Das Projekt "Teilprojekt 1" wird vom Umweltbundesamt gefördert und von Universität München, Institut für Geographie, Lehrstuhl für Geographie und Geographische Fernerkundung durchgeführt. Ziel des Projektes ist es, Informationen für die Beurteilung der 17 von der UNO formulierten sog. Sustainable Development Goals (SDGs) zu generieren. Dazu werden: (1) die heutige Nutzung der knappen Wasserressourcen durch einen neuartigen Monitoring- und Modellieransatz unter Nutzung des Modells PROMET und COPERNICUS Satellitendaten global hochaufgelöst und jahresaktuell beobachtbar gemacht, (2) die wirtschaftlichen Konsequenzen der derzeitigen Wasserflüsse und der Wassernutzung einschließlich des Handels mit virtuellem Wasser für die Landwirtschaft, die Wirtschaft und die Wasserwirtschaft bestimmt, (3) die Konsequenzen einer nachhaltigen und effizienten Wassernutzung auf die regionale Wohlfahrt von wasserarmen wie wassereichen Ländern simuliert und systematisch untersucht, (4) die Vulnerabilität der Landwirtschaft und der Ökosysteme durch Klimavariabilität bezüglich der Wasserverfügbarkeit bewertet, (5) regionale hot-spots nicht-nachhaltiger Wassernutzung identifiziert, um dort institutionelle Hindernisse für eine nachhaltige und effiziente Wassernutzung zu beschreiben, (6) Trade-offs zwischen der wirtschaftlichen Wassernutzung und dem Schutz von ökosystemaren Funktionen identifiziert um (7) mit Hilfe von Szenarien Lösungsoptionen für ein nachhaltiges Wassermanagement zu untersuchen. Arbeitspakete: AP1.0: Co-Design - Co-Production - Co-Dissemination AP2.1: Globale Simulation von Wasserflüssen, Ertrag und Wassernutzungseffizienz AP2.2: Globale Simulation der Grundwasserflüsse AP2.3: Wasserbilanz von Einzugsgebieten AP2.4: Abgleich mit Beobachtungen und Validierung AP3.1: Weiterentwicklung und Kalibrierung des CGE-Models DART zu DART-WATER AP3.3: Modellierung von Knappheitsmaßen für regionale Wasserressourcen AP4.1: Nachhaltigkeitsbewertung AP4.2: Räumliche Identifikation von hot-spots und cold-spots AP4.3: Institutionelle Hindernisse AP5.1: Vulnerabilität von Wassernutzung AP5.2: Optionen für ein global effizientes und nachhaltiges Wassermanagement AP5.3: Bewertung der Ergebnisse.
Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von INOQ GmbH durchgeführt. Arbuskuläre Mykorrhizapilze (AMF) sind die innovativsten Biostimulanzien auf Basis von Mikroorganismen. Die symbiontischen Wurzelpilze leisten durch ihren positiven Einfluss auf Nährstoff- und Wassereffizienz, sowie auf die Resilienz von Kulturpflanzen einen erheblichen Beitrag zum Europäischen Green Deal. Da die obligat biotrophen AMF nur in Anwesenheit von Pflanzen kultiviert werden können, ist ihre Produktion aber nach wie vor zeit- und kostenaufwändig. Zur Zeit werden hierfür zwei Methoden verwendet, aus denen sehr unterschiedliche Produkte hervorgehen: Die ex vitro Produktion in Topfkulturen liefert feste, die in vitro Vermehrung an Wurzelorgankulturen flüssige Produkte. Eine Vemehrung ohne Pflanzen/Wurzelorgankulturen würde die kommerzielle Produktion erheblich vereinfachen. Das Ziel von OPT4AMF ist daher die Produktion der AMF in vitro ohne Wurzelorgankulturen. Auf der Basis neuester Erkenntnisse werden dafür Kombinationen von innovative Zusatzstoffe und sogenannte Mykorrhizahelferbakterien parallel eingesetzt. Die Sporenbildung des AMF wird quantifiziert und die Sporen hinsichtlich ihrer Qualität und ihres Einflusses auf die Pflanze überprüft. Die entwickelten Verfahren zur verbesserten in vitro Vermehrung können die Produktion und somit den Einsatz der AMF erheblich kostengünstiger gestalten. Dies ermöglicht ihre zukünftige routinemäßige Anwendung für den wachsenden Markt der Pflanzenernährung in landwirtschaftlichen Produktionssystemen.
Das Projekt "Teilprojekt: heliopas ai GmbH" wird vom Umweltbundesamt gefördert und von heliopas.ai GmbH durchgeführt. Klassische statistische Analysen oder die Verwendung von Indices (z.B. NDVI) von multispektralen Satellitendaten ergeben keine ausreichend genauen Informationen zum aktuellen Status der Wasserversorgung von Pflanzenbeständen und sind somit zur Steuerung von Bewässerungs- und Beregnungsmaßnahmen in der Landwirtschaft nicht nutzbar. Hingegen zeigen erste Auswertungen von Satellitendaten durch künstliche Intelligenz (KI-Systeme), die mit entsprechenden Daten trainiert wurden, Ergebnisse, durch die sich die Wassereffizienz der Beregnung und Bewässerung entscheidend verbessern könnte. Weltweit ist die Beregnung und Bewässerung von landwirtschaftlichen Flächen der mit Abstand größte Verbraucher von Süßwasser. In vielen Regionen der Welt ist ohne Beregnung und Bewässerung keine landwirtschaftliche Produktion möglich. Dies wird durch den Klimawandel noch weiter verschärft. Genaue Informationen zum aktuellen Wasserbedarf eines Pflanzenbestands liegen dem Landwirt in der Regel nicht vor, so dass der Wasser- und Energieverbrauch (Pumpen) oft wesentlich höher als nötig ist, die Erträge schwanken und Bodenversalzung und Nährstoffauswaschungen weit verbreitet sind. Im Rahmen des geplanten Projekts soll eine KI-basierte Auswertung von Satellitendaten entwickelt werden, die wesentlich genauere Informationen über die aktuelle Wasserversorgung von Pflanzenbeständen zur Verfügung stellt als bisher. Dazu sollen zusätzliche georeferenzierte Daten, u.a. Wärmebilder, einbezogen werden. Darauf basierend sollen nach Abschluss des Projekts Produkte für Landwirte entwickelt werden, die es ihnen ermöglichen, Flächen zeitgerecht und effizient zu bewässern bzw. zu beregnen. Damit trägt das geplante Projekt zu den Sustainable Development Goals (SDG) der UN Nr. 2 (Zero Hunger) und indirekt auch zu Nr.6 (Clean Water und Sanitation) bei. Die globale Verfügbarkeit der Satellitendaten ermöglicht es zudem, die Produkte in allen Regionen der Welt anzubieten.
Das Projekt "Teilprojekt 5" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Geesthacht (HZG) Zentrum für Material- und Küstenforschung GmbH, Climate Service Center Germany (GERICS) durchgeführt. Ziel des Projektes ist es, Informationen für die Beurteilung der 17 von der UNO formulierten sog. Sustainable Development Goals (SDGs) zu generieren. Dazu werden: (1) die heutige Nutzung der knappen Wasserressourcen durch einen neuartigen Monitoring- und Modellieransatz global hochaufgelöst und jahresaktuell beobachtbar gemacht, (2) die wirtschaftlichen Konsequenzen der derzeitigen Wasserflüsse und der Wassernutzung einschließlich des Handels mit virtuellem Wasser für die Landwirtschaft, die Wirtschaft und die Wasserwirtschaft bestimmt, (3) die Konsequenzen einer nachhaltigen und effizienten Wassernutzung auf die regionale Wohlfahrt von wasserarmen wie wassereichen Ländern simuliert und systematisch untersucht, (4) die Vulnerabilität der Landwirtschaft und der Ökosysteme durch Klimavariabilität bezüglich der Wasserverfügbarkeit bewertet, (5) regionale hot-spots nicht-nachhaltiger Wassernutzung identifiziert, um dort institutionelle Hindernisse für eine nachhaltige und effiziente Wassernutzung zu beschreiben, (6) Trade-offs zwischen der wirtschaftlichen Wassernutzung und dem Schutz von ökosystemaren Funktionen identifiziert um (7) mit Hilfe von Szenarien Lösungsoptionen für ein nachhaltiges Wassermanagement zu untersuchen. AP1.0: Co-Design - Co-Production - Co-Dissemination AP2.1: Globale Simulation von Wasserflüssen, Ertrag und Wassernutzungseffizienz AP2.2: Globale Simulation der Grundwasserflüsse AP2.3: Wasserbilanz von Einzugsgebieten AP2.4: Abgleich mit Beobachtungen und Validierung AP3.1: Weiterentwicklung und Kalibrierung des CGE-Models DART zu DART-WATER AP3.3: Modellierung von Knappheitsmaßen für regionale Wasserressourcen AP4.1: Nachhaltigkeitsbewertung AP4.2: Räumliche Identifikation von hot-spots und cold-spots AP4.3: Institutionelle Hindernisse AP5.1: Vulnerabilität von Wassernutzung AP5.2: Optionen für ein global effizientes und nachhaltiges Wassermanagement AP5.3: Bewertung der Ergebnisse HZG-GERICS trägt mit seinen Arbeiten zu AP2.1 sowie zu AP5.1 bei
Das Projekt "B 3.1: Efficient water use of mixed cropping systems in watersheds of Northern Thailand highlands" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Kulturpflanzenwissenschaften (340), Fachgebiet Düngung und Bodenstoffhaushalt (340i) durchgeführt. Worldwide an important part of agricultural added value is produced under irrigation. By irrigation unproductive areas can be cultivated, additional harvests can be obtained or different crops can be planted. Since its introduction into Northern Thailand lychee has developed as one of the dominating cash crops. Lychee is produced in the hillside areas and has to be irrigated during the dry season, which is the main yield-forming period. Water therefore is mainly taken from sources or streams in the mountain forests. As nowadays all the available resources are being used do to increased production, a further increase in production can only be achieved by increasing the water use efficiency. In recent years, partial root-zone drying has become a well-established irrigation technique in wine growing areas. In a ten to fifteen days rhythm one part of the root system is irrigated while the other dries out and produces abscisic acid (ABA) a drought stress hormone. While the vegetative growth and thus labor for pruning is reduced, the generative growth remains widely unaffected. Thereby water-use efficiency can be increased by more than 40Prozent. In this sub-project the PRD-technique as well as other deficit irrigation strategies shall be applied in lychee and mango orchards and its effects on plant growth and yield shall be analyzed. Especially effects of this water-saving technology on the nutrient balance shall be considered, in order to develop an optimized fertigation strategy with respect to yield and fruit quality. As shown in preliminary studies, the nutrient supply is low in soils and fruit trees in Northern Thailand (e.g. phosphate) and even deficient for both micronutrients boron (B) and zinc (Zn). Additionally, non-adapted supply of nitrogen (mineralization, fertilization) can induce uneven flowering and fruit set. Therefore, improvement is necessary. For a better understanding of possible influence of low B and Zn supply on flowering and fruit set, mobility and retranslocation of both micronutrients shall be investigated for mango and lychee. Finally, the intended system of partial root-zone fertigation (PRF) shall guarantee an even flowering and a better yield formation under improved use of the limited resource water. As this modern technique, which requires a higher level of irrigation-technology, cannot be immediately spread among the farmers in the region, in a parallel approach potential users shall be integrated in a participative process for adaptation and development. Water transport and irrigation shall be considered, as both factors offer a tremendous potential for water saving. Local knowledge shall be integrated in the participatory process (supported by subproject A1.2, Participatory Research) in order to finally offer adapted technologies for application within PRF systems for the different conditions of farmers in the hillsides of Northern Thailand.
Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von Fachhochschule Erfurt University of Applied Sciences, Forschungsstelle für gartenbauliche Kulturpflanzen durchgeführt. Arbuskuläre Mykorrhizapilze (AMF) sind die innovativsten Biostimulanzien auf Basis von Mikroorganismen. Die symbiontischen Wurzelpilze leisten durch ihren positiven Einfluss auf Nährstoff- und Wassereffizienz, sowie auf die Resilienz von Kulturpflanzen einen erheblichen Beitrag zum Europäischen Green Deal. Da die obligat biotrophen AMF nur in Anwesenheit von Pflanzen kultiviert werden können, ist ihre Produktion aber nach wie vor zeit- und kostenaufwändig. Zur Zeit werden hierfür zwei Methoden verwendet, aus denen sehr unterschiedliche Produkte hervorgehen: Die ex vitro Produktion in Topfkulturen liefert feste, die in vitro Vermehrung an Wurzelorgankulturen flüssige Produkte. Eine Vermehrung ohne Pflanzen/Wurzelorgankulturen würde die kommerzielle Produktion erheblich vereinfachen. Das Ziel von OPT4AMF ist daher die Produktion der AMF in vitro ohne Wurzelorgankulturen. Auf der Basis neuester Erkenntnisse werden dafür Kombinationen von regulatorischen Substanzen und sogenannte Mykorrhizahelferbakterien parallel eingesetzt. Die Sporenbildung des AMF wird quantifiziert und die Sporen hinsichtlich ihrer Qualität und ihres Einflusses auf die Pflanze überprüft. Die entwickelten Verfahren zur verbesserten in vitro Vermehrung können die Produktion und somit den Einsatz der AMF erheblich kostengünstiger gestalten. Dies ermöglicht ihre zukünftige routinemäßige Anwendung für den wachsenden Markt der Pflanzenernährung in landwirtschaftlichen Produktionssystemen.
Das Projekt "Teilprojekt 1" wird vom Umweltbundesamt gefördert und von Fachhochschule Köln, Institut für Technologie- und Ressourcenmanagement in den Tropen und Subtropen (ITT) durchgeführt. Irrigated cultivation is an essential factor of food security in arid regions. Urban and industrial growth in many development countries increases the demand for water and faces agriculture with huge problems, especially in regions where water scarcity already poses the main reason for a stagnating economic growth. This can be countervailed through an efficient and sustainable usage of water in agriculture. The emphasis of research in this project is the design and testing of low-pressure irrigation systems as an option to conventional pressure systems that often have problems with the diversification of water. Water- and energy-efficient irrigation solutions should be developed for homogeneous itemized micro-areas that can be controlled individually through innovative and competitive sensor systems.
Das Projekt "Teilprojekt 2" wird vom Umweltbundesamt gefördert und von Institut für Weltwirtschaft an der Universität Kiel (IfW), Forschungsbereich 'Umwelt und natürliche Ressourcen' durchgeführt. Ziel des Projektes ist es, Informationen für die Beurteilung der 17 von der UNO formulierten sog. Sustainable Development Goals (SDGs) zu generieren. Dazu werden: (1) die heutige Nutzung der knappen Wasserressourcen durch einen neuartigen Monitoring- und Modellieransatz global hochaufgelöst und jahresaktuell beobachtbar gemacht, (2) die wirtschaftlichen Konsequenzen der derzeitigen Wasserflüsse und der Wassernutzung einschließlich des Handels mit virtuellem Wasser für die Landwirtschaft, die Wirtschaft und die Wasserwirtschaft bestimmt, (3) die Konsequenzen einer nachhaltigen und effizienten Wassernutzung auf die regionale Wohlfahrt von wasserarmen wie wassereichen Ländern simuliert und systematisch untersucht, (4) die Vulnerabilität der Landwirtschaft und der Ökosysteme durch Klimavariabilität bezüglich der Wasserverfügbarkeit bewertet, (5) regionale hot-spots nicht-nachhaltiger Wassernutzung identifiziert, um dort institutionelle Hindernisse für eine nachhaltige und effiziente Wassernutzung zu beschreiben, (6) Trade-offs zwischen der wirtschaftlichen Wassernutzung und dem Schutz von ökosystemaren Funktionen identifiziert um (7) mit Hilfe von Szenarien Lösungsoptionen für ein nachhaltiges Wassermanagement zu untersuchen. . Arbeitspakete: AP1.0: Co-Design - Co-Production - Co-Dissemination AP2.1: Globale Simulation von Wasserflüssen, Ertrag und Wassernutzungseffizienz AP2.2: Globale Simulation der Grundwasserflüsse AP2.3: Wasserbilanz von Einzugsgebieten AP2.4: Abgleich mit Beobachtungen und Validierung AP3.1: Weiterentwicklung und Kalibrierung des CGE-Models DART zu DART-WATER AP3.3: Modellierung von Knappheitsmaßen für regionale Wasserressourcen AP4.1: Nachhaltigkeitsbewertung AP4.2: Räumliche Identifikation von hot-spots und cold-spots AP4.3: Institutionelle Hindernisse AP5.1: Vulnerabilität von Wassernutzung AP5.2: Optionen für ein global effizientes und nachhaltiges Wassermanagement AP5.3: Bewertung der Ergebnisse
Das Projekt "Teilprojekt 2" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Polymerforschung Dresden e.V. durchgeführt. Derzeitig werden Polyelektrolyte zur Flockung von Abwasserströmen zwingend mit Frischwasser aufbereitet, hohe Kosten und mangelnde Effizienz der Ressource Wasser sind die Folge. Das Vorhaben adressiert mit einer kompletten Prozesskette zwei Anliegen: Es werden Mittel und Wege für eine nachhaltige Frischwassereinsparung vorgestellt, die gleichzeitig an eine Reduktion des Flockungsmittelbedarfs gekoppelt ist. Steigende Materialkosten stellen einen beträchtlichen Kostenfaktor bei der Herstellung von Papier dar. Ein wesentlicher Anteil wird durch die Frischwasserkosten und Flockungsmittel verursacht. Während 1970 noch ca. 200 m3 Wasser pro t Papier verbraucht wurden, sind es heute lediglich kleiner als 15 m3/t, einige Fabriken fertigen heute schon in geschlossenen Wasserkreisläufen. Derzeitig werden in einer Feinpapierfabrik allein zur Auflösung/Verteilung von chemischen Additiven ca. 35 % des Frischwassereinsatzes benötigt. Erste prinzipielle experimentelle Arbeiten charakterisieren die einzelnen Verfahrensschritte bei der Polyelektrolytlösung wie Quellung, Gelzerfall und Kettenstreckung mittels neuen physikalisch-chemischen Methoden. Die Einflüsse von Schergefälle, Temperatur, Verweilzeit und Elektrolytzusatz auf die Maximierung der Lösegeschwindigkeit werden im Einzelnen und in Kombination geprüft. Die Flockungseffizient dient als wesentlicher Kontrollfaktor. Im Gegensatz zum Frischwasser enthalten Prozesswässer zusätzliche Elektrolyte und organische Störsubstanzen. Für die Substitution von Frischwasser ist der Einfluss dieser Stoffe auf die Lösegeschwindigkeit und die Flockungseffizienz essenziell. An Hand von realen industriellen Kreislaufwässern wird dieser Sachverhalt geprüft und bewertet. Im Ergebnis dieser Untersuchungen wird ein Anlagen-Prototyp gebaut, mit dem im Technikum reale Stoffsysteme geprüft und beurteilt werden. Diese Modellanlage wird außerdem in Papierfabriken bei den Sortenprogrammen graphischer Papiere bzw. Verpackungspapier bewertet.
Das Projekt "Teilprojekt 7" wird vom Umweltbundesamt gefördert und von VISTA Geowissenschaftliche Fernerkundung GmbH durchgeführt. Im Rahmen der Projektes ViWA (siehe dazu die ViWA- Gesamtvorhabensbeschreibung) bestehen die Ziele des Vorhabens des Projektpartners VISTA in der Entwicklung und der Nutzung eines globalen, hochaufgelösten, fernerkundungsgestützten Monitoringsystems für Wasserflüsse, landwirtschaftlicher Erträge und Wassernutzungseffizienz. Daten der seit neuestem verfügbaren Satelliten des Copernicus Programms der EU, die sowohl mit optischen (Sentinel-2) als auch mit Mikrowellen-Sensoren (Sentinel-1) ausgestattet sind, werden dazu prozessiert, ausgewertet und in das Wasserhaushalts- und Pflanzenwachstumsmodell PROMET assimiliert. Hierzu werden umfangreiche Ensemble-Simulationen der landwirtschaftlichen Produktion einer breiten Palette von Kulturpflanzen, sowie die Wasserflüsse Verdunstung, laterale Abflüsse, Perkolation und Gerinneabfluss für landwirtschaftliche und natürliche Flächen mit PROMET (Mauser (2009, 2015) genutzt. Um die Flut an Satellitendaten, die durch eine sehr hohe räumliche Auflösung (10-20 m) und zeitliche Wiederholung (alle 2-5 Tage) gekennzeichnet sind, zu bewältigen, wird ein automatisiertes Verfahren unter Nutzung eines modellgestützten Ansatzes entwickelt und validiert. AP2 'Globales Monitoring und Simulation der Wasserflüsse, Erträge und Wassernutzungseffizienzen' ist die zentrale Aufgabe für Vista im ViWA Projekt. Dabei steuert Vista die Copernicus Komponente bei. Nach der globalen Simulation von Wasserflüssen, Ertrag und Wassernutzungseffizienz (AP2.1) wird der der Abgleich mit Beobachtungen und Validierung (AP2.4) im Fokus stehen. Eine Untersuchung der Möglichkeiten der Erdbeobachtung zum Monitoring von signifikanten Veränderungen der Nachhaltigkeit der landwirtschaftlichen Aktivität unter Nutzung von Testgebieten, die von TP4.2 als hot-spots identifiziert wurden wird durchgeführt (AP4.1). Der Stakeholderprozess (AP1) wird während des gesamten Projektzeitraums unterstützt.