API src

Found 1009 results.

Related terms

INSPIRE-WMS SL Produktions- und Industrieanlagen IED - Steam and air conditioning supply

Dieser Dienst stellt für das INSPIRE-Thema Produktions- und Industrieanlagen IED Daten bereit.:Dieser Layer visualisiert die saarl. Produktions- und Industrieanlagen zum Thema Steam and air conditioning supply. Die Datengrundlage erfüllt die INSPIRE Datenspezifikation.

Zum Stichwort „klimaneutral”: Treibhausgase vermeiden ist besser als kompensieren

Umweltbundesamt veröffentlicht Leitfaden zur freiwilligen Kompensation von Treibhausgasen Angebote zur freiwilligen Ausgleich von Treibhausgasen gibt es allerorten: Von der „klimaneutralen Flugreise” bis zum „klimaneutralen Blumengruß” ist alles möglich. Die Idee ist einfach: Von Produkten oder Dienstleistungen verursachte Klimagase werden durch Einsparung der gleichen Menge an Emissionen an anderer Stelle ausgeglichen. Licht ins Dickicht der neuen Angebote bringt ein Leitfaden des Umweltbundesamtes (UBA) samt Checkliste für Verbraucherinnen und Verbraucher. Diese sollten sich vor allem von der häufig verwendeten Bezeichnung „klimaneutral” nicht in die Irre führen lassen, meint Dr. Thomas Holzmann, Vizepräsident des Umweltbundesamtes: „Die zu kompensierende Aktivität selbst - etwa eine Flugreise - kann nie klimaneutral sein, da Kohlendioxidemissionen entstehen. Die freiwillige Kompensation kann die Vermeidung von Treibhausgasen nicht ersetzen. Es ist immer besser, Emissionen gar nicht erst entstehen zu lassen.” Wer sich für ein Kompensationsangebot entscheidet, sollte darauf achten, dass die Berechnung der Emissionen realistisch erfolgt und eine hohe Qualität der Klimaschutzprojekte gewährleistet ist. „Die Anbieter sind gefragt, um die Verbraucherinnen und Verbraucher transparent und umfassend zu informieren.”, so Dr. Holzmann weiter. Wichtige Punkte auf der ⁠ UBA ⁠-Checkliste sind: Hat der Anbieter der Kompensation alle Möglichkeiten ausgeschöpft, um die Klimagasemissionen seines Angebots zu mindern? Hat er oder sie zum Beispiel die Energieeffizienz der Produktion optimiert oder die Energieversorgung auf Strom aus erneuerbaren Quellen umgestellt? Ferner: Ist das Klimaschutzprojekt von einem unabhängigen Gutachter überprüft worden und erfolgt die Berechnung der Minderung nach international anerkannten Standards? Bei der Kompensation von Flugreisen sollten wirklich alle Klimawirkungen in die Bilanz des Anbieters einflieߟen. „Die Klimawirksamkeit des Flugverkehrs beschränkt sich nicht auf das Kohlendioxid allein. Bei Flügen in mehr als neun Kilometer Höhe - also bei Mittel- und Langstreckenflügen - tragen auch die Stickoxidemissionen und die vom Flugzeug verursachte Wolkenbildung durch Ruߟpartikel und Wasserdampf zum ⁠ Treibhauseffekt ⁠ bei.”, so UBA-Vize Dr. Holzmann. Genau überdenken sollte man auch Angebote zur Kompensation vermeidbarer hoher Emissionen, beispielsweise aus stark motorisierten Kraftfahrzeugen - und sich lieber für ein sparsames Modell entscheiden. Anbieter von Kompensationsdienstleistungen oder „klimaneutralen” Produkten bekommen im Leitfaden Hilfe, um mit ihren Produkten und Dienstleistungen einen echten Beitrag zum ⁠ Klimaschutz ⁠ zu leisten. Der Leitfaden definiert die aus Sicht des UBA erforderlichen Qualitätsstandards für Kompensationsangebote, erklärt die Funktionsweise internationaler Klimaschutzprojekte und stellt verschiedene Arten und Standards angebotener Zertifikate vor.

Klimaneutral unterwegs: Bund kompensiert seine Dienstreisen

Gemeinsame Pressemitteilung von Umweltbundesamt und Bundesumweltministerium Internationale Klimaschutzprojekte nach strengen Kriterien ausgewählt Die Bundesregierung gleicht die Treibhausgasemissionen ihrer Dienstreisen vollständig aus. Dabei werden die Emissionen der Pkw-Fahrten und Flugreisen der Mitarbeiterinnen und Mitarbeiter von insgesamt 116 Ministerien und Bundesbehörden ermittelt und durch anspruchsvolle internationale Klimaschutzprojekte kompensiert. Das Umweltbundesamt (UBA) hat für alle 2018 angefallenen Dienstreisen und -fahrten Emissionsminderungsgutschriften in Höhe von rund 300.000 Tonnen Kohlendioxid (CO2) erworben. Die Kosten für die Kompensation belaufen sich auf insgesamt 1,7 Millionen Euro. Bundesumweltministerin Svenja Schulze: „Es ist wichtig, dass die Bundesregierung beim ⁠ Klimaschutz ⁠ mit gutem Beispiel vorangeht. Darum versuchen wir, Flugreisen so gut wie möglich zu vermeiden. Für den Austausch zwischen Bonn und Berlin zum Beispiel reichen oft auch Videokonferenzen. Und im Reisekostenrecht des Bundes soll nicht mehr nur der Preis ausschlaggebend sein, sondern auch die Umweltfreundlichkeit des Verkehrsmittels. Das wird zu mehr Bahnfahrten und weniger Flügen führen. Wo sich Flüge nicht vermeiden lassen, kompensieren wir durch Klimaschutzprojekte. Dabei legen wir Wert auf hochwertige Projekte, die einen echten Mehrwert für den Klimaschutz bringen.“ Durch den Einkauf der Emissionsminderungs-Gutschriften werden internationale Klimaschutzprojekte gefördert. Diese helfen, ⁠ CO2 ⁠ an einer anderen Stelle einzusparen und in Ländern, in denen die erneuerbaren Energien noch ganz am Anfang stehen, Projekte anzuschieben. Zu den ausgewählten Projekten gehört die Produktion von Energie durch ⁠ Biomasse ⁠, z.B. in Haushalten in Nepal und Bangladesch. Aber auch moderne und effiziente Kochöfen in ländlichen Regionen Sambias und Äthiopien sind im Projektportfolio der Bundesregierung. Für die ausgesuchten Projekte gilt der Mechanismus für umweltverträgliche Entwicklung (engl. Clean Development Mechanism, kurz CDM). Teil der Prüfung von Projekten im CDM ist insbesondere die Bestätigung der „Zusätzlichkeit“, d.h. dass die Emissionsreduktionen nicht schon sowieso, also ohne das CDM-Projekt, erzielt worden wären. Das ⁠ UBA ⁠ prüft die Einhaltung weiterer Qualitätskriterien, um die Hochwertigkeit der Projekte zu gewährleisten. So sollten sie auch über Co-Benefits verfügen. Co-Benefits sind z. B. der Ressourcenschutz, die Stärkung von Arbeitsplätzen vor Ort oder der Gesundheitsschutz. „Mit der Kompensation wollen wir einen Mehrwert schaffen, der über den reinen Ausgleich von Treibhausgasemissionen hinausreicht. Die Qualitätskriterien beim Auswahlprozess orientieren sich an den Ansätzen des deutschen Klimaschutzplans 2050 und an den globalen Nachhaltigkeitszielen der Vereinten Nationen, den Sustainable Development Goals. Dazu zählen zum Beispiel die Förderung von Kochöfen in Sambia“, so UBA-Präsidentin Maria Krautzberger. Das UBA ist mit der gesamten Abwicklung der Dienstreisekompensation beauftragt. Hierfür berechnet das UBA die Treibhausgasemissionen, die sich aus den Wegstrecken per Flugzeug und den Kraftstoffverbräuchen der Dienstwagen ergeben. Für Flugreisen wurde der CO2-Ausstoß dreifach bewertet, um die besondere Klimawirksamkeit des Luftverkehrs einschließlich sogenannter nicht CO2-Effekte zu berücksichtigen; diese entstehen dadurch, dass auch der von Flugzeugen ausgestoßene Wasserdampf zum ⁠ Klimawandel ⁠ beiträgt. Für Bahnreisen bucht der Bund „Grüne Tickets“, für die derzeit keine Kompensation erfolgt, da für diese Fahrten Strom aus erneuerbaren Energien verwendet wird. Das UBA greift das Thema auch im aktuellen Magazin „Schwerpunkt: Fliegen“ auf. In knapper und verständlicher Form stellt das Magazin die Umweltwirkungen des Flugverkehrs dar, zeigt die Lärmwirkungen auf und informiert zu Möglichkeiten der Kompensation der Treibhausgasemissionen. Das Heft ist hier zum Download verfügbar.

Weiterentwicklung TREMOD – Clustermodell Flugverkehr

Die ⁠ Klimawirkung ⁠ des Luftverkehrs entsteht durch CO 2 -Emissionen sowie sogenannte „Nicht-CO 2 -Effekte“ hervorgerufen u.a. durch Emissionen von Stickoxiden, Wasserdampf und Partikeln in hohen Luftschichten. Während CO 2 -Emissionen und direkt aus dem Treibstoffverbrauch berechnet werden, sind die Klimawirkungen der Nicht-CO 2 -Effekte komplizierter zu ermitteln, da sie je nach Emissionsort und Umgebungsbedingungen variieren. Die Berechnung mittels eines konstanten - auf die direkten CO 2 -Emissionen bezogenen Faktors – ist daher relativ ungenau. Im Rahmen des vom Umweltbundesamt durchgeführten Projektes "Untersuchung der praktischen Umsetzung der Einbindung von Nicht-CO 2 -⁠ Treibhausgas ⁠-Effekten des Luftverkehrs in das EU-ETS einschließlich Clusteranalyse" wurde eine Methode zur Klassifizierung von Flugverbindungen nach ihrer Klimawirkung mit dazugehörigen klassenspezifischen Regressionen für CO 2 -Äquivalente erarbeitet. Im vorliegenden Bericht wird die Einbindung dieser Methode in das ⁠ UBA ⁠-Emissionsmodell „TREMOD-Teilmodul AV“ beschrieben und umgesetzt. Veröffentlicht in Texte | 153/2024.

Chem-Anorg\H2-DE-2010

Wasserstoffherstellung: Das industrielle Verfahren zur Wasserstoffherstellung beruht auf dem katalytischen Reformieren (Nickel-Katalysatoren) von Erdgas mit Wasserdampf. Bei diesem Prozeß erfolgt eine Dampfspaltung (steam reforming) des Erdgases (Methan). Methan wird dabei in Reaktoren bei Temperaturen von ca. 850 §C zu Wasserstoff (H2) und Kohlenmonoxid umgesetzt. Nach der Umsetzung wird das Gas schnell abgekühlt, wobei gleichzeitig Prozeßdampf gebildet wird. In einer Folgereaktion reagiert das Kohlenmonoxid und überschüssiges Wasser mit Hilfe eines Katalysators zu weiterem Wasserstoff und Kohlendioxid. Daran schließt sich eine CO2-Entfernung und die Isolierung von Wasserstoff an [CO2-Druckwäsche (Weissermel 1994); PSA, pressure swing adsorption (Ullmann 1989a)]. Wasserstoff (H2) wird heute in erster Linie aus Kohlenwasserstoffen gewonnen. Daneben gibt es noch kohlechemische und elektrochemische Prozesse, die aber von geringerer Bedeutung sind [siehe Tabelle 1, (Weissermel 1994)]. Tabelle 1: Verfahren zur Wasserstofferzeugung Welt-H2-Erzeugung 1988 (in Gew.-%) Rohöl/Erdgas-Spaltung 80 Kohlevergasung 16 Elektrolysen/Sonstige 4 gesamt (in Mio. t) ca. 45 Der wichtigste Rohstoff zur Erzeugung von H2 ist Erdgas, aber auch Naphtha und andere Rückstände der Petrochemie werden eingesetzt (Ullmann 1989a). Die Bilanzierung der vorliegenden Kennziffern erfolgt auf der Annahme, daß Wasserstoff zu 100 % aus Erdgas synthetisiert wird. Für die Bilanzierung des Prozesses wurde eine Studie der Arbeitsgemeinschaft Kunststoff (DSD 1995), die Ökoinventare für Energiesysteme (ETH 1995) und Daten aus (Ullmann 1989a) ausgewertet. Da in (DSD 1995) die ausführlichsten Daten vorliegen, wurden diese für die Berechnung der Kennziffern verwendet. Es wird angenommen, daß die dortigen Angaben sich auf die H2-Herstellung in Westeuropa in den 90er Jahren beziehen. Die Massen- und Energiebilanz ist vom verwendeten Rohstoff abhängig, somit ist eine Übertragung der Kennziffern auf andere Einsatzstoffe oder auch Produktionsverfahren nicht möglich. Allokation: keine Genese der Kennziffern: Massenbilanz: Zur Herstellung von Wasserstoff wird als Rohstoff Erdgas (1990 kg/t H2) und Wasser (4468 kg/t H2) benötigt (DSD 1995). Als weiteres Reaktionsprodukt der chemischen Umsetzung von Erdgas entseht neben H2 auch Kohlendioxid (5458 kg CO2/t H2). Da CO2 kein verwertbares Produkt darstellt, wird es den prozeßbedingten Luftemissionen zugerechnet. Im Vergleich zu den obigen Angaben wird bei (Ullmann 1989a) für eine typische Steamreformer-Anlage ein Erdgasbedarf von 2160 m3 für die Erzeugung von 5000 m3 Wasserstoff (jeweils bei 0 §C und 101,325 kPa) - bzw. umgerechnet 3439 kg Erdgas/t H2 - aufgeführt. (ETH 1995) wiederum gibt einen Erdgasbedarf von 121 MJ/kg H2 (umgerechnet 2881 kg/t H2) an. Die Angaben aus (DSD 1995), (ETH 1995) und (Ullmann 1989a) zeigen deutliche Abweichungen voneinander. Da bei (DSD 1995) die vollständigste Bilanz vorliegt, werden diese Daten übernommen. Es wird angenommen, daß der unterschiedliche Rohstoffbedarf bei den verschiedenen Literaturquellen dadurch zustande kommt, daß die Wasserstoffherstellung je nach Prozeßführung auf eine maximale Produktion an Prozeßdampf, minimalen Einsatz von Erdgas , etc. optimiert werden kann. Energiebedarf: Für den Prozeß der Wasserstofferzeugung wird insgesamt eine Energiemenge von 49,25 MJ/kg H2 benötigt. 47,25 MJ des Gesamtenergiebedarfs werden durch die Verbrennung von Erdgas bereitgestellt. Davon entfallen wiederum 18,144 MJ auf die Dampferzeugung und 8,645 MJ auf die CO2-Druckwäsche. An elektrischer Energie werden 2,0 MJ Energie verbraucht (DSD 1995). Im Vergleich dazu wird der Prozeßenergiebedarf bei (ETH 1995) mit 3,47 MJ/kg elektrischer Energie, 26,55 MJ/kg Heizöl S (Industriefeuerung) und 17,8 Erdgas (Industriefeuerung) angegeben (Summe 47,82 MJ/kg). Der Energiebedarf bei (DSD 1995) und (ETH 1995) zeigt eine sehr gute Übereinstimmung. Es werden die Daten aus (DSD 1995) für GEMIS übernommen. Prozeßbedingte Luftemissionen: Nach (Ullmann 1989a) entstehen beim steam reforming 0,25 mol CO2 pro mol H2 (Methan und Wasser werden zu Wasserstoff und Kohlendioxid umgesetzt). Dieser Wert ist identisch mit der Angabe aus (DSD 1995) von 5,458 kg CO2 pro kg Wasserstoff. Es konnten keine weiteren prozeßspezifischen Daten zu den Emissionen ermittelt werden. Diese sind im Vergleich zu den Emissionen, die durch den Energieverbrauch entstehen, relativ gering (ETH 1995). Wasser: Neben dem Erdgas dient auch Wasser als Rohstoff zur H2-Erzeugung (Reduktion von H2O zu H2). Für die chemische Reaktion werden 4,468 kg H2O pro kg H2 benötigt (DSD 1995). Es kann jedoch davon ausgegangen werden, daß beim Herstellungsprozeß ein Überschuß an Wasserdampf eingesetzt wird. Da hierüber - ebenso wie zum Kühlwasserbedarf - keine Angaben vorliegen, wird der Wert von 4,468 kg Wasser als Kennziffer verwendet. Angaben zu Abwasserwerten und Reststoffen liegen nicht vor. Auslastung: 5000h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Gase gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1MW Nutzungsgrad: 143% Produkt: Brennstoffe-Sonstige

Chem-Anorg\H2-DE-2015

Wasserstoffherstellung: Das industrielle Verfahren zur Wasserstoffherstellung beruht auf dem katalytischen Reformieren (Nickel-Katalysatoren) von Erdgas mit Wasserdampf (Dampfspaltung - steam reforming - von Methan). Methan wird dabei in Reaktoren bei Temperaturen von ca. 850 °C zu Wasserstoff (H2) und Kohlenmonoxid (CO) umgesetzt. Danach wird das Gas schnell abgekühlt, wobei Prozessdampf entsteht. In einer Folgereaktion reagieren CO und überschüssiges Wasser mit Hilfe eines Katalysators zu weiterem Wasserstoff und Kohlendioxid. Daran schließt sich eine CO2-Entfernung und die Isolierung von Wasserstoff an [CO2-Druckwäsche (Weissermel 1994); PSA, pressure swing adsorption (Ullmann 1989a)]. Der wichtigste Rohstoff zur Erzeugung von H2 ist Erdgas (Ullmann 1989a). Die Bilanzierung der vorliegenden Kennziffern erfolgt auf der Annahme, daß Wasserstoff zu 100 % aus Erdgas synthetisiert wird. Für die Bilanzierung des Prozesses wurde eine Studie der Arbeitsgemeinschaft Kunststoff (DSD 1995), die Ökoinventare für Energiesysteme (ETH 1995) und Daten aus (Ullmann 1989a) ausgewertet. Da in (DSD 1995) die ausführlichsten Daten vorliegen, wurden diese für die Berechnung der Kennziffern verwendet. Es wird angenommen, daß die dortigen Angaben sich auf die H2-Herstellung in Westeuropa in den 90er Jahren beziehen. Die Massen- und Energiebilanz ist vom verwendeten Rohstoff abhängig, somit ist eine Übertragung der Kennziffern auf andere Einsatzstoffe oder auch Produktionsverfahren nicht möglich. Allokation: keine Massenbilanz: Zur Herstellung von Wasserstoff wird als Rohstoff Erdgas (1990 kg/t H2) und Wasser (4468 kg/t H2) benötigt (DSD 1995). Als weiteres Reaktionsprodukt der chemischen Umsetzung von Erdgas entseht neben H2 auch Kohlendioxid (5458 kg CO2/t H2). Da CO2 kein verwertbares Produkt darstellt, wird es den prozeßbedingten Luftemissionen zugerechnet. Im Vergleich zu den obigen Angaben wird bei (Ullmann 1989a) für eine typische Steamreformer-Anlage ein Erdgasbedarf von 2160 m3 für die Erzeugung von 5000 m3 Wasserstoff (jeweils bei 0 §C und 101,325 kPa) - bzw. umgerechnet 3439 kg Erdgas/t H2 - aufgeführt. (ETH 1995) wiederum gibt einen Erdgasbedarf von 121 MJ/kg H2 (umgerechnet 2881 kg/t H2) an. Die Angaben aus (DSD 1995), (ETH 1995) und (Ullmann 1989a) zeigen deutliche Abweichungen voneinander. Da bei (DSD 1995) die vollständigste Bilanz vorliegt, werden diese Daten übernommen. Es wird angenommen, daß der unterschiedliche Rohstoffbedarf bei den verschiedenen Literaturquellen dadurch zustande kommt, daß die Wasserstoffherstellung je nach Prozeßführung auf eine maximale Produktion an Prozeßdampf, minimalen Einsatz von Erdgas , etc. optimiert werden kann. Energiebedarf: Für den Prozeß der Wasserstofferzeugung wird insgesamt eine Energiemenge von 49,25 MJ/kg H2 benötigt. 47,25 MJ des Gesamtenergiebedarfs werden durch die Verbrennung von Erdgas bereitgestellt. Davon entfallen wiederum 18,144 MJ auf die Dampferzeugung und 8,645 MJ auf die CO2-Druckwäsche. An elektrischer Energie werden 2,0 MJ Energie verbraucht (DSD 1995). Im Vergleich dazu wird der Prozeßenergiebedarf bei (ETH 1995) mit 3,47 MJ/kg elektrischer Energie, 26,55 MJ/kg Heizöl S (Industriefeuerung) und 17,8 Erdgas (Industriefeuerung) angegeben (Summe 47,82 MJ/kg). Der Energiebedarf bei (DSD 1995) und (ETH 1995) zeigt eine sehr gute Übereinstimmung. Es werden die Daten aus (DSD 1995) für GEMIS übernommen. Prozessbedingte Luftemissionen: Nach (Ullmann 1989a) entstehen beim steam reforming 0,25 mol CO2 pro mol H2 (Methan und Wasser werden zu Wasserstoff und Kohlendioxid umgesetzt). Dieser Wert ist identisch mit der Angabe aus (DSD 1995) von 5,458 kg CO2 pro kg Wasserstoff. Wasser: Neben dem Erdgas dient auch Wasser als Rohstoff zur H2-Erzeugung (Reduktion von H2O zu H2). Für die chemische Reaktion werden 4,468 kg H2O pro kg H2 benötigt (DSD 1995). Es kann jedoch davon ausgegangen werden, daß beim Herstellungsprozeß ein Überschuß an Wasserdampf eingesetzt wird. Da hierüber - ebenso wie zum Kühlwasserbedarf - keine Angaben vorliegen, wird der Wert von 4,468 kg Wasser als Kennziffer verwendet. Angaben zu Abwasserwerten und Reststoffen liegen nicht vor. Auslastung: 5000h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Gase gesicherte Leistung: 100% Jahr: 2015 Lebensdauer: 20a Leistung: 1MW Nutzungsgrad: 143% Produkt: Brennstoffe-Sonstige

Chem-Org\Styrol-DE-2000

Herstellung von Styrol aus den Produktionsschritten "Synthese von Ethylbenzol durch Alkylierung von Benzol mit Ethylen" und "direkte Dehydrogenierung von Ethylbenzol zu Styrol". Im allgemeinen kann davon ausgegangen werden, dass beide Produktionsschritte in demselben Werk stattfinden. Die Ethylbenzolsynthese kann nach zwei verschiedenen Verfahrensrouten durchgeführt werden: die bevorzugte Lewis-Säuren-katalysierte (meist AlCl3) Flüssigphasen-Ethylierung und daneben die heterogene mit sauren Trägerkatalysatoren oder auch Lewis-Säuren durchgeführte Gasphasen-Ethylierung. An die katalytische Umsetzung von Benzol mit Ethylen schließt sich eine destillative Aufarbeitung des Produktgemisches an. Dabei wird einerseits nicht umgesetztes Benzol abgetrennt, das wieder als Edukt eingesetzt wird, andererseits erfolgt die Reinigung von Ethylbenzol. Bei der anschließenden direkten Dehydrogenierung wird Styrol durch katalytische Wasserstoffabspaltung von Ethylbenzol erzeugt. Es wird zwischen zwei verschiedenen Verfahren, deren Unterschied in der Art der Wärmezufuhr liegt unterschieden. Bei der adiabatischen Variante wird die Wärme direkt mittels überhitztem Wasserdampf zugeführt. Hingegen wird bei einer isothermen Reaktionsführung die erforderliche Wärme indirekt durch ein Brenngas zur Verfügung gestellt. Auf die Dehydrogenierung in einem Reaktor folgt eine aufwendige Reinigung des Rohstyrols, wobei auch nicht umgesetztes Ethylbenzol zurückgewonnen wird. Die Herstellungskapazität an Ethylbenzol belief sich 1986 weltweit auf ca. 14,2 Mio. Tonnen (Nordamerika 5,9 Mio. t, Westeuropa 3,8 Mio. t). Über 99 % der Ethylbenzolproduktion wird für die Herstellung von Styrol eingesetzt. Die Synthese von Ethylbenzol beruht zu über 96 % auf der Akylierung von Benzol mit Ethylen (Ullmann 1987). Dabei werden wiederum 47 % der Weltproduktion an Benzol für die Synthese von Ethylbenzol verwendet (Weissermel 1994). Die weltweite Produktionskapazität an Styrol betrug 1993 ca. 17 Mio. Tonnnen. Die Verteilung auf die wichtigsten Erzeugermärkte kann der nachfolgenden Tabelle 1 entnommen werden (Ullmann 1994). Styrol wird fast ausschließlich zur Herstellung von Kunststoffen eingesetzt. Dabei entfallen ungefähr 65 % der Styrolproduktion auf die Synthese von Polystyrol. Rohstoff für den zweiten Produktionsschritt der Styrolerzeugung ist Ethylbenzol, wobei 85 % der Produktion über die direkte Dehydrogenierung von Ethylbenzol verläuft. Bei der Dehydrogenierung unterscheidet man zwischen der adiabatischen Dehydrogenierung (über 75 % aller Styrol-Produktionsanlagen) und der isothermen Dehydrogenierung (z. B. BASF mit ca. 7 % der Weltkapazität) (Ullmann 1994). Bei der Bildung der Kennziffern für GEMIS wird allgemein die Herstellung von Styrol bilanziert. Spezielle Daten zu einzelnen Verfahren liegen nicht vor. Die gebildeten Kennziffern beziehen sich auf die Produktion in Westeuropa Ende der 80er Jahre (#1) bzw. Anfang der 90er Jahre (#2). Die Emissionsangaben aus (Tellus 1992) beziehen sich auf die Produktion in den USA in den 80er Jahren. Tabelle 1 Anteil der Erzeugermärkte an der weltweiten Produktionskapazität an Styrol, 1993. Region Anteil in % Nordamerika 35 Westeuropa 27 Japan 16 Korea 7 Fernost 5 Osteuropa 5 Südamerika 4 Mittlerer Osten 1 Allokation: keine Genese der Daten: Massenbilanz - Für die Herstellung einer Tonne Styrol werden als Rohstoffe 815 kg Benzol und 300 kg Ethylen benötigt. Dabei fallen an Nebenausbeuten (u. a. Toluol) ca. 65 kg an, die in GEMIS nicht weiter bilanziert werden. Weiterhin entstehen 0,43 kg feste Produktionsabfälle [nach #1, die Werte wurden von 974,8 kg auf 1000 kg Styrol umgerechnet]. Energiebedarf: Nach #2 werden für die Herstellung von 1 t Styrol 0,334 GJ an elektrischer Energie und 4,872 GJ an Energieträgern benötigt. Als Gesamtsumme ergibt sich ein Wert von ca. 5,2 GJ. Prozessbedingte Luftemissionen: In (#3 werden die prozeßbedingten VOC-Emissionen bei der Ethylbenzol- und der Styrolherstellung abgeschätzt. Daraus ergibt sich für den Gesamtprozeß (Ethylbenzolherstellung und Weiterverarbeitung zu Styrol) der Styrolherstellung ein Wert von ca. 0,90 kg VOC/t Styrol [dieser Angabe wurde ein Einsatz von 1,077 t Ethylbenzol für die Herstellung einer Tonne Styrol zugrundegelegt (Tellus 1992)]. Aus den Angaben bei (Tellus 1992) wurde für Benzol ein Emissionswert von 0,96 kg/t Styrol berechnet. In (Tellus 1992) werden Daten aus der Primärquelle „U.S. EPA, Toxic Air Pollutant Emission Factors, 1988“ verwendet. Wasser: In #2 wird der Wasserbedarf zur Herstellung einer Tonne Styrol mit 166 kg beziffert, hinzu kommen weitere 1922 kg an Dampf. Für die Abwasserkennziffern BSB5, CSB und TOC stehen bei (Tellus 1992) nur Angaben zu Rohabwasserwerten zur Verfügung. Aus #1 kann entnommen werden, daß der BSB5-Wert gleich null ist. An Parametern nach Maßnahmen zur Abwasserbehandlung werden bei (Tellus 1992) eine Reihe von organischen und anorganischen Stoffen aufgeführt. Stellvertretend werden hier Phenol 0,00087 kg/t Styrol und Zink 0,000010 kg/t Styrol als nutzerdefinierte Emissionen genannt. In (Tellus 1992) werden dabei Werte aus „U.S. EPA, Contractors Engineering Report, 1981“ verwendet. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 123% Produkt: Grundstoffe-Chemie

Chem-Org\Styrol-DE-2010

Herstellung von Styrol aus den Produktionsschritten "Synthese von Ethylbenzol durch Alkylierung von Benzol mit Ethylen" und "direkte Dehydrogenierung von Ethylbenzol zu Styrol". Im allgemeinen kann davon ausgegangen werden, dass beide Produktionsschritte in demselben Werk stattfinden. Die Ethylbenzolsynthese kann nach zwei verschiedenen Verfahrensrouten durchgeführt werden: die bevorzugte Lewis-Säuren-katalysierte (meist AlCl3) Flüssigphasen-Ethylierung und daneben die heterogene mit sauren Trägerkatalysatoren oder auch Lewis-Säuren durchgeführte Gasphasen-Ethylierung. An die katalytische Umsetzung von Benzol mit Ethylen schließt sich eine destillative Aufarbeitung des Produktgemisches an. Dabei wird einerseits nicht umgesetztes Benzol abgetrennt, das wieder als Edukt eingesetzt wird, andererseits erfolgt die Reinigung von Ethylbenzol. Bei der anschließenden direkten Dehydrogenierung wird Styrol durch katalytische Wasserstoffabspaltung von Ethylbenzol erzeugt. Es wird zwischen zwei verschiedenen Verfahren, deren Unterschied in der Art der Wärmezufuhr liegt unterschieden. Bei der adiabatischen Variante wird die Wärme direkt mittels überhitztem Wasserdampf zugeführt. Hingegen wird bei einer isothermen Reaktionsführung die erforderliche Wärme indirekt durch ein Brenngas zur Verfügung gestellt. Auf die Dehydrogenierung in einem Reaktor folgt eine aufwendige Reinigung des Rohstyrols, wobei auch nicht umgesetztes Ethylbenzol zurückgewonnen wird. Die Herstellungskapazität an Ethylbenzol belief sich 1986 weltweit auf ca. 14,2 Mio. Tonnen (Nordamerika 5,9 Mio. t, Westeuropa 3,8 Mio. t). Über 99 % der Ethylbenzolproduktion wird für die Herstellung von Styrol eingesetzt. Die Synthese von Ethylbenzol beruht zu über 96 % auf der Akylierung von Benzol mit Ethylen (Ullmann 1987). Dabei werden wiederum 47 % der Weltproduktion an Benzol für die Synthese von Ethylbenzol verwendet (Weissermel 1994). Die weltweite Produktionskapazität an Styrol betrug 1993 ca. 17 Mio. Tonnnen. Die Verteilung auf die wichtigsten Erzeugermärkte kann der nachfolgenden Tabelle 1 entnommen werden (Ullmann 1994). Styrol wird fast ausschließlich zur Herstellung von Kunststoffen eingesetzt. Dabei entfallen ungefähr 65 % der Styrolproduktion auf die Synthese von Polystyrol. Rohstoff für den zweiten Produktionsschritt der Styrolerzeugung ist Ethylbenzol, wobei 85 % der Produktion über die direkte Dehydrogenierung von Ethylbenzol verläuft. Bei der Dehydrogenierung unterscheidet man zwischen der adiabatischen Dehydrogenierung (über 75 % aller Styrol-Produktionsanlagen) und der isothermen Dehydrogenierung (z. B. BASF mit ca. 7 % der Weltkapazität) (Ullmann 1994). Bei der Bildung der Kennziffern für GEMIS wird allgemein die Herstellung von Styrol bilanziert. Spezielle Daten zu einzelnen Verfahren liegen nicht vor. Die gebildeten Kennziffern beziehen sich auf die Produktion in Westeuropa Ende der 80er Jahre (#1) bzw. Anfang der 90er Jahre (#2). Die Emissionsangaben aus (Tellus 1992) beziehen sich auf die Produktion in den USA in den 80er Jahren. Tabelle 1 Anteil der Erzeugermärkte an der weltweiten Produktionskapazität an Styrol, 1993. Region Anteil in % Nordamerika 35 Westeuropa 27 Japan 16 Korea 7 Fernost 5 Osteuropa 5 Südamerika 4 Mittlerer Osten 1 Allokation: hier keine, aber in Vorketten (energetisch) Genese der Daten: Massenbilanz - Für die Herstellung einer Tonne Styrol werden als Rohstoffe 815 kg Benzol und 300 kg Ethylen benötigt. Dabei fallen an Nebenausbeuten (u. a. Toluol) ca. 65 kg an, die in GEMIS nicht weiter bilanziert werden. Weiterhin entstehen 0,43 kg feste Produktionsabfälle [nach #1, die Werte wurden von 974,8 kg auf 1000 kg Styrol umgerechnet]. Energiebedarf: Nach #2 werden für die Herstellung von 1 t Styrol 0,334 GJ an elektrischer Energie und 4,872 GJ an Energieträgern benötigt. Als Gesamtsumme ergibt sich ein Wert von ca. 5,2 GJ. Prozessbedingte Luftemissionen: In (#3 werden die prozeßbedingten VOC-Emissionen bei der Ethylbenzol- und der Styrolherstellung abgeschätzt. Daraus ergibt sich für den Gesamtprozeß (Ethylbenzolherstellung und Weiterverarbeitung zu Styrol) der Styrolherstellung ein Wert von ca. 0,90 kg VOC/t Styrol [dieser Angabe wurde ein Einsatz von 1,077 t Ethylbenzol für die Herstellung einer Tonne Styrol zugrundegelegt (Tellus 1992)]. Aus den Angaben bei (Tellus 1992) wurde für Benzol ein Emissionswert von 0,96 kg/t Styrol berechnet. In (Tellus 1992) werden Daten aus der Primärquelle „U.S. EPA, Toxic Air Pollutant Emission Factors, 1988“ verwendet. Wasser: In #2 wird der Wasserbedarf zur Herstellung einer Tonne Styrol mit 166 kg beziffert, hinzu kommen weitere 1922 kg an Dampf. Für die Abwasserkennziffern BSB5, CSB und TOC stehen bei (Tellus 1992) nur Angaben zu Rohabwasserwerten zur Verfügung. Aus #1 kann entnommen werden, daß der BSB5-Wert gleich null ist. An Parametern nach Maßnahmen zur Abwasserbehandlung werden bei (Tellus 1992) eine Reihe von organischen und anorganischen Stoffen aufgeführt. Stellvertretend werden hier Phenol 0,00087 kg/t Styrol und Zink 0,000010 kg/t Styrol als nutzerdefinierte Emissionen genannt. In (Tellus 1992) werden dabei Werte aus „U.S. EPA, Contractors Engineering Report, 1981“ verwendet. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 123% Produkt: Grundstoffe-Chemie

Chem-Org\Styrol-DE-2005

Herstellung von Styrol aus den Produktionsschritten "Synthese von Ethylbenzol durch Alkylierung von Benzol mit Ethylen" und "direkte Dehydrogenierung von Ethylbenzol zu Styrol". Im allgemeinen kann davon ausgegangen werden, dass beide Produktionsschritte in demselben Werk stattfinden. Die Ethylbenzolsynthese kann nach zwei verschiedenen Verfahrensrouten durchgeführt werden: die bevorzugte Lewis-Säuren-katalysierte (meist AlCl3) Flüssigphasen-Ethylierung und daneben die heterogene mit sauren Trägerkatalysatoren oder auch Lewis-Säuren durchgeführte Gasphasen-Ethylierung. An die katalytische Umsetzung von Benzol mit Ethylen schließt sich eine destillative Aufarbeitung des Produktgemisches an. Dabei wird einerseits nicht umgesetztes Benzol abgetrennt, das wieder als Edukt eingesetzt wird, andererseits erfolgt die Reinigung von Ethylbenzol. Bei der anschließenden direkten Dehydrogenierung wird Styrol durch katalytische Wasserstoffabspaltung von Ethylbenzol erzeugt. Es wird zwischen zwei verschiedenen Verfahren, deren Unterschied in der Art der Wärmezufuhr liegt unterschieden. Bei der adiabatischen Variante wird die Wärme direkt mittels überhitztem Wasserdampf zugeführt. Hingegen wird bei einer isothermen Reaktionsführung die erforderliche Wärme indirekt durch ein Brenngas zur Verfügung gestellt. Auf die Dehydrogenierung in einem Reaktor folgt eine aufwendige Reinigung des Rohstyrols, wobei auch nicht umgesetztes Ethylbenzol zurückgewonnen wird. Die Herstellungskapazität an Ethylbenzol belief sich 1986 weltweit auf ca. 14,2 Mio. Tonnen (Nordamerika 5,9 Mio. t, Westeuropa 3,8 Mio. t). Über 99 % der Ethylbenzolproduktion wird für die Herstellung von Styrol eingesetzt. Die Synthese von Ethylbenzol beruht zu über 96 % auf der Akylierung von Benzol mit Ethylen (Ullmann 1987). Dabei werden wiederum 47 % der Weltproduktion an Benzol für die Synthese von Ethylbenzol verwendet (Weissermel 1994). Die weltweite Produktionskapazität an Styrol betrug 1993 ca. 17 Mio. Tonnnen. Die Verteilung auf die wichtigsten Erzeugermärkte kann der nachfolgenden Tabelle 1 entnommen werden (Ullmann 1994). Styrol wird fast ausschließlich zur Herstellung von Kunststoffen eingesetzt. Dabei entfallen ungefähr 65 % der Styrolproduktion auf die Synthese von Polystyrol. Rohstoff für den zweiten Produktionsschritt der Styrolerzeugung ist Ethylbenzol, wobei 85 % der Produktion über die direkte Dehydrogenierung von Ethylbenzol verläuft. Bei der Dehydrogenierung unterscheidet man zwischen der adiabatischen Dehydrogenierung (über 75 % aller Styrol-Produktionsanlagen) und der isothermen Dehydrogenierung (z. B. BASF mit ca. 7 % der Weltkapazität) (Ullmann 1994). Bei der Bildung der Kennziffern für GEMIS wird allgemein die Herstellung von Styrol bilanziert. Spezielle Daten zu einzelnen Verfahren liegen nicht vor. Die gebildeten Kennziffern beziehen sich auf die Produktion in Westeuropa Ende der 80er Jahre (#1) bzw. Anfang der 90er Jahre (#2). Die Emissionsangaben aus (Tellus 1992) beziehen sich auf die Produktion in den USA in den 80er Jahren. Tabelle 1 Anteil der Erzeugermärkte an der weltweiten Produktionskapazität an Styrol, 1993. Region Anteil in % Nordamerika 35 Westeuropa 27 Japan 16 Korea 7 Fernost 5 Osteuropa 5 Südamerika 4 Mittlerer Osten 1 Allokation: hier keine, aber in Vorketten (energetisch) Genese der Daten: Massenbilanz - Für die Herstellung einer Tonne Styrol werden als Rohstoffe 815 kg Benzol und 300 kg Ethylen benötigt. Dabei fallen an Nebenausbeuten (u. a. Toluol) ca. 65 kg an, die in GEMIS nicht weiter bilanziert werden. Weiterhin entstehen 0,43 kg feste Produktionsabfälle [nach #1, die Werte wurden von 974,8 kg auf 1000 kg Styrol umgerechnet]. Energiebedarf: Nach #2 werden für die Herstellung von 1 t Styrol 0,334 GJ an elektrischer Energie und 4,872 GJ an Energieträgern benötigt. Als Gesamtsumme ergibt sich ein Wert von ca. 5,2 GJ. Prozessbedingte Luftemissionen: In (#3 werden die prozeßbedingten VOC-Emissionen bei der Ethylbenzol- und der Styrolherstellung abgeschätzt. Daraus ergibt sich für den Gesamtprozeß (Ethylbenzolherstellung und Weiterverarbeitung zu Styrol) der Styrolherstellung ein Wert von ca. 0,90 kg VOC/t Styrol [dieser Angabe wurde ein Einsatz von 1,077 t Ethylbenzol für die Herstellung einer Tonne Styrol zugrundegelegt (Tellus 1992)]. Aus den Angaben bei (Tellus 1992) wurde für Benzol ein Emissionswert von 0,96 kg/t Styrol berechnet. In (Tellus 1992) werden Daten aus der Primärquelle „U.S. EPA, Toxic Air Pollutant Emission Factors, 1988“ verwendet. Wasser: In #2 wird der Wasserbedarf zur Herstellung einer Tonne Styrol mit 166 kg beziffert, hinzu kommen weitere 1922 kg an Dampf. Für die Abwasserkennziffern BSB5, CSB und TOC stehen bei (Tellus 1992) nur Angaben zu Rohabwasserwerten zur Verfügung. Aus #1 kann entnommen werden, daß der BSB5-Wert gleich null ist. An Parametern nach Maßnahmen zur Abwasserbehandlung werden bei (Tellus 1992) eine Reihe von organischen und anorganischen Stoffen aufgeführt. Stellvertretend werden hier Phenol 0,00087 kg/t Styrol und Zink 0,000010 kg/t Styrol als nutzerdefinierte Emissionen genannt. In (Tellus 1992) werden dabei Werte aus „U.S. EPA, Contractors Engineering Report, 1981“ verwendet. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 123% Produkt: Grundstoffe-Chemie

Chem-Org\Styrol-DE-2030

Herstellung von Styrol aus den Produktionsschritten "Synthese von Ethylbenzol durch Alkylierung von Benzol mit Ethylen" und "direkte Dehydrogenierung von Ethylbenzol zu Styrol". Im allgemeinen kann davon ausgegangen werden, dass beide Produktionsschritte in demselben Werk stattfinden. Die Ethylbenzolsynthese kann nach zwei verschiedenen Verfahrensrouten durchgeführt werden: die bevorzugte Lewis-Säuren-katalysierte (meist AlCl3) Flüssigphasen-Ethylierung und daneben die heterogene mit sauren Trägerkatalysatoren oder auch Lewis-Säuren durchgeführte Gasphasen-Ethylierung. An die katalytische Umsetzung von Benzol mit Ethylen schließt sich eine destillative Aufarbeitung des Produktgemisches an. Dabei wird einerseits nicht umgesetztes Benzol abgetrennt, das wieder als Edukt eingesetzt wird, andererseits erfolgt die Reinigung von Ethylbenzol. Bei der anschließenden direkten Dehydrogenierung wird Styrol durch katalytische Wasserstoffabspaltung von Ethylbenzol erzeugt. Es wird zwischen zwei verschiedenen Verfahren, deren Unterschied in der Art der Wärmezufuhr liegt unterschieden. Bei der adiabatischen Variante wird die Wärme direkt mittels überhitztem Wasserdampf zugeführt. Hingegen wird bei einer isothermen Reaktionsführung die erforderliche Wärme indirekt durch ein Brenngas zur Verfügung gestellt. Auf die Dehydrogenierung in einem Reaktor folgt eine aufwendige Reinigung des Rohstyrols, wobei auch nicht umgesetztes Ethylbenzol zurückgewonnen wird. Die Herstellungskapazität an Ethylbenzol belief sich 1986 weltweit auf ca. 14,2 Mio. Tonnen (Nordamerika 5,9 Mio. t, Westeuropa 3,8 Mio. t). Über 99 % der Ethylbenzolproduktion wird für die Herstellung von Styrol eingesetzt. Die Synthese von Ethylbenzol beruht zu über 96 % auf der Akylierung von Benzol mit Ethylen (Ullmann 1987). Dabei werden wiederum 47 % der Weltproduktion an Benzol für die Synthese von Ethylbenzol verwendet (Weissermel 1994). Die weltweite Produktionskapazität an Styrol betrug 1993 ca. 17 Mio. Tonnnen. Die Verteilung auf die wichtigsten Erzeugermärkte kann der nachfolgenden Tabelle 1 entnommen werden (Ullmann 1994). Styrol wird fast ausschließlich zur Herstellung von Kunststoffen eingesetzt. Dabei entfallen ungefähr 65 % der Styrolproduktion auf die Synthese von Polystyrol. Rohstoff für den zweiten Produktionsschritt der Styrolerzeugung ist Ethylbenzol, wobei 85 % der Produktion über die direkte Dehydrogenierung von Ethylbenzol verläuft. Bei der Dehydrogenierung unterscheidet man zwischen der adiabatischen Dehydrogenierung (über 75 % aller Styrol-Produktionsanlagen) und der isothermen Dehydrogenierung (z. B. BASF mit ca. 7 % der Weltkapazität) (Ullmann 1994). Bei der Bildung der Kennziffern für GEMIS wird allgemein die Herstellung von Styrol bilanziert. Spezielle Daten zu einzelnen Verfahren liegen nicht vor. Die gebildeten Kennziffern beziehen sich auf die Produktion in Westeuropa Ende der 80er Jahre (#1) bzw. Anfang der 90er Jahre (#2). Die Emissionsangaben aus (Tellus 1992) beziehen sich auf die Produktion in den USA in den 80er Jahren. Tabelle 1 Anteil der Erzeugermärkte an der weltweiten Produktionskapazität an Styrol, 1993. Region Anteil in % Nordamerika 35 Westeuropa 27 Japan 16 Korea 7 Fernost 5 Osteuropa 5 Südamerika 4 Mittlerer Osten 1 Allokation: hier keine, aber in Vorketten (energetisch) Genese der Daten: Massenbilanz - Für die Herstellung einer Tonne Styrol werden als Rohstoffe 815 kg Benzol und 300 kg Ethylen benötigt. Dabei fallen an Nebenausbeuten (u. a. Toluol) ca. 65 kg an, die in GEMIS nicht weiter bilanziert werden. Weiterhin entstehen 0,43 kg feste Produktionsabfälle [nach #1, die Werte wurden von 974,8 kg auf 1000 kg Styrol umgerechnet]. Energiebedarf: Nach #2 werden für die Herstellung von 1 t Styrol 0,334 GJ an elektrischer Energie und 4,872 GJ an Energieträgern benötigt. Als Gesamtsumme ergibt sich ein Wert von ca. 5,2 GJ. Prozessbedingte Luftemissionen: In (#3 werden die prozeßbedingten VOC-Emissionen bei der Ethylbenzol- und der Styrolherstellung abgeschätzt. Daraus ergibt sich für den Gesamtprozeß (Ethylbenzolherstellung und Weiterverarbeitung zu Styrol) der Styrolherstellung ein Wert von ca. 0,90 kg VOC/t Styrol [dieser Angabe wurde ein Einsatz von 1,077 t Ethylbenzol für die Herstellung einer Tonne Styrol zugrundegelegt (Tellus 1992)]. Aus den Angaben bei (Tellus 1992) wurde für Benzol ein Emissionswert von 0,96 kg/t Styrol berechnet. In (Tellus 1992) werden Daten aus der Primärquelle „U.S. EPA, Toxic Air Pollutant Emission Factors, 1988“ verwendet. Wasser: In #2 wird der Wasserbedarf zur Herstellung einer Tonne Styrol mit 166 kg beziffert, hinzu kommen weitere 1922 kg an Dampf. Für die Abwasserkennziffern BSB5, CSB und TOC stehen bei (Tellus 1992) nur Angaben zu Rohabwasserwerten zur Verfügung. Aus #1 kann entnommen werden, daß der BSB5-Wert gleich null ist. An Parametern nach Maßnahmen zur Abwasserbehandlung werden bei (Tellus 1992) eine Reihe von organischen und anorganischen Stoffen aufgeführt. Stellvertretend werden hier Phenol 0,00087 kg/t Styrol und Zink 0,000010 kg/t Styrol als nutzerdefinierte Emissionen genannt. In (Tellus 1992) werden dabei Werte aus „U.S. EPA, Contractors Engineering Report, 1981“ verwendet. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 123% Produkt: Grundstoffe-Chemie

1 2 3 4 599 100 101