Wasserproben genutzt werden und so Kosten und Zeit zur Probenvorbereitung einsparen. Die UHPLC ist zeitgemäß und ermöglicht neben den normalen chromatografischen Anwendungen auch Trennungsgänge bei Drücken bis 1200 bar. Vom Anbieter wurde dem KIT-EBI im Rahmen des Kaufs eines Triple-Quad Systems eine Kooperation mit der Möglichkeit zur Messung an Q-ToF Geräten zugesagt, die für non-target Fragestellungen und Transformationsprodukt-Identifizierung genutzt werden können.
Chlordioxid (ClO2) wird weltweit zur Oxidation und Desinfektion eingesetzt, wenngleich über die Reaktionen des Chlordioxids noch wenig bekannt ist. So haben erst kürzlich erschiene Arbeiten gezeigt, dass es bei der Reaktion von ClO2 zur Bildung von freiem Chlor kommen kann, welches bei der Desinfektion und Schadstoffabbau sowie bei der Bildung von Transformations- und Nebenprodukten berücksichtigt werden muss. Das vorliegende Projekt behandelt die Reaktionen von ClO2 mit Schadstoffen. Dabei sollen N-haltige Verbindungen untersucht werden, die einen Großteil der in der aquatischen Umwelt vorhandenen Schadstoffe ausmachen. Ziel der Untersuchungen ist es zunächst die pH-wertabhängige Reaktionskinetik von N-haltigen organischen Modellverbindungen zu bestimmen um die Stoffe zu identifizieren, die ein hohes Potenzial haben durch ClO2 abgebaut zu werden. Dann werden die elementaren Reaktionsschritte anhand der "reaktiven" Modellverbindungen untersucht und Reaktionsmechanismen ermitteln. Hierbei werden auch sekundäre Oxidationsmittel, die aus Reaktionen des ClO2 entstehen können (freies Chlor und freies Brom und Iod) erfasst. Die mechanistischen Untersuchungen umfassen zudem die Rolle des Sauerstoffs und der Peroxylradikale in ClO2 Reaktionen, die bisher kaum diskutiert wurden. Schließlich werden Transformationsprodukten bestimmt. Aus den erarbeiteten Daten werden Reaktionsmechanismen abgeleitet und angewendet um die Bildung von Transformationsprodukten für komplexere Schadstoffe zu vorherzusagen. Die Vorhersagen werden daraufhin sowohl in synthetischen wässrigen Lösungen als auch in realen Wässern anhand von realen N-haltigen Schadstoffen überprüft. Insgesamt soll dabei das Verständnis der ClO2 Reaktionen unter Berücksichtigung der sich bildenden sekundären Oxidationsmittel soweit verbessert werden, dass signifikante wissenschaftliche Fortschritte erreicht werden die in der Praxis der Wasseraufbereitung etwa zur Abschätzung der Abbaubarkeit von N-haltigen Schadstoffen und der Bildung von transformations- und Nebenprodukten genutzt werden können.
Die Ozonierung ist eine etablierte Technologie zur effizienten Oxidation von organischen Spurenstoffen in der Wasseraufbereitung. Ein wesentlicher Nachteil bei der Anwendung von Ozon ist die Bildung von stabilen und potenziell toxischen Ozonungsprodukten (OPs). Kritisch sind wegen ihrer Langlebigkeit vor allem biologisch stabile OPs. Unmöglich kann die Reaktion aller relevanter CECs mit Ozon, die dabei entstehenden OPs und deren biologische Stabilität untersucht werden. Vielmehr ist es notwendig, basierend auf dem systematischen Studium funktioneller Gruppen Kenntnisse zu generieren, die auf andere Stoffe übertragbar sind. Bislang wurden solche systematischen Studien aber nicht durchgeführt. Noch größer ist die Wissenslücke bei den im Abwasser vorliegenden organischen Kohlenstoffverbindungen (engl.: effluent organic matter, EfOM). Zwar belegt die Ozonzehrung von EfOM dessen Reaktivität gegenüber Ozon, aber welche funktionellen Gruppen reagieren, welche Produkte gebildet werden und wie biologisch stabil diese sind, ist gerade für EfOM mit Heteroatomen (N, S) nicht untersucht. Dieses Vorhaben will beide Lücken durch ein komplementäres analytisches und experimentelles Vorgehen schließen, mit dem gemeinsamen methodischen Ansatz der Einführung einer Markierung in die OPs durch Verwendung von 18O-Ozon und der nachfolgenden Detektion und Identifizierung der OPs mithilfe der (ultra-hochauflösenden) Massenspektrometrie. Das Vorhaben basiert auf der zentralen Hypothese, dass die Reaktion von Ozon sowohl mit bestimmten funktionellen Gruppen organischer Spurenstoffe als auch mit äquivalenten Gruppen des EfOM zu einer vorhersagbaren Bildung von OPs führt. Es zielt darauf ab, i) unser Verständnis der Reaktivität verschiedener funktioneller Gruppen gegenüber Ozon zu verbessern, wobei der Schwerpunkt auf der Identifikation biologisch schwer abbaubarer Funktionen innerhalb der OPs liegt, ii) ozon-reaktive funktionelle Gruppen im EfOM basierend auf bestehendem Wissen zur Transformation von Spurenstoffen zu identifizieren, wobei der Schwerpunkt auf N- und S-haltigen funktionellen Gruppen liegt, welche potentiell chemisch stabile OPs bilden, und iii) die Bedeutung des EfOM im Hinblick auf die Bildung biologisch schwer abbaubarer OPs in der Ozonierung von Abwasser zu bewerten. Dazu soll der biologische Abbau der OPs anhand deren spezifischen funktionellen Gruppen in Säulen-Abbauversuchen und einer simulierten Grundwasseranreicherung untersucht werden. Mit dem neuen Ansatz der Markierung sind wir in der Lage, OPs von CECs ebenso wie von EfOM sicher zu detektieren, besser zu identifizieren und ihre Stabilität gut zu verfolgen. Das Vorhaben generiert ein systematisches und übertragbares Verständnis zur Bildung stabiler OPs basierend auf funktionellen Gruppen organischer Moleküle, von CECs wie von EfOM. Erst wenn die Stabilität der möglichen OPs untersucht ist, wird auch eine systematische toxikologische Bewertung der Ozonung als Wasseraufbereitungsmethode möglich.
Niederschlag ist eine wichtige Komponente des hydrologischen Kreislaufs. Um zu verstehen, wie sich der Wasserhaushalt in einem sich erwärmenden Klima verändert, ist ein umfassendes Verständnis der Niederschlagsbildungsprozesse erforderlich. In den mittleren Breiten wird der meiste Niederschlag unter Beteiligung der Eisphase in Mischphasenwolken erzeugt, aber die genauen Interaktionen zwischen Eis, flüssigem Wasser, Wolkendynamik, orografischem Antrieb und Aerosolpartikeln während der Eis-, Schnee- und Regenbildung sind nicht gut verstanden. Dies gilt insbesondere für Bereifungs- und Sekundäre Eisproduktion (SIP) Prozesse, die mit den größten quantitative Unsicherheiten in Bezug auf die Schneefallbildung verbunden sind. Die Lücken in unserem Verständnis von SIP- und Bereifungsprozesse zu schließen, ist vor allem für Gebirgsregionen entscheidend, die besonders anfällig für Änderungen des Niederschlags und des Wasserhaushalts, wie z.B. des Verhältnisses zwischen Regen und Schneefall, sind. In diesem Antrag wird ein Forschungsprojekt vorgeschlagen, das sich dem Verständnis von Bereifungs- und SIP-Prozessen in komplexem Terrain widmet. Dazu werden wir ein innovatives, simultan sendendes und simultan empfangendes (STSR), scannendes W-Band-Wolkenradar zusammen mit einer neuartigen In-situ-Schneefallkamera eine ganze Wintersaison lang in den Rocky Mountains von Colorado, USA betreiben. Die Instrumente werden Teil der Atmospheric Radiation Measurement (ARM) Surface Atmosphere Integrated Field Laboratory (SAIL) Kampagne sein, bei der ein Ka-Band und ein X-Band Radar eingesetzt werden. Durch die Kombination von spektralen polarimetrischen und Multifrequenz-Doppler-Radarbeobachtungen mit empirischen und Bayes'schen Machine Learning Verfahren werden wir Bereifungs- und SIP-Ereignisse identifizieren und deren Einfluss auf die Schneefallrate quantifizieren. Dies erfordert die Erweiterung des Passive and Active Microwave radiative TRAnsfer Modells (PAMTRA) mit zusätzlichen polarimetrischen Variablen und modernsten Berechnungen von Streueigenschaften. Durch die Nutzung der umfangreichen kollokierten Messungen während SAIL wird es ermöglicht, die beobachteten Prozessraten mit Umweltbedingungen wie Temperatur, Luftfeuchtigkeit und Flüssigwasserpfad sowie mit der Wolkendynamik in Beziehung zu setzen. Darüber hinaus werden wir einen besonderen Fokus auf den Einfluss von vertikalen Luftbewegungen legen, die unter orographischen Bedingungen häufig auftreten. Zusammengenommen wird das vorgeschlagene Projekt unser Verständnis von Bereifungs- und SIP-Prozessen in komplexem Gelände verbessern.
| Origin | Count |
|---|---|
| Bund | 1762 |
| Kommune | 1 |
| Land | 78 |
| Wissenschaft | 183 |
| Type | Count |
|---|---|
| Daten und Messstellen | 178 |
| Förderprogramm | 1638 |
| Taxon | 6 |
| Text | 108 |
| Umweltprüfung | 38 |
| unbekannt | 54 |
| License | Count |
|---|---|
| geschlossen | 133 |
| offen | 1794 |
| unbekannt | 89 |
| Language | Count |
|---|---|
| Deutsch | 1626 |
| Englisch | 452 |
| Resource type | Count |
|---|---|
| Archiv | 74 |
| Bild | 1 |
| Datei | 204 |
| Dokument | 121 |
| Keine | 1156 |
| Unbekannt | 10 |
| Webdienst | 3 |
| Webseite | 575 |
| Topic | Count |
|---|---|
| Boden | 1318 |
| Lebewesen und Lebensräume | 1634 |
| Luft | 966 |
| Mensch und Umwelt | 2016 |
| Wasser | 2016 |
| Weitere | 2016 |