API src

Found 405 results.

Der Einfluss von Bestockungsunterschieden auf den Wasserhaushalt des Waldes und seine Wasserspende an die Landschaft

Das Projekt "Der Einfluss von Bestockungsunterschieden auf den Wasserhaushalt des Waldes und seine Wasserspende an die Landschaft" wird vom Umweltbundesamt gefördert und von Bezirksregierung Koblenz, Forstdirektion, Referat Forsteinrichtung durchgeführt.

Stratosphärischer Ozonverlust im Sommer in mittleren Breiten - ein potentielles Risiko von Climate-Engineering? (CE-O3)

Das Projekt "Stratosphärischer Ozonverlust im Sommer in mittleren Breiten - ein potentielles Risiko von Climate-Engineering? (CE-O3)" wird vom Umweltbundesamt gefördert und von Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung (IEK), Stratosphäre (IEK-7) durchgeführt. In jüngster Zeit wurde ein neuer Mechanismus zum Ozonabbau über besiedelten Gebieten in der wissenschaftlichen Gemeinschaft diskutiert, der vor einer zunehmenden Gefahr von niedrigem Ozon im Sommer in mittleren Breiten in der unteren Stratosphäre warnt. Der Ozonabbau soll durch erhöhte Mengen an Wasserdampf verursacht werden, die konvektiv in die Stratosphäre injiziert werden und zu durch Chlor bedingtem katalytischen Ozonverlust führen soll durch heterogene Reaktionen an binären Sulfat-Wasser-Aerosolen (H2SO4/H2O). Diese heterogenen Reaktionen werden durch erhöhte Mengen an Wasserdampf und niedrige Temperaturen beschleunigt. Vorausgesetzt, dass die Intensität und die Frequenz des konvektiv injizierten Wasserdampfes durch den anthropogenen Klimawandel in den nächsten Jahrzehnten ansteigen, ist mit einer Erhöhung der ultravioletten Strahlung (UV) auf der Erdoberfläche über besiedelten Gebieten zu rechnen. Die Details dieses neuen Ozonverlust-Mechanismus sind jedoch noch unklar, so dass eine genaue Quantifizierung des Ozonverlustes und seiner Sensitivität auf stratosphärischen Schwefel und Wasserdampf noch nicht möglich war. Ferner wurde im Rahmen von Climate-Engineering-Methoden, die Injektion von Sulfat-Aerosol in die Stratosphäre vorgeschlagen, um die globale Erderwärmung abzuschwächen. Dies könnte zusätzlich den Ozonabbau in der unteren Stratosphäre in mittleren Breiten verstärken. Motiviert durch diese Wissenslücken in unserem gegenwärtigen Verständnis von Ozonverlustprozessen in mittleren Breiten in der unter Stratosphäre, schlagen wir im Rahmen des DFG Schwerpunktprogramms 'Climate Engineering' ein Projekt vor, dass unter Bedingungen mit sowohl erhöhtem Wasserdampf als auch erhöhtem Sulfat-Aerosol den Ozonverlust analysiert. Unser Projekt basiert auf verschiedenen Simulationen mit dem drei-dimensionalen Chemie-Transport-Modell CLaMS mit dem Ziel die Details dieses neuen Ozonverlust-Mechanismus zu verstehen und zu quantifizieren. Ferner soll der mögliche Ozonverlustes unter Klima-Engineering-Bedingungen zuverlässig simulieren werden. Ein Algorithmus, der die Abhängigkeit des Ozonverlustes in mittleren Breiten von erhöhtem stratosphärischem Schwefel beschreibt, wird der Klima-Engineering-Community als Basis für weitere ökonomische Analysen zur Verfügung gestellt. Unsere Ergebnisse werden helfen zukünftige Entscheidungen über Klima-Engineering zu bewerten, um mögliche Risiken und Kosten für die Gesellschaft zu minimieren.

GRK 2032: Grenzzonen in urbanen Wassersystemen

Das Projekt "GRK 2032: Grenzzonen in urbanen Wassersystemen" wird vom Umweltbundesamt gefördert und von Technische Universität Berlin, Institut für Bauingenieurwesen, Fachgebiet Wasserwirtschaft und Hydrosystemmodellierung durchgeführt. Wassersysteme in Großstädten werden auch zukünftig vielfältigen Belastungen hinsichtlich Wassermenge und -qualität ausgesetzt sein, die aus Klima- und demografischem Wandel, Urbanisierung und Veränderungen im Wasserverbrauch resultieren. Dies erfordert mehr denn je, dass das aktuelle wie auch das zukünftige urbane Wassermanagement auf einem soliden Systemverständnis basiert, um nachhaltig zu funktionieren. Um dazu wesentlich beizutragen, werden wir die Zusammenarbeit von Ingenieuren und Naturwissenschaftlern von TUB und IGB bei der Untersuchung wichtiger natürlicher und technischer Grenzzonen weiter verstärken und auch nationale und internationale Partner einbinden. Die Zielstellungen des Projektes sind: (i) ein weiter verbessertes Prozessverständnis zur Funktion natürlicher und technischer Grenzzonen und ihre quantitativen Auswirkungen auf den urbanen Wasserkreislauf, (ii) Vorhersage zukünftiger Veränderungen durch Integration von mechanistischem Wissen in Szenarien für entsprechende Modellierungen, (iii) das Erkennen von Schwachstellen in urbanen Wassersystemen und Entwicklung von Anpassungsmaßnahmen für ein verbessertes Management. Für die zukünftige urbane Wasserwirtschaft müssen mehr Kompartimente, Teilsysteme sowie die darin befindlichen aquatischen Lebensgemeinschaften berücksichtigt werden, da ihr Zusammenspiel das gesamte Systemverhalten erheblich beeinflussen kann. Grenzzonen spielen hier eine Schlüsselrolle und erfordern einen integrativeren Ansatz als heute üblich. Zur weiteren Intensivierung der Zusammenarbeit wurde UWI umorganisiert und vier neue gemeinsame Themengebiete herausgearbeitet: (i) Grenzzonen in urbanen Einzugsgebieten, (ii) Grenzzonen in urbanen aquatischen Ökosystemen, (iii) urbane hyporheische Grenzzonen, (iv) Grenzzonen in Abwasserkanalisationssystemen. Diese vier Themengebiete sind querverbunden durch drei gemeinsame Herangehensweisen bei Methoden, Techniken und Anwendungen: (i) verbessertes Verständnis von Interfaceprozessen in natürlichen und technischen Grenzzonen, (ii) Entwicklung von Modellkonzepten und Prognosewerkzeugen, (iii) Anwendung des neuen Wissens für die urbane Wasserwirtschaft. Aufgrund von Veränderungen bei den beteiligten Forschern werden wir zukünftig einen stärkeren Fokus auf urbane Ökohydrologie und Wasserqualitätsmodellierung legen. Wir werden das Qualifizierungsprogramm für die Promovierenden weiterentwickeln, um die Promotionsdauern zu verkürzen und Erkenntnisse aus der Grundlagenforschung in die praktische Wasserwirtschaft zu überführen. Folgende Maßnahmen möchten wir dabei herausstellen: die neu entwickelten Grundlagenkurse, die systematische Umsetzung der interdisziplinären Betreuung für alle Promovierenden und die Etablierung eines Forschungskollegiums der Promovierenden.

Teilprojekt: Wechselbeziehungen von extremen Hochwasserereignissen

Das Projekt "Teilprojekt: Wechselbeziehungen von extremen Hochwasserereignissen" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung durchgeführt. Das beantragte Forschungsvorhaben hat die Untersuchung von großskaligen Hochwasserereignissen zum Ziel. Ein Grundproblem hierbei ist, dass herkömmliche Risikoabschätzungen mittels eindimensionalen Extremwertstatistiken (d.h. gemessene Abflüsse an einem Pegel), die integrale Antwort eines Einzugsgebietes sind, wobei multidimensionale Hochwasserursachen in den Oberstrom gelegenen Teileinzugsgebieten nicht berücksichtigt werden. Durch verschiedene raum-zeitliche Niederschlagsereignisse und die daraus resultierenden Abflüsse in diesen Teileinzugsgebieten ergibt sich somit eine Vielzahl an Kombinationsmöglichkeiten, die Unterstrom zu einem extremen Hochwasser führen können. Ein Hauptanliegen des beantragten Forschungsvorhabens ist es, ein besseres Systemverständnis über solche verschiedenen hochwasserauslösenden Mechanismen zu gewinnen, eine Methodik zu entwickeln, um diese zu simulieren und deren Häufigkeit abzuschätzen. Ein besseres raum-zeit Verständnis über solche hochwasserauslösenden Mechanismen liefert bessere Informationen zu Extremereignissen und deren Wiederkehrzeiten. Des Weiteren können so auch Auswirkungen des Klimawandels untersucht werden. Das Wissen über synchrones und asynchrones Auftreten von Hochwassern im Oberstrom gelegenen Teileinzugsgebieten kann auch zu einem besseren Hochwasserrisikomanagement beitragen.

Dynamik des postglazialen Ökosystems südwestliche Ostsee - Untersuchung der Wechselwirkung zwischen Umwelt und Biosphäre anhand organisch-wandiger und kieseliger Mikrofossilien

Das Projekt "Dynamik des postglazialen Ökosystems südwestliche Ostsee - Untersuchung der Wechselwirkung zwischen Umwelt und Biosphäre anhand organisch-wandiger und kieseliger Mikrofossilien" wird vom Umweltbundesamt gefördert und von Universität Kiel, GEOMAR Forschungszentrum für marine Geowissenschaften durchgeführt. Die südwestliche Ostsee ist die Schlüsselregion für den Austausch von niedrigsalinem Oberflächenwasser und höhersalinem, sauerstoffreichem Bodenwasser zwischen der eigentlichen bzw. zentralen Ostsee und dem Skagerrak/Kattegat bzw. der Nordsee. Dieses System wird durch die Richtung und Intensität der Winde bestimmt und ist damit letztendlich durch das zyklonale Wettersystem des Nordatlantiks und die Golfstromaktivität kontrolliert. Die wesentliche Intention des beantragten Projektes ist die Untersuchung der Auswirkungen von holozänen Klimavariationen auf das Ökosystem Ostsee, welche sowohl durch die Sedimentabfolge als auch durch den Fossilinhalt reflektiert werden. Hierzu ist die Untersuchung der durch unterschiedliche Wind-/ Sturm- und Niederschlagsintensität hervorgerufenen Veränderungen der Salinität, der Nährstoffflüsse und des Sauerstoffgehalts der südwestlichen Ostsee vorgesehen. Diese können anhand organisch-wandiger und kieseliger Mikrofossilien, deren morphologischen Variationen, Arten-Sukzession und der chemischen Veränderungen bei der Einbettung nachgewiesen werden. Ziel dieses Projektes ist es, die Wechselwirkung zwischen Umwelt und Phyto-/Zooplankton im Ablauf der holozänen Entwicklungsgeschichte der südwestlichen Ostsee zu erfassen. Die zu erwartenden Ergebnisse sind Grundlagen zur Differenzierung natürlicher und anthropogener Umweltveränderungen sowie Datenbasis zur Modellierung zukünftiger Umweltveränderungen durch Klimaschwankungen.

Computergestützte Gewässermodellierung - Analyse der hydraulischen Auswirkungen einer Deichrückverlegung

Das Projekt "Computergestützte Gewässermodellierung - Analyse der hydraulischen Auswirkungen einer Deichrückverlegung" wird vom Umweltbundesamt gefördert und von Bundesanstalt für Wasserbau durchgeführt. Bei Lenzen an der Elbe zeigt sich, dass numerische Modelluntersuchungen vor Baubeginn präzise die später in der Natur eintretenden Ereignisse vorhersagen können. Seit den 1990er Jahren wurde an der Elbe bei Lenzen durch das Land Brandenburg eine Deichrückverlegung geplant und realisiert. Die Bundesanstalt für Wasserbau hat mit hydraulisch-morphologischen Modelluntersuchungen des Oberflächenabflusses die Umsetzung des Projektes unterstützt. Bei dieser Deichrückverlegung in der Lenzen-Wustrower Elbeniederung westlich von Wittenberge sollten nicht nur der Verlauf des erhöhten Hochwasserdeiches der Elbe verändert und die Flutrinnen im Vorland verkleinert, sondern auch die Lage und Struktur der Auwaldpflanzungen im Rückdeichungsgebiet modifiziert werden. Weiterhin sah die Planung vor, in den an das Deichrückverlegungsgebiet angrenzenden Lütkenwischer und Mödlicher Werder zusätzliche Vorlandanpflanzungen vorzusehen. Vor Projektbeginn wurde die BAW vom Projektträger, dem Bundesamt für Naturschutz (BfN), im November 2006 um Amtshilfe bei der Untersuchung der hydraulischen Auswirkungen dieser Maßnahme gebeten. Die BAW-Wissenschaftler nutzten für ihre Untersuchungen das hydronumerische Verfahren UnTRIM und erstellten ein zweidimensionales Modell des Untersuchungsgebietes. Nach Fertigstellung der Deichrückverlegung Ende 2009 konnten dann die in den Modellrechnungen prognostizierten Werte für die Veränderung der Wasserspiegel und der in das Deichrückverlegungsgebiet ein- und ausströmenden Wassermengen anhand von vergleichenden Messungen - Wasserspiegelfixierungen, Durchflussmessungen - während der Elbe-Hochwässer im März 2010, Oktober 2010 und Januar 2011 validiert werden: 'Es zeigte sich, dass wir mit dem Computermodell sehr genau die tatsächlich in der Natur eintretenden hydraulischen Verhältnisse im Vorhinein beschreiben konnten', berichtet Dipl.-Ing. Matthias Alexy, Mitarbeiter in der Abteilung Wasserbau im Binnenbereich der BAW.

Ingenieurhydrologische Untersuchung der oberirdischen Abflussverhaeltnisse im Hinblick auf Grundwasseranreicherungen im Hessischen Ried

Das Projekt "Ingenieurhydrologische Untersuchung der oberirdischen Abflussverhaeltnisse im Hinblick auf Grundwasseranreicherungen im Hessischen Ried" wird vom Umweltbundesamt gefördert und von Technische Hochschule Darmstadt, Institut für Wasserbau, Fachgebiet Ingenieurhydrologie und Hydraulik durchgeführt. Zur Verbesserung der Grundwasserverhaeltnisse im Hessischen Ried sind verschiedene Massnahmen technisch moeglich und teilweise in Ansaetzen verwirklicht. Ziel dieser Untersuchung ist, die fuer wirtschaftlich-technische Nutzen-Kosten-Vergleiche und -Optimierungen notwendigen hydrologischen Grundlagen zu erarbeiten. Dazu sind zunaechst wahrscheinlichkeitstheoretisch belegte Aussagen ueber die insgesamt in dem Odenwald-Vorfluter zur Verfuegung stehenden Wassermengen zu erarbeiten. Dann soll ein Niederschlag-Abfluss-Modell erstellt werden, das unter Beruecksichtigung ortsvariabler qualitaetsbedingter Mindestabfluesse und Entnahmen fuer die Versickerung die Simulation des Abflusses und der Beaufschlagung der Versickerungseinrichtungen fuer verschiedene Systemvarianten gestattet. Auf diese Weise koennen verschiedene Standorte, Versickerungssysteme und Betriebsweisen bezueglich ihrer Effektivitaet und Wirtschaftlichkeit verglichen und langfristige Aussagenueber die Absolutwerte der Grundwasseranreicherungsmengen erhalten werden.

Erzeugung von Aufstiegskorridoren im Unterwasser von Querbauwerken an Bundeswasserstraßen

Das Projekt "Erzeugung von Aufstiegskorridoren im Unterwasser von Querbauwerken an Bundeswasserstraßen" wird vom Umweltbundesamt gefördert und von Bundesanstalt für Gewässerkunde durchgeführt. Im Rahmen des Projekts wird die Auswirkung verschiedener Dotationswassermengen auf die Ausbildung einer signifikanten Leitströmung und somit geeigneten Aufstiegskorridoren von FAA im Unterwasser von Querbauwerken untersucht. Die mit den Strömungsmustern verbundenen hydraulischen Parameter (Geschwindigkeitsgradienten, Turbulenz) werden für unterschiedliche geometrisch-hydraulische Konstellationen (Einstiegsdimensionen, Fließgeschwindigkeiten, Dotationswassermengen) untersucht und mit den Fischbewegungen im Nahbereich der Einstiege verschnitten. Aus den Ergebnissen können die für die Erzeugung von signifikanten Leitströmung und Aufstiegskorridoren optimalen Dotationswassermengen entwickelt werden.

Sustainable Water Resources Management in the Yanqi Basin, Sinkiang, China

Das Projekt "Sustainable Water Resources Management in the Yanqi Basin, Sinkiang, China" wird vom Umweltbundesamt gefördert und von Eidgenössische Technische Hochschule Zürich, Institut für Verkehrsplanung und Transportsysteme durchgeführt. Irrigation in the Yanqi Basin, Sinkiang, China has led to water table rise and soil salination. A model is used to assess management options. These include more irrigation with groundwater, water saving irrigation techniques and others. The model relies on input data from remote sensing.The Yanqi Basin is located in the north-western Chinese province of Xinjiang.This agriculturally highly productive region is heavily irrigated with water drawn from the Kaidu River. The Kaidu River itself is mainly fed by snow and glacier melt from the Tian Mountain surrounding the basin. A very poor drainage system and an overexploitation of surface water have lead to a series of environmental problems: 1. Seepage water under irrigated fields has raised the groundwater table during the last years, causing strongly increased groundwater evaporation. The salt dissolved in the groundwater accumulates at the soil surface as the groundwater evaporates. This soil salinization leads to degradation of vegetation as well as to a loss of arable farmland. 2. The runoff from the Bostan Lake to the downstream Corridor is limited since large amount of water is used for irrigation in the Yanqi Basin. Nowadays, the runoff is maintained by pumping water from the lake to the river. The environmental and ecological system is facing a serious threat.In order to improve the situation in the Yanqi Basin, a jointly funded cooperation has been set up by the Institute of Environmental Engineering, Swiss Federal Institute of Technology (ETH) , China Institute of Geological and Environmental Monitoring (CIGEM) and Xinjiang Agricultural University. The situation could in principle be improved by using groundwater for irrigation, thus lowering the groundwater table and saving unproductive evaporation. However, this is associated with higher cost as groundwater has to be pumped. The major decision variable to steer the system into a desirable state is thus the ratio of irrigation water pumped from the aquifer and irrigation water drawn from the river. The basis to evaluate the ideal ratio between river and groundwater - applied to irrigation - will be a groundwater model combined with models describing the processes of the unsaturated zone. The project will focus on the following aspects of research: (...)

Durchlässigkeits- und Fluxmessungen in porösen Aquifern

Das Projekt "Durchlässigkeits- und Fluxmessungen in porösen Aquifern" wird vom Umweltbundesamt gefördert und von Technische Universität Graz, Institut für Wasserbau und Wasserwirtschaft durchgeführt. Die Kenntnis von hydraulischen Durchlässigkeiten wie auch von Wasser- und Verunreinigungsfluxen in porösen Grundwasserleitern ist von großer Bedeutung in vielen hydrogeologischen Belangen wie z.B. Beregnung, Versickerung, quantitative und qualitative Wasserwirtschaft, Risikoabschätzung bei Verunreinigungen, usw. Derzeit ist keine theoretisch gut fundierte Methode zur Messung horizontaler und vertikaler Durchlässigkeiten in der gesättigten Zone verfügbar und Methoden zur Messung von gesättigten Durchlässigkeiten in der ungesättigten Zone sind beschränkt, zeitaufwendig und fallweise unzuverlässig. Außerdem ist gegenwärtig keine Methode zur direkten Messung vertikaler Wasser- und Verunreinigunsfluxe in porösen Grundwasserleitern oder am Übergang zwischen Grund- und Oberflächengewässern bekannt. Das dargelegte Projekt basiert auf der Entwicklung einer exakten Lösung des Strömungsfeldes für das Ein- oder Auspumpen von Wasser durch eine beliebige Anzahl von unterschiedlichen Filterabschnitten entlang eines ansonsten undurchlässigen Filterrohres bei verschiedenen Randbedingungen. Diese Lösung erlaubt die Ermittlung von Formfaktoren der Strömungsfelder, die zur Berechnung hydraulischer Durchlässigkeiten aus Einpressversuchen nötig sind. Die derzeit angewendeten Formeln können mit der genauen Lösung verglichen und der Einfluss anisotroper Durchlässigkeiten kann miteinbezogen werden. Eine doppelfiltrige Rammsonde wird zur bohrlochfreien Messung horizontaler und vertikaler Durchlässigkeiten in verschiedenen Tiefen unter dem Grundwasserspiegel vogeschlagen. Der Test besteht aus zwei Teilen: (1) Einpressen durch beide Filterabschnitte und (2) Zirkulation zwischen den Filtern. Die gleiche Sondenkonfiguration wird für die direkte und gleichzeitige Messung lokaler, kumulativer, vertikaler Wasser- und Verunreinigungsfluxe nach dem passiven Fluxmeter-Prinzip vorgeschlagen. Ohne zu pumpen werden die beiden Filterabschnitte hiebei durch eine mit Tracern geladene Filtersäule hydraulisch verbunden. Der vertikale Gradient im Testbereich treibt einen Fluss durch den Filter, der kontinuierlich Tracer auswäscht und Verunreinigungen im Filter hinterlässt. Aus der Analyse des Filtermaterials zur Bestimmung der Tracer- und Verunreinigungsmengen nach dem Test werden mit Kenntnis des Strömungsfeldes um die Sonde die Wasser- und Verunreinigungsfluxe bestimmt. Eine kegelförmige, doppelfiltrige Rammsonde wird weiters vorgeschlagen, um gesättigte Durchlässigkeiten sowohl über als auch unter dem Grundwasserspiegel direkt messen zu können. Die Methode basiert auf stationärer, gesättigt/ungesättigt gekoppelter Strömung aus kugelförmigen Hohlräumen. Die Möglichkeit einer transienten einfiltrigen Methode und einer Methode zur Messung anisotroper Durchlässigkeiten wird beurteilt. Die vorgeschlagenen theoretischen Konzepte werden ausgearbeitet und anhand von Laborversuchen überprüft.

1 2 3 4 539 40 41