The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. The operational H2O total column products are generated using the algorithm GDP (GOME Data Processor) version 4.x integrated into the UPAS (Universal Processor for UV/VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. The total H2O column is retrieved from GOME solar backscattered measurements in the red wavelength region (614-683.2 nm), using the Differential Optical Absorption Spectroscopy (DOAS) method. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/
Die Klimawirkung des Luftverkehrs entsteht durch CO 2 -Emissionen sowie sogenannte „Nicht-CO 2 -Effekte“ hervorgerufen u.a. durch Emissionen von Stickoxiden, Wasserdampf und Partikeln in hohen Luftschichten. Während CO 2 -Emissionen und direkt aus dem Treibstoffverbrauch berechnet werden, sind die Klimawirkungen der Nicht-CO 2 -Effekte komplizierter zu ermitteln, da sie je nach Emissionsort und Umgebungsbedingungen variieren. Die Berechnung mittels eines konstanten - auf die direkten CO 2 -Emissionen bezogenen Faktors – ist daher relativ ungenau. Im Rahmen des vom Umweltbundesamt durchgeführten Projektes "Untersuchung der praktischen Umsetzung der Einbindung von Nicht-CO 2 - Treibhausgas -Effekten des Luftverkehrs in das EU-ETS einschließlich Clusteranalyse" wurde eine Methode zur Klassifizierung von Flugverbindungen nach ihrer Klimawirkung mit dazugehörigen klassenspezifischen Regressionen für CO 2 -Äquivalente erarbeitet. Im vorliegenden Bericht wird die Einbindung dieser Methode in das UBA -Emissionsmodell „TREMOD-Teilmodul AV“ beschrieben und umgesetzt. Veröffentlicht in Texte | 153/2024.
Der vom Menschen ausgelöste globale Klimawandel ist eine in der Fachwelt anerkannte Tatsache. Die ersten Folgen des Klimawandels sind in Sachsen-Anhalt bereits spürbar. Die Auswirkungen des Klimawandels wird man in Sachsen-Anhalt in den kommenden Jahrzehnten vermehrt zu spüren bekommen. Der Themenkomplex Klimawandel lässt sich generell in zwei Bereiche aufteilen: Die Klimaanalyse umfasst alle Auswertungen von Klimadaten in der Vergangenheit. Im Themenbereich Klimaprojektion werden mögliche Klimaentwicklungen in der Zukunft auf der Grundlage von Klimamodellrechnungen betrachtet. Bei der Klimaanalyse ist es wichtig, von heute beginnend in der Geschichte zurückzuschauen, um die Klimageschichte des Planeten bewerten zu können. Nur so können aktuelle und künftige Entwicklungen in die Klimageschichte eingeordnet und Extremereignisse bewertet werden. Unterschied zwischen Wetter, Witterung und Klima Wetter: Als Wetter wird der physikalische Zustand der Atmosphäre zu einem bestimmten Zeitpunkt oder in einem auch kürzeren Zeitraum an einem bestimmten Ort oder in einem Gebiet bezeichnet, wie er durch die meteorologischen Elemente und ihr Zusammenwirken gekennzeichnet ist. Witterung: Als Witterung wird der allgemeine, durchschnittliche oder auch vorherrschende Charakter des Wetterablaufs eines bestimmten Zeitraums (von einigen Tagen bis zu ganzen Jahreszeiten) bezeichnet. Klima: Das Klima ist definiert als die Zusammenfassung der Wettererscheinungen, die den mittleren Zustand der Atmosphäre an einem bestimmten Ort oder in einem mehr oder weniger großen Gebiet charakterisieren. Hierbei wird ein Zeitraum von mindestens 30 Jahren zugrunde gelegt. Die Weltorganisation für Meteorologie (World Meteorological Organisation - WMO) empfiehlt den Zeitraum 1961 bis 1990 als Klimareferenzperiode zur langfristigen Betrachtung der Entwicklungen des Klimawandels. Klimawandel: Als Klimawandel werden die langfristigen Veränderungen dieses mittleren Zustandes der Atmosphäre (Klima) bezeichnet. Dabei ist es unerheblich, ob die Veränderungen natürlichen Ursprungs sind oder nicht. Das Klima unterliegt verschiedenen Einflüssen wie bspw. der Sonnenaktivität und den Erdbahnparametern, sowie Vulkanausbrüchen oder der Plattentektonik aber auch dem Einfluss des Menschen. Dabei kann festgehalten werden: Die durch den Menschen hervorgerufene Klimaerwärmung seit Beginn der Industrialisierung ist wissenschaftlicher Konsens. Der Treibhauseffekt Der Treibhauseffekt ist ein auch ohne den Menschen vorkommendes Phänomen: Die Erdoberfläche strahlt langwellige Wärmestrahlung ab. Diese langwellige, nach oben gerichtete Strahlung wird durch Bestandteile der Atmosphäre, die Treibhausgase, absorbiert (aufgenommen) und wieder emittiert (abgegeben). Diese Strahlungsemission geschieht dabei in alle Richtungen, sodass die eigentlich nach oben gerichtete langwellige (also Wärme-)Strahlung zum Teil in der Atmosphäre gehalten wird. Diese erwärmt sich somit. Treibhausgase kommen natürlicher Weise in der Atmosphäre vor. Natürlich in der Atmosphäre vorkommende Treibhausgase sind bspw. Kohlenstoffdioxid (CO 2 ), Methan (CH 4 ), Lachgas (N 2 O) und Wasserdampf (H 2 O). Im Fall des Wasserdampfes verdeutlicht ein einfaches Beispiel den Effekt: In einer sternenklaren Nacht kühlt die Atmosphäre wesentlich schneller aus als bei bedeckten Verhältnissen. Die Erdatmosphäre schützt die Erde somit vor dem Auskühlen: im Gleichgewicht des Strahlungshaushalts ohne Atmosphäre läge die mittlere Erdoberflächentemperatur bei -18 °C. Ausgehend von einer globalen Mitteltemperatur von rund 15 °C wäre es ohne den Treibhauseffekt auf der Erde somit um ca. 33 Kelvin kälter. Die Konzentrationen der Treibhause CO 2 , CH 4 und N 2 O steigen seit Jahrzehnten durch den menschlichen Ausstoß an. In den letzten 60 Jahren hat die CO 2 -Konzentration um 25% zugenommen. Die Konzentration von Methan hat sich mehr als verdoppelt. Dabei gilt zu beachten, dass Methan eine deutlich stärkere Treibhauswirkung hat als CO 2 . Die Atmosphäre ist ein komplexes System. So hängen die verschiedenen physikalischen Größen und Vorgänge wie bspw. Temperatur, Verdunstung sowie Niederschlag/Wasserkreislauf miteinander zusammen. Verändert sich eine Variable (im Falle des Klimawandels die Temperatur), verändern sich auch die anderen Prozesse und Zustände der Atmosphäre. Weiterhin hängen die verschiedenen Komponenten des Klimasystems (Atmosphäre, Hydrosphäre, Kryosphäre, Biosphäre, Lithosphäre/ Pedosphäre) miteinander zusammen. Um nur einige der prominentesten Beispiele zu nennen: Die Temperaturerhöhung der Atmosphäre hat bspw. Auswirkungen auf den Meeresspiegel der Ozeane (Hydrosphäre; z. B. Abschmelzen der Gletscher (Kryosphäre) sowie Dichteabnahme und damit Ausdehnung des Meerwassers) oder den Säuregehalt des Ozeans. Dies wiederum führt zu Beeinflussung des Ökosystems Meer (Biosphäre; bspw. Absterben von Korallenriffen). Weiterhin ist hiervon auch direkt der Lebensraum des Menschen betroffen: Besonders Inselstaaten sind vom Meeresspiegelanstieg bedroht. Zudem bricht mit den absterbenden Korallenriffen ein bedeutsamer Küstenschutz weg. Die globale Lufttemperatur hat seit 1850 um 1,1 K zugenommen. 2023 war global das erste Jahre, dass mehr als 1,5 K wärmer war als vorindustriell (Quelle: https://climate.copernicus.eu/global-climate-highlights-2023 ). Aber auch die Meerestemperaturen steigen an und puffern so einen Teil der Erwärmung der Atmosphäre zunächst ab. Der Anstieg der Temperaturen führt aber sowohl ober, als auch unterhalb der Wasseroberfläche zu Veränderungen von Gletschern, Eisschilden, Strömungen, Flora, Fauna und vielem mehr. Besonders empfindliche Systeme drohen irreversibel geschädigt zu werden, mit Folgen für den ganzen Planeten. Die Rede ist von sogenannten Kipppunkten im Klimasystem der Erde. Die Schnelligkeit der Erwärmung und der damit einhergehenden Veränderungen stellt eine besondere Herausforderung dar. Aus diesen Gründen ist sowohl die Anpassung an bereits stattgefundene oder nicht mehr vermeidbare Klimaveränderungen zwingend nötig, als auch der Schutz des Klimas insgesamt, um noch weiterreichende Veränderungen zu verhindern. Der Klimawandel wirkt sich auch auf regionaler Ebene aus. So steigt bspw. schon heute die Hitzebelastung in mitteldeutschen Sommern. Weiterhin können sich die Niederschlagsverhältnisse innerhalb des Jahres verschieben bzw. durch stabile Wetterlagen kann es immer häufiger zu länger anhaltenden Witterungsverhältnissen kommen, die unter Umständen zu Dürre oder Hochwassergefahr führen. Das Mittel der Temperaturverteilung verschiebt sich in Richtung warm bei zunehmender Bandbreite mit den Hitzeextremen. Globale Klimamodelle sind komplexe physikalische Modelle, die das Klimasystem der Erde anhand physikalisch-numerischer Gleichungen computergestützt und zeitabhängig beschreiben. Kalibrierte Modelle ermöglichen unter definierten Annahmen über die zukünftige Treibhauskonzentrationsentwicklung die Simulation möglicher zukünftiger Klimaentwicklungen (siehe Klimaszenarien). Modelle und ihre Eigenschaften Man nutzt zur Berechnung des zukünftigen Klimas globale Zirkulationsmodelle (General Circulation Model bzw. Global Climate Model - GCMs). Globale Modelle stellen ein unverzichtbares Instrumentarium für voraussichtliche Veränderungen der Häufigkeit und Dauer von charakteristischen Großwetterlagen dar und besitzen eine horizontale Auflösung von ca. 200 km x 200 km Gitterabstand (IPCC). Zeitliche Entwicklung der Modelle Die Entwicklung der globalen Zirkulationsmodelle ist wesentlich an die Entwicklung der Computerkapazitäten gebunden. Erst die Fortschritte in der Rechenleistung großer Computeranlagen haben es ermöglicht, dass sich die Komplexität der Modelle, die Länge der Simulation und die räumliche Auflösung steigern ließen. Die ersten Modellrechnungen wurden mit reinen Atmosphärenmodellen durchgeführt, die aus Wettermodellen abgeleitet wurden. Seit den 1960er Jahren wurden Atmosphären- und Ozeanmodelle miteinander gekoppelt, zunächst mit einer sehr rudimentären Dynamik. In den folgenden Jahren wurden Modelle der Atmosphäre und des Ozeans getrennt weiterentwickelt. Seit den 1990er Jahren wurden immer mehr Komponenten des Klimasystems miteinbezogen und die Modelle wurden immer komplexer. So wurden Anfang der 1990er Jahre Modellrechnungen durchgeführt, die auch die Wirkung der in der Summe abkühlend wirkenden Aerosole berücksichtigten. Außerdem wurden Modelle für den ozeanischen und terrestrischen Kohlenstoffkreislauf entwickelt und in gekoppelten Simulationen für den Bericht des Weltklimarates IPCC von 2007 genutzt. Eine dynamische Vegetation und die Chemie der Atmosphäre sind weitere Bausteine der Modellentwicklung. Das Resultat sind sogenannte Erdsystemmodelle. In jüngster Zeit sind verbesserte biogeochemische Kreisläufe und dynamische Eisschilde, die mit Klimaänderungen in Wechselwirkung stehen, hinzugekommen. Das langfristige Ziel ist es, dass möglichst alle Komponenten des Klimasystems einschließlich ihrer Rückkopplungen und der externen Störungen simuliert werden können. Um Aussagen über das zukünftige Klima treffen zu können, werden Globale Klimamodelle in Verbindung mit Szenarien genutzt. Diese Klimaszenarien beinhalten Annahmen über die zukünftige Entwicklung von Treibhausgasen und ggf. die Gesellschaft. Sie stellen eine sogenannte Randbedingung von Klimamodellrechnungen für die Zukunft (= Klimaprojektionen) dar. Der 5. IPCC-Bericht verwendete Szenarien mit repräsentativen Konzentrationspfaden (RCP), die den möglichen zukünftigen Verlauf der absoluten Treibhausgaskonzentration in der Atmosphäre beschreiben. Im neueren 6. IPCC-Bericht fanden gemeinsame sozioökonomische Entwicklungspfade (Shared Socioeconomic Pathways, SSP) Anwendungen, die stärker den möglichen künftigen Einfluss der gesellschaftlichen und ökonomischen Entwicklung der Menschheit als Ausgangspunkt für den Ausstoß von Treibhausgasen betrachten. Die unterschiedlichen RCP Szenarien sind in der Abbildung dargestellt. Der Zahlenwert hinter dem RCP entspricht dem zusätzlichen Strahlungsantrieb. Der anthropogene Strahlungsantrieb ist hierbei ein Maß für den Einfluss, den ein einzelner Faktor auf die Veränderung des Strahlungshaushalts der Atmosphäre und damit auf den Klimawandel hat. Er wird in Watt pro Quadratmeter angegeben. Ein positiver Strahlungsantrieb, z.B. durch die zunehmende Konzentration langlebiger Treibhausgase, führt zu einer Erwärmung der bodennahen Luftschicht. Ein negativer, z.B. durch die Zunahme von Aerosolen, hingegen bewirkt eine Abkühlung ( weitere Informationen ). Bei RCP2.6 würden also 2,6 W/m² mehr in der Atmosphäre verbleiben. Das Szenario des RCP2.6 ist dabei das Szenario mit konsequentem globalem Klimaschutz, dass das Ziel von 1,5 K Erwärmung bis 2100 einhalten könnte. Mit moderatem Klimaschutz rechnet das Szenario RCP4.5, hier würde man global rund 2 K Erwärmung bis 2100 erreichen. Das RCP6.0 ist das Szenario mit wenig globalem Klimaschutz. Hierbei würde sich die Erwärmung bis 2100 auf etwa 3 K belaufen. Ohne Klimaschutz (RCP8.5) würde die Treibhausgaskonzentration in der Atmosphäre weiter ungebremst zunehmen. Die globale Temperatur würde bis 2100 um mehr als 4 K zunehmen mit entsprechend verheerenden Folgen für unseren Planeten. Die neuere Szenarienfamilie des 6. IPCC Berichts teilt sich recht ähnlich zu der Szenarienfamilie der RCPs auf, auch wenn sich diese im Detail unterscheiden. So wurden zunächst Narrative der sozioökonomischen Entwicklung aufgespannt, welche von „Nachhaltigkeit“ bis „Fossile Entwicklung“ reichen. Für diese verschiedenen Narrative (SSP1 bis SSP5) können verschiedene Strahlungsantriebe eintreten. Nach dem nachhaltigen Szenario mit konsequentem globalem Klimaschutz (SSP1-2.6) kann das 2-Grad-Ziel erreicht werden. Das Szenario SSP2-4.5 mit moderatem Klimaschutz geht von einer Erwärmung von knapp 3 K bis Ende des Jahrhunderts aus. Im Falle des SSP3-7.0 wird von einer Zunahme von Konflikten auf der Erde ausgegangen, die globalen Klimaschutz deutlich erschweren. Demnach würde die globale Temperatur um etwa 4 K ggü. dem vorindustriellen Wert ansteigen. Im SSP5-8.5 gelingt es der Menschheit nicht, Klimaschutz bis zum Ende des Jahrhunderts global umzusetzen. Dies führt zu einer Erwärmung von etwa 5 K. Die Szenarien zeigen, dass konsequenter globaler Klimaschutz bis hinunter auf die Ebene der Bundesländer in Deutschland alternativlos ist, wenn man tiefgreifende Veränderungen vermeiden will. Weiterhin stellen die Szenarien und Klimaprojektionen die Basis für die zu entwickelnden Maßnahmenkonzepte zur Anpassung an den zu erwartenden Klimawandel dar. Letzte Aktualisierung: 18.09.2024
Von den insgesamt 104 Unternehmen, die sich beworben haben, hat die Jury im Sommer 2024 19 Betriebe besucht, die im Anschluss nominiert wurden. Allein die Nominierung für den Umweltpreis ist als würdige Auszeichnung zu bewerten. Bild zeigt: Das Logo für den Umweltpreis für Unternehmen Baden-Württemberg, Bildnachweis: Umweltministerium Baden-Württemberg Die Preise wurden in unterschiedlichen Kategorien durch Frau Ministerin Walker vergeben. Zusätzlich wurden die zwei Jurypreise „Herausragendes Engagement für Nachhaltigkeit“ verliehen. Die Unternehmen erhalten jeweils ein Preisgeld in Höhe von 10.000 Euro, welches wiederum in Umweltschutzmaßnahmen investiert werden muss. Bild zeigt: Umweltministerin Thekla Walker (vorne achte von rechts) mit den Preisträgerinnen und Preisträgern des Umweltpreises für Unternehmen 2024. Bildnachweis: Martin Stollberg Ausgezeichnet wurden die folgenden Unternehmen. Überzeugt hat der konsequent gelebte Umweltschutz. Hervorzuheben ist ein innovatives Energiekonzept, das sich aus einer Photovoltaik-Anlage mit einer Leistung von 60 Kilowattpeak und einem Batteriespeicher mit einer Kapazität von 200 Kilowattstunden, einer Energiezentrale mit zwei Holzkesseln und zwei Holzkraftwerken zusammensetzt, die das Hotel zu mindestens 90 Prozent mit Strom versorgen. Ein Neubau wird als „kreislauffähiges Gebäude“ umgesetzt und das Hotel führt eine innovative Zimmerreinigung mit Wasserdampf durch. Ausgezeichnet wurde der Betrieb für ein innovatives dezentrales Energieversorgungssystem. Dabei kommen Photovoltaik, beispielsweise durch vertikal ausgerichtete Photovoltaik-Systeme, Elektrolyse (Erzeugung von Wasserstoff), Wasserstoffspeicherung und Brennstoffzellen-Nutzung (Rückverstromung von Wasserstoff) zum Einsatz. Das firmeneigene Gebäude dient als „Reallabor“ und Vorzeigeprojekt und hat Strahlkraft in die Region. Als Hersteller von Kletter-, Outdoor- und Arbeitssicherheits-Ausrüstung werden nachhaltige Innovationen vorangetrieben und der Kreislaufgedanke konsequent umgesetzt. Außergewöhnlich ist beispielsweise die Entwicklung PFAS-freier Seile, Seile aus biobasierten Kunststoffen (z. B. Rizinusöl), Seile aus Garnresten und Rezyklaten oder auch Karabiner mit Stahleinlagen für eine längere Haltbarkeit. Überzeugt hat das Unternehmen unter anderem mit dem Thema Lösemittel-Recycling. Die Lösemittel werden in einem vollständig geschlossenen Recycling-Kreislauf zurückgenommen, aufbereitet und erneut verwendet. Für mehr als 80 Prozent der Produkte hat Kluthe nachhaltige Alternativen entwickelt, wie beispielsweise Wasserbasierte Schmierstoffe oder Reinigungsmittel. Im Umgang mit Kunden sind Nachhaltigkeitsberatungen fester Bestandteil. Der Marktführer im Bereich Automatisierung mit Vakuum und ergonomische Handhabungssysteme punktet in mehreren Bereichen. Beispielsweise wurde ein rein elektrischer Vakuum-Erzeuger für druckluftfreie Fertigung und Montage entwickelt. Aktuell entwickelt und produziert das Unternehmen Stacks für Redox-Flow-Batterien, das Herzstück dieser Stromspeichertechnik. Bei der Energieversorgung am Standort stehen erneuerbare Energien im Fokus. Die Fachklinik für psychische und psychosomatische Erkrankungen setzt stark auf Klimaschutz und eigene kreative Lösungen. Hierzu gehören beispielsweise eine ansprechende Fahrradstation mit Photovoltaik für E-Bikes und E-Roller sowie eine Lademöglichkeit, die das Klimaschutzteam selbst entwickelt und gebaut hat. Photovoltaik ist auf nahezu allen Dächern installiert. Zudem gibt es Fassaden-Photovoltaik als ein Experimentierfeld in der schneereichen Region. Nachhaltiges Denken ist fest im Familienunternehmen verankert und wird durch vielfältiges Engagement in die Tat umgesetzt. Dazu zählen z. B. die Umstellung auf E-LKW zur Auslieferung der Ware, Stärkung der regionalen Wirtschaft und Öko-Landwirtschaft durch feste und langfristige Lieferverträge, konsequenter Einsatz erneuerbarer Energien zur Deckung des Wärme- und Strombedarfs, Pilotversuche mit Kipp-Photovoltaik-Anlagen auf einer Blühwiese und das Engagement für migrierte Mitarbeitende, zum Beispiel durch Wohnungsvermittlungen. Das Unternehmen ist rundum nachhaltig ausgerichtet. Neben einem ausgefeilten Energiekonzept ist besonders die Umstellung der Druckvorstufe von den bisherigen konventionellen Offsetdruckplatten auf die neue Technologie der „prozesslosen Druckplatten“ hervorzuheben. Dadurch kann auf Chemikalien und Entwickler verzichtet sowie der Wasserverbrauch deutlich reduziert werden. Wöchentliche Nachhaltigkeits-Newsletter, ein „Green Friday“ auf Social Media, Biohof-Lieferungen für Mitarbeitende und die Teilnahme an den „World Clean-Up Days“ sind weitere Beispiele für aktives nachhaltiges Engagement. Bild zeigt: Jury des Umweltpreises für Unternehmen Baden-Württemberg 2024 (von links): Martin Förster (Bankenverband Baden-Württemberg), Uwe Bechnika (Verband Unternehmer Baden-Württemberg), Gunter Müller (Landesnaturschutzverband Baden-Württemberg), Sascha Jost (Handelsverband Baden-Württemberg), Umweltministerin Thekla Walker MdL, Dr. Christian Graf (Ministerium für Wirtschaft, Arbeit und Tourismus Baden-Württemberg), Kai Baudis (BUND Landesverband Baden-Württemberg), Monika Grübel (Landesanstalt für Umwelt Baden-Württemberg), Peter Schürmann (Handwerkskammer Konstanz), Carl-Otto Gensch (Öko-Institut). Bildnachweis: Martin Stollberg Die LUBW begleitet den Umweltpreis für Unternehmen bereits seit vielen Jahren in fachlicher und organisatorischer Hinsicht und ist als Mitglied in der Jury vertreten. Zu den Aufgaben gehören dabei insbesondere die Auswertung der schriftlichen Bewerbungsunterlagen, die Mitarbeit bei der Durchführung der Jurysitzungen sowie die Unterstützung des Umweltministeriums bei den Unternehmensbereisungen.
Pellets: Holzheizung energiesparend einstellen und Alternativen prüfen So heizen Sie klimaverträglich mit Pellets Sie planen eine energetische Grundsanierung oder einen Neubau? Reduzieren Sie den Wärmebedarf möglichst weitgehend, insbesondere durch umfassende Wärmedämmung. Installieren Sie ein brennstofffreies Heizsystem (ohne Gas, Öl, Holz) und nutzen Sie hierzu bereitstehende Fördergelder. Sie besitzen ein (teil-)saniertes Haus? Planen Sie rechtzeitig den Ausstieg aus der brennstoffbasierten Heizung (Gas, Öl, Holz) und nutzen Sie bereitstehende Fördergelder. Lassen Sie hierzu einen sogenannten individuellen Sanierungsfahrplan erstellen. Auch das wird gefördert. Nutzen Sie Gelegenheitsfenster wie Fassadenerneuerung oder Fenstertausch zur Verbesserung der Wärmedämmung. Sie möchten (weiterhin) mit Pellets heizen? Prüfen Sie den Austausch Ihres Heizkessels, wenn er älter als 15 Jahre ist. Achten Sie beim Erwerb eines Pelletkessels auf einen hohen Nutzungsgrad (Brennwertgerät in Effizienzklasse A++) und geringe Schadstoffemissionen. Sparen Sie Heizenergie durch sparsames Heizen und regelmäßige Wartung Ihrer Heizungsanlage. Prüfen Sie eine ergänzende Nutzung erneuerbarer Energien (Solarthermie/ Photovoltaik). Prüfen Sie den ergänzenden Einbau eines Staubabscheiders Planen Sie voraus und lassen Sie einen sogenannten individuellen Sanierungsfahrplan erstellen. Die Entsorgung der abgekühlten Asche hat über den Hausmüll (Restmülltonne) zu erfolgen. Gewusst wie Die Heizung ist der mit Abstand größte Erzeuger von CO 2 -Emissionen im Haushalt. Durch Effizienzmaßnahmen am Gebäude und Modernisierung der Heizungstechnik können Sie ganz erheblich Klima und Umwelt schützen. Gleichzeitig senken Sie damit die Heizkosten. Der CO 2 -Preis im Nationalen Emissionshandel wird zudem fossile Brennstoffe nach und nach verteuern. Zu erneuerbaren Energien zu wechseln wird dadurch immer attraktiver. Das UBA spricht sich allerdings aus Klimaschutz -, Luftreinhalte- und ökologischen Gründen gegen die Installation von Holzheizungen aus. Darunter fallen auch die Pelletheizungen. Im Neubau ohne Brennstoffe heizen: Die Wärmeversorgung eines Neubaus sollte mittels erneuerbarer Energien ohne Verbrennung erfolgen. Denn die klimapolitischen Verpflichtungen Deutschlands machen es erforderlich, dass die Wärmeversorgung zügig auf erneuerbare und brennstofffreie Energieträger umgestellt wird. Das UBA rät deshalb von der Nutzung von Heizöl, Erdgas und Holz zum Heizen in Neubauten grundsätzlich aus Klimaschutzgründen ab. Hierfür ist es nötig, den Wärmebedarf des geplanten Gebäudes möglichst weitgehend zu reduzieren. Wichtige Stichpunkte hierbei sind v.a.: angepasste Bauweise, Wärmedämmung, Vermeidung von Wärmebrücken und Lüftungskonzept. So reicht ein niedriges Temperaturniveau für die Raumwärme. Das ist die optimale Voraussetzung, den Wärmebedarf mit brennstofffreien erneuerbaren Energien wie Wärmepumpen, idealerweise mit Wind- und Solar-Strom betrieben, Fern-/Nahwärme oder Solarthermie decken zu können. Im Altbau vorausschauend planen: Um nicht vom plötzlichen Ausfall der alten Heizung mitten im Winter "kalt" überrascht zu werden, ist es sinnvoll, einen mittel- bis langfristigen "individuellen Sanierungsplan" zu haben. So ist gewährleistet, dass Zeitfenster wie Heizungsausfall, Fassadensanierung oder Fensteraustausch optimal und kostengünstig genutzt werden können. Ein "individueller Sanierungsfahrplan" wird für Gebäude, die älter als 10 Jahre sind und vorwiegend zu Wohnzwecken genutzt werden, im Rahmen der Energieberatung für Wohngebäude durch das BAFA gefördert. Mit einem Sanierungsfahrplan können Sie den Wärmebedarf in älteren Häusern stufenweise und wirtschaftlich senken und gleichzeitig die Umstellung des Heizsystems auf brennstofffreie erneuerbare Energien vorbereiten und ermöglichen. Denn bereits in teilsanierten Gebäuden kann die Raumwärmeversorgung mit einer niedrigeren Vorlauftemperatur erfolgen. Überblick über alle Maßnahmenpakete bei der Schritt-für-Schritt-Sanierung Hinweise für die Pelletheizung: Falls Holzpellets dennoch zur Raumwärme oder Warmwasserbereitstellung genutzt werden sollen, sind einige Punkte zu beachten: Austausch alter Heizkessel: Heizkessel, die älter als 15 Jahre sind, entsprechen in der Regel nicht mehr dem Stand der Technik. In den meisten Fällen lohnt es sich, einen effizienteren Heizkessel einzubauen. Bestehende Festbrennstoffkessel, die zwischen dem 1. Januar 2005 und dem 21. März 2010 errichtet wurden, dürfen ab dem 01. Januar 2025 nur noch weiter betrieben werden, wenn diese die Grenzwerte der 1. Stufe der Verordnung über kleine und mittlere Feuerungsanlagen (1. BImSchV) einhalten. Die Überprüfung der Einhaltung der Grenzwerte erfolgt durch das Schornsteinfegerhandwerk wiederkehrend alle zwei Jahre. Hohe Energieeffizienzklasse wählen: Neben der Leistung sollten Sie beim Erwerb einer neuen Heizung auf einen hohen Nutzungsgrad und geringe Emissionen achten. Eventuelle Mehrkosten können in der Regel durch einen geringeren Brennstoffbedarf wieder eingespart werden. Bei der Brennwerttechnik wird die Wärme im Abgas besser ausgenutzt. Voraussetzung dafür ist, dass der Heizkessel auch tatsächlich im Brennwertbetrieb arbeiten kann (siehe unten). Pellet-Brennwertkessel erreichen die Effizienzklasse A++ . Einfache Pelletkessel liegen in der Effizienzklasse A+. Achten Sie hier auf einen möglichst hohen Energieeffizienz-Kennwert von etwa 120 %. Kombinieren Sie Ihre Holzheizung mit brennstofffreien erneuerbaren Energien, zum Beispiel Sonnenkollektoren. Die Brauchwassererwärmung kann dann außerhalb der Heizperiode die Sonne übernehmen. Das spart Holz und schont die Umwelt, da die Holzheizung außerhalb der Heizperiode ineffizient arbeitet und mit höheren Emissionen verbunden ist. Richtige Größe der Heizung: Alte Heizkessel sind oft größer als nötig. Bestehen Sie beim Austausch Ihres Heizkessels auf eine individuelle Dimensionierung: Eine kleinere Heizung ist günstiger und beheizt Ihr Haus effizienter. Ein gut gedämmtes Haus benötigt weniger Heizleistung als ein schlecht gedämmtes Haus. Deshalb sollte – nach Möglichkeit – bei einer Haussanierung zuerst gedämmt werden, bevor über die Auswahl der Heizung entschieden wird. Lassen Sie sich hierbei von Energieberater*innen unterstützen. Heizung als Gesamtsystem: Damit eine Heizung möglichst effizient funktioniert, müssen alle Heizkomponenten optimal eingestellt und aufeinander abgestimmt sein: Wärmeerzeuger, Heizflächen, Thermostatventile, Pumpen- und Reglereinstellungen. Eine solche "Heizungsoptimierung" lohnt sich auch bei bestehenden Heizkesseln. Nur unter dieser Voraussetzung arbeiten Brennwertkessel auch tatsächlich im Brennwertbetrieb (das heißt der Wasserdampf im Abgas wird abgekühlt und fällt als Kondensat an). Beauftragen Sie deshalb beim Heizungstausch eine "Heizungsoptimierung", damit sich die erwartete Energieeinsparung auch tatsächlich einstellt. Das können Sie kontrollieren, indem Sie regelmäßig den Verbrauch des Kessels überwachen. Ein Hilfsmittel dafür ist zum Beispiel das kostenlose Energiesparkonto . Achten Sie auch auf eine regelmäßige Wartung der Heizung. Umweltfreundliche Holzpellets kaufen: Beziehen Sie die Holzpellets aus Ihrer Region, denn der Transport der Pellets zu Ihnen verbraucht Benzin und Diesel. Achten Sie zudem darauf, dass die Pellets aus nachhaltiger Forstwirtschaft stammen (Siegel FSC , PEFC oder Naturland ). Holzpellets müssen aus naturbelassenem Holz stammen und die Anforderungen der DIN EN 17225-2 Klasse A1 einhalten. Zusätzlich können diese nach dem nach dem DIN Plus oder EN Plus (A1) Zertifizierungsprogramm zertifiziert sein. Pelletlager: Bei der Lagerung von Holzpellets sind die Anforderungen der VDI 3464 Blatt 1 zu beachten. Hintergrund hierfür sind gesundheitsschädliche Kohlenmonoxidemissionen (CO) aus den Pellets, die sich im Pelletlager anreichern. Innerhalb der ersten vier Wochen nach Lieferung der Pellets ist mit erhöhten Kohlenmonoxidkonzentrationen im Pelletlager zu rechnen. Daher ist eine gute Belüftung des Pelletlagers notwendig und der Einsatz von mobilen CO-Messgeräten beim Betreten und von CO-Meldern im Vorraum zum Pelletlager sinnvoll. Staubabscheider einbauen: Durch den Einsatz von Staubabscheidern können sehr niedrige Schadstoffemissionen bei Pelletkesseln erreicht werden. Eine Übersicht über bauartzugelassene Staubabscheider finden Sie auf der Internetseite des Deutschen Institut für Bautechnik (DiBt). Für weitere Informationen empfehlen wir unsere Broschüre Heizen mit Holz . Das BAFA fördert im Rahmen der Bundesförderung für effiziente Gebäude (BEG) auch die Installation von Pelletkesseln. Niedrige Emissionen: Beim Bundesamt für Wirtschaft- und Ausfuhrkontrolle (BAFA) werden im Rahmen der Bundesförderung energieeffiziente Gebäude (BEG) besonders emissionsarme Pelletkessel gefördert. Einige dieser Geräte verfügen über integrierte oder nachgeschaltete Staubabscheider. Entsorgung der Asche: Die abgekühlte Asche sollte in der Restmülltonne entsorgt werden. Für Garten und Kompost ist sie nicht geeignet, da es sonst zu einer Anreicherung von Schwermetallen (die natürlich im Holz vorhanden sind) und von Schadstoffen aus der Verbrennung (z.B. PAKs) im Boden kommt. Was Sie noch tun können: Fördermittel nutzen: Prüfen Sie in unserem Fördermittelratgeber , ob und wie Sie Ihre Investitionskosten senken können. Kombination mit weiteren erneuerbaren Energien: Beachten Sie hierzu unsere Tipps zu Sonnenkollektoren . Beachten Sie auch unsere Tipps zum Sparen von Heizenergie . Hintergrund Umweltsituation: Die Verbrennung von Holz läuft nie vollständig ab. Es entstehen gesundheitsgefährdende Luftschadstoffe wie Staub bzw. Feinstaub, Kohlenwasserstoffverbindungen wie polyzyklisch aromatische Kohlenwasserstoffe (PAK), klimaschädliches Methan, Lachgas und Ruß. Der Staub, der in die Luft gelangt, wird als Feinstaub bezeichnet, da dieser zu über 90 Prozent aus sehr kleinen Partikeln mit einer Größe unter 10 µm besteht (abgekürzt als PM10). Dies ist kleiner als der Durchmesser eines menschlichen Haares. Diese sehr feinen, mit dem Auge nicht sichtbaren Partikel können beim Einatmen bis in die Lunge eindringen und so die Gesundheit beeinträchtigen. Je kleiner die Partikel sind, desto tiefer gelangen diese in den Atemtrakt. Erkrankungen der Atemwege (z. B. Asthma, Bronchitis, Lungenkrebs), des Herz-Kreislauf-Systems (z. B. Arteriosklerose, Bluthochdruck), des Stoffwechsels (z. B. Diabetes Mellitus Typ 2) oder des Nervensystems (z. B. Demenz) können die Folge sein. Besonders für Kinder, Personen mit vorgeschädigten Atemwegen und ältere Menschen stellt Feinstaub eine starke gesundheitliche Belastung dar. Der Staub, der in die Luft gelangt, wird als Feinstaub bezeichnet, da dieser zu über 90 Prozent aus sehr kleinen Partikeln mit einer Größe unter 10 µm besteht (abgekürzt als PM10). Dies ist kleiner als der Durchmesser eines menschlichen Haares. Diese sehr feinen, mit dem Auge nicht sichtbaren Partikel können beim Einatmen bis in die Lunge eindringen und so die Gesundheit beeinträchtigen. Je kleiner die Partikel sind, desto tiefer gelangen diese in den Atemtrakt. Erkrankungen der Atemwege (z. B. Asthma, Bronchitis, Lungenkrebs), des Herz-Kreislauf-Systems (z. B. Arteriosklerose, Bluthochdruck), des Stoffwechsels (z. B. Diabetes Mellitus Typ 2) oder des Nervensystems (z. B. Demenz) können die Folge sein. Besonders für Kinder, Personen mit vorgeschädigten Atemwegen und ältere Menschen stellt Feinstaub eine starke gesundheitliche Belastung dar. Die meisten Kohlenwasserstoffverbindungen sind unangenehm riechende Schadstoffe, zu denen auch polyzyklisch aromatische Kohlenwasserstoffe (PAKs) gehören. Einige dieser PAKs sind krebserregende, erbgutverändernde und/oder fortpflanzungsgefährdende Schadstoffe. Die meisten Kohlenwasserstoffverbindungen sind unangenehm riechende Schadstoffe, zu denen auch polyzyklisch aromatische Kohlenwasserstoffe (PAKs) gehören. Einige dieser PAKs sind krebserregende, erbgutverändernde und/oder fortpflanzungsgefährdende Schadstoffe. Weiterhin entstehen bei der Verbrennung von Holz giftiges Kohlenmonoxid sowie die klimaschädlichen Gase Methan und Lachgas. Methan trägt 25-mal und Lachgas 298-mal stärker zur Erderwärmung bei als die gleiche Menge Kohlendioxid. Die Verbrennung von Holz setzt auch den im Holz gebundenen Kohlenstoff in Form von Kohlendioxid frei. Nur wenn im Sinne einer nachhaltigen Waldwirtschaft eine entsprechende Holzmenge zeitnah nachwächst, ist die Kohlenstoffbilanz im Wald ausgeglichen. Hinzu kommen die Emissionen durch Holzernte, Transport und Bearbeitung, die umso geringer sind, je regionaler die Holznutzung erfolgt. Zur Erreichung der klimapolitischen Ziele muss der Wald als Kohlenstoffsenke erhalten bleiben. Mehr noch: die Senkenleistung der Wälder sollte maximiert werden, um die ambitionierten Ziele im Bereich Landnutzung , Landnutzungsänderung und Forst ( LULUCF ) zu erreichen. Dazu muss mehr Holz neu nachwachsen als aus dem Wald entnommen wird. Das klimafreundliche Potenzial zur Nutzung von Holz ist demnach begrenzt. Im Vergleich zu Holzheizungen kann außerdem mit langlebigen Holzprodukten mehr Klimaschutz erzielt werden (Kaskadennutzung). Von der energetischen Holznutzung ist deshalb aus Klimaschutzgründen abzuraten, insbesondere dann, wenn brennstofffreie erneuerbare Alternativen zur Raumwärmebereitstellung zur Verfügung stehen, wie z.B. Wärmepumpen oder Solarthermie. Gesetzeslage: Das Gebäudeenergiegesetz , das 2023 geändert wurde, verpflichtet die Eigentümerinnen und Eigentümer neu errichteter Gebäude, seit 1.1.2024 mindestens 65 Prozent des Wärmebedarfs aus erneuerbaren Quellen zu decken. Ab Mitte 2026 greift diese Pflicht sukzessive auch für Bestandsgebäude Eine Möglichkeit, den Anteil an erneuerbaren Energien zu decken, ist der Einsatz eines Pelletkessels. Die Verordnung über kleine und mittlere Feuerungsanlagen (1. BImSchV) enthält Grenzwerte für die Luftschadstoffemissionen von Heizkesseln. Die Schornsteinfeger*innen messen hierzu wiederkehrend alle zwei Jahre die CO- und Staubemissionen von Pelletkesseln. Des Weiteren ist eine Inspektion des Brennstofflagers zweimal in sieben Jahren vorgeschrieben. Bei einer Neuinstallation einer Feuerungsanlage oder bei einem Neubau sollten die Abgase nach dem Stand der Technik (VDI 3781 Blatt 4) abgeleitet werden. Nur hierdurch können ein ungestörter Abtransport der Abgase und eine ausreichende Verdünnung der Abgase erreicht werden. Die Verordnung (EU) Nr. 2015/1187 macht seit 2017 die Energieverbrauchskennzeichnung für alle Festbrennstoff-Heizkessel verpflichtend. Seit dem 1.1.2020 regelt die Verordnung (EU) Nr. 2015/1189 die Energieeffizienz und Luftschadstoffemissionen neuer Heizkessel für Festbrennstoffe. Weitere Informationen finden Sie auf unseren Themenseiten: Holzheizungen: Schlecht für Gesundheit und Klima ( UBA -Themenseite) Mehr Klimaschutz mit einer neuen Heizung (UBA-Themenseite) Energiesparende Gebäude (UBA-Themenseite) Energieverbrauchskennzeichnung für Heizgeräte (UBA-Themenseite)
Artikel 5.01 Begriffsbestimmungen Im Sinne dieses Teiles bedeutet der Ausdruck: "Einheitstransporte" Transporte, bei denen im Laderaum oder Ladetank des Fahrzeuges ununterbrochen nachweislich das gleiche Ladegut oder ein anderes Ladegut, dessen Beförderung keine vorherige Reinigung des Laderaums oder des Ladetanks erfordert, befördert wird; aa. "kompatible Transporte" Transporte, bei denen während aufeinanderfolgender Fahrten im Laderaum oder Ladetank des Fahrzeuges nachweislich ein Ladegut befördert wird, dessen Beförderung kein vorheriges Waschen oder Entgasen des Laderaums oder des Ladetanks erfordert; "Restladung" die flüssige Ladung, die nach dem Löschen ohne Einsatz eines Nachlenzsystems im Ladetank und im Leitungssystem verbleibt, sowie Trockenladung, die nach dem Löschen ohne den Einsatz von Besen, Kehrmaschinen oder Vakuumreinigern im Laderaum verbleibt; "Ladungsrückstände" die flüssige Ladung, die nicht durch das Nachlenzsystem aus dem Ladetank und dem Leitungssystem entfernt werden kann, sowie trockene Ladung, die nicht durch den Einsatz von Kehrmaschinen, Besen oder Vakuumreinigern aus dem Laderaum entfernt werden kann; "Nachlenzsystem" ein System nach Anhang II für das möglichst vollständige Entleeren der Ladetanks und des Leitungssystems bis auf nicht lenzbare Ladungsrückstände; "Umschlagsrückstände" Ladung, die beim Umschlag außerhalb des Laderaums auf das Schiff gelangt; "besenreiner Laderaum" einen Laderaum, aus dem die Restladung mit Reinigungsgeräten wie Besen oder Kehrmaschinen ohne den Einsatz von saugenden oder spülenden Geräten entfernt worden ist und der nur noch Ladungsrückstände enthält; "nachgelenzter Ladetank" einen Ladetank, aus dem die Restladung durch den Einsatz eines Nachlenzsystems entfernt worden ist und der nur noch Ladungsrückstände enthält; "vakuumreiner Laderaum" einen Laderaum, aus dem die Restladung mittels Vakuumtechnik entfernt worden ist und der deutlich weniger Ladungsrückstände enthält als ein besenreiner Laderaum; "Restentladung" die Beseitigung der Restladung aus den Laderäumen beziehungsweise Ladetanks und Leitungssystemen durch geeignete Mittel ( z. B. Besen, Kehrmaschine, Vakuumtechnik, Nachlenzsystem), durch die der Entladungsstandard "Laderaum besenrein" oder "Laderaum vakuumrein" oder "Ladetank nachgelenzt" erreicht wird, sowie die Beseitigung der Umschlagsrückstände und von Verpackungs- und Stauhilfsmitteln; "Waschen" die Beseitigung der Ladungsrückstände aus dem besenreinen oder vakuumreinen Laderaum oder aus dem nachgelenzten Ladetank unter Einsatz von Wasserdampf oder Wasser; "waschreiner Laderaum oder Ladetank" einen Laderaum oder Ladetank, der nach dem Waschen grundsätzlich für jede Ladungsart geeignet ist; "Waschwasser" das Wasser, das beim Waschen von besenreinen oder vakuumreinen Laderäumen oder von nachgelenzten Ladetanks anfällt. Hierzu wird auch Ballastwasser und Niederschlagswasser gerechnet, das aus diesen Laderäumen oder Ladetanks stammt; "Entgasen" die Beseitigung von Dämpfen nach Anhang IIIa aus einem nachgelenzten Ladetank bei einer Annahmestelle unter Einsatz geeigneter Verfahren und Techniken; "Ventilieren" die direkte Freisetzung der Dämpfe aus dem Ladetank in die Atmosphäre; "entgaster oder ventilierter Ladetank" ein gemäß den Entgasungsstandards nach Anhang IIIa von Dämpfen befreiter Ladetank. Stand: 01. Oktober 2024
Atmosphärische Treibhausgas-Konzentrationen Bedingt durch seine hohe atmosphärische Konzentration ist Kohlendioxid nach Wasserdampf das wichtigste Klimagas. Die globale Konzentration von Kohlendioxid ist seit Beginn der Industrialisierung um gut 50 % gestiegen. Demgegenüber war die Kohlendioxid-Konzentration in den vorangegangenen 10.000 Jahren annähernd konstant. Konzentrationen weiterer Treibhausgase tragen ebenfalls zum Klimawandel bei. Kohlendioxid Durch das Verbrennen fossiler Energieträger (wie zum Beispiel Kohle und Erdöl) und durch großflächige Entwaldung wird Kohlendioxid (CO 2 ) in der Atmosphäre angereichert. Diese Anreicherung wurde durch die Wissenschaft unzweifelhaft nachgewiesen. Die weltweite Kohlendioxid-Konzentration lag im Jahr 2023 bei 419,55 µmol/mol ( ppm ) Kohlendioxid ( NOAA 2023 ). Hinzu kommen Konzentrationen weiterer Treibhausgase, die ebenfalls zum weltweiten Klimawandel beitragen. Die Auswertung von Messungen der atmosphärischen Kohlendioxid-Konzentration für das Jahr 2015 an den Messstationen des Umweltbundesamtes Schauinsland (Südschwarzwald) und auf der Zugspitze hat gezeigt, dass in diesem Jahr die Konzentration an beiden Stationen im Jahresdurchschnitt erstmals über 400 µmol/mol (ppm) lag. Zum Vergleich: Die Kohlendioxid-Konzentration aus vorindustrieller Zeit lag bei etwa 280 µmol/mol (ppm). Auf Deutschlands höchstem Gipfel sind die Messwerte besonders repräsentativ für die Hintergrundbelastung der Atmosphäre, da die Zuspitze häufig in der unteren freien Troposphäre liegt und somit weitestgehend unbeeinflusst von lokalen Quellen ist. Im Jahr 2023 stieg der Jahresmittelwert auf der Zugspitze auf 420,7 µmol/mol (ppm) (siehe Abb. „Kohlendioxid-Konzentration in der Atmosphäre (Monatsmittel)“). Lange Messreihen ergeben ein zuverlässiges Maß für den globalen Anstieg der Kohlendioxid-Konzentration. Dank ihrer Genauigkeit ermöglichen sie es, den Effekt der Verbrennung fossiler Brennstoffe von natürlichen Konzentrations-Schwankungen zu unterscheiden. Auf dieser Grundlage kann die langfristige Veränderung des Kohlendioxid-Vorrats in der Atmosphäre mit Klimamodellen genauer analysiert werden. Die Auswertung der Messreihe vom aktiven Vulkan Mauna Loa auf Hawaii werden zur Bestimmung des globalen Kohlendioxid-Anstiegs genutzt, da sich die Messstation in größer Höhe und weit entfernt von störenden Kohlendioxidquellen befindet. Während in den 1960er-Jahren der jährliche Anstieg auf Mauna Loa (aktiver Vulkan auf Hawaii, wo) im Mittel noch bei 0,86 µmol/mol (ppm) Kohlendioxid lag, stieg der Welttrend in den vergangenen 15 Jahren im Mittel auf 2,35 µmol/mol (ppm) pro Jahr, in Mauna Loa auf 2,41 µmol/mol (ppm) pro Jahr. Gegenüber den 1950er-Jahren wurde damit der globale Kohlendioxid-Anstieg annähernd verdreifacht. Methan Bis 2023 stieg die weltweite Methan-Konzentration bis etwas über 1921,9 nmol/mol ( ppb ). An der Messstation Zugspitze wurde für 2023 ein Jahresmittelwert von 1994,0 nmol/mol (ppb) gemessen (siehe Abb. „Methan-Konzentration in der Atmosphäre (Monats- und Jahresmittelwerte)“). Lachgas Weltweit lag die Lachgas-Konzentration im Jahr 2023 bei über 336,7 nmol/mol ( ppb ). An der Messstation Zugspitze wurde für 2023 ein Jahresmittelwert von 337,4 nmol/mol (ppb) gemessen (siehe Abb. „Lachgas-Konzentration in der Atmosphäre (Monatsmittelwerte)“). Beitrag langlebiger Treibhausgase zum Treibhauseffekt In der Summe bilden Kohlendioxid (CO 2 ), Methan, Lachgas und die halogenierten Treibhausgase den sogenannten Treibhauseffekt : Die langlebigen Treibhausgase leisteten 2022 einen Beitrag zur globalen Erwärmung (NOAA 2023) von insgesamt 3,398 W/m² (Watt pro Quadratmeter). Verglichen mit dem Stand von 1990 ergibt dies eine Zunahme von fast 49 %. Dabei leistet atmosphärisches CO 2 den vom Menschen in erheblichem Umfang mit verursachten Hauptbeitrag zur Erwärmung des Erdklimas. In Folge dieser Klimaerwärmung nimmt auch der sehr mobile und wechselnd wirkende Wasserdampf in der Atmosphäre zu. Im Vergleich zu CO 2 ist dieser zwar deutlich maßgebender für die Erwärmung, atmosphärisches CO 2 bleibt aber der vom Menschen verursachte Hauptantrieb. Wie stark die verschiedenen langlebigen Klimagase im Einzelnen zur Erwärmung beitragen, ist in der Abbildung „Beitrag zum Treibhauseffekt durch Kohlendioxid und langlebige Treibhausgase 2022“ zu sehen. Der größte Anteil dabei entfällt auf Kohlendioxid mit etwa 63,9 %, gefolgt von Methan mit 19,1 %, Lachgas mit 5,7%, und den halogenierten Treibhausgasen insgesamt mit 11,3 %. Obergrenze für die Treibhausgas-Konzentration Um die angestrebte Zwei-Grad-Obergrenze der atmosphärischen Temperaturerhöhung mit einer Wahrscheinlichkeit von mindestens 66 % zu unterschreiten, müsste die gesamte Treibhausgas -Konzentration (Kohlendioxid, Methan, Lachgas und F-Gase) in der Atmosphäre bis zum Jahrhundertende bei rund 450 ppm Kohlendioxid-Äquivalenten stabilisiert werden. Dabei ist eine kurzfristige Überschreitung dieses Konzentrationsniveaus möglich ( IPCC-Synthesebericht ). 2022 lag die gesamte Treibhausgas-Konzentration bei 523 ppm Kohlendioxid-Äquivalenten (siehe Abb. „Treibhausgas-Konzentration in der Atmosphäre“). Um die angestrebte Stabilisierung zu erreichen, müssen die globalen Treibhausgas-Emissionen gesenkt werden. In den meisten Szenarien des Welt-Klimarates (IPCC) entspricht dies einer Menge von weltweiten Treibhausgas-Emissionen zwischen 30 und 50 Milliarden Tonnen (Mrd. t) Kohlendioxid-Äquivalenten im Jahr 2030. Im weiteren Verlauf bis 2050 müssten die Emissionen weltweit zwischen 40 % und 70 % unter das Niveau von 2010 gesenkt werden und bis Ende des Jahrhunderts auf nahezu null sinken. Dazu sind verbindliche Zielsetzungen im Rahmen einer globalen Klimaschutzvereinbarung erforderlich. Im Dezember 2015 vereinbarte die Staatengemeinschaft auf der 21. Vertragsstaatenkonferenz unter der Klimarahmenkonvention (COP21) das Klimaschutz -Übereinkommen von Paris. Darin ist zum ersten Mal in einem völkerrechtlichen Abkommen verankert, dass die durchschnittliche globale Erwärmung auf deutlich unter zwei Grad begrenzt werden soll. Darüber hinaus sollen sich die Vertragsstaaten bemühen, den globalen Temperaturanstieg möglichst unter 1,5 Grad zu halten. Um dieses Ziel zu erreichen, müssen die Treibhausgas-Emissionen sobald wie möglich abgesenkt werden. In der zweiten Hälfte des Jahrhunderts soll eine globale Balance der Quellen und das Senken von Treibhausgas-Emissionen (Netto-Null-Emissionen) erreicht werden. Das bedeutet die Dekarbonisierung der Weltwirtschaft und damit einen Ausstieg aus der Nutzung fossiler Energieträger. Enorme Anstrengungen sind notwendig, um dieses Ziel zu erreichen, und zwar nicht nur in Deutschland, sondern in allen Staaten, insbesondere den Industrienationen. Zur Erreichung der Klimaziele hat Deutschland das Klimaschutzprogramm 2030 verabschiedet. Weiterführende Informationen Auf den folgenden Seiten finden Sie weiterführende Informationen zu internationalen Klimabeobachtungssystemen: Thema: Globale Überwachung der Atmosphäre (GAW) WMO: Global Atmosphere Watch (GAW) WMO: Global Climate Observing System (GCOS) Weltdatenzentrum für Treibhausgase (WDCGG) BMVBS/DWD: Die deutschen Klimabeobachtungssysteme Wir danken der Nationalen Administration für die Ozeane und die Atmosphäre (NOAA Global Monitoring Division) in Boulder, USA und dem Scripps Institut für Ozeanography, La Jolla, USA für die CO 2 -Daten des GAW Globalobservatoriums von Mauna Loa, Hawaii, sowie dem Mace Head GAW Globalobservatorium, Irland und dem AGAGE Projekt für die Lachgasdaten.
Origin | Count |
---|---|
Bund | 936 |
Land | 27 |
Wissenschaft | 3 |
Type | Count |
---|---|
Ereignis | 2 |
Förderprogramm | 870 |
Gesetzestext | 1 |
Text | 72 |
Umweltprüfung | 1 |
unbekannt | 18 |
License | Count |
---|---|
geschlossen | 62 |
offen | 879 |
unbekannt | 23 |
Language | Count |
---|---|
Deutsch | 765 |
Englisch | 291 |
Resource type | Count |
---|---|
Archiv | 20 |
Bild | 5 |
Datei | 24 |
Dokument | 40 |
Keine | 668 |
Unbekannt | 1 |
Webdienst | 1 |
Webseite | 266 |
Topic | Count |
---|---|
Boden | 756 |
Lebewesen & Lebensräume | 726 |
Luft | 741 |
Mensch & Umwelt | 964 |
Wasser | 670 |
Weitere | 949 |