Das übergeordnete Ziel des Forschungsprojekts Technologielösungen für hocheffiziente zero-emission H2-Motoren für KWK-Anwendungen (CH2P) ist es, Kraft-Wärme-Kopplungsanlagen (KWK-Anlagen) hundertprozentig mit Wasserstoff zu betreiben und dabei wirtschaftlich konkurrenzfähig zu Erdgas betriebenen Anlagen zu sein. Die Technologie befindet sich derzeit auf einem TRL von 3-4 und soll durch die Projektarbeiten mit dem Fokus auf unterschiedlichen Teilbereichen der Motoren auf ein TRL von 6-7 angehoben werden. Einer wichtiger Baustein innerhalb des Projektes ist die Entwicklung keramischer Kolbenringe. Kolbenringe sind hochbelastete Bauteile eines Verbrennungsmotors, denen die Aufgabe der Abdichtung des Arbeitsraumes zufällt. Die hohe Flammgeschwindigkeit bei der Verbrennung von H2 führt zu hohen Temperaturen an der Zylinderwand und im Bereich der Kolbenringe (Tmax ca. 250 - 300 °C). Dadurch kommt es zu einer Austrocknung des Ölfilms an der Zylinderwand und zu einem hohen Verschleiß von konventionellen, metallischen Kolbenringen. Durch den Ansatz faserverstärkte Keramiken - speziell C/C-SiC - soll die Abdichtung des Brennraums verbessert und eine deutlich höhere Verschleißbeständigkeit erzielt werden. Ungebundener amorpher Kohlenstoff innerhalb des Werkstoffes wirkt sich zudem positiv als schmierfähiger Feststoff auf das Gleitverhalten aus. Durch die so erzielte verminderte Reibung wird erneut der Verschleiß reduziert. Die so beschriebenen Werkstoffeigenschaften sollen zusätzlich mit einer Faserverstärkung kombiniert werden, welche eine elastische Ringweitung und -kompression erlaubt. Um die Herstellung solcher keramischen Ringe zu erreichen, sind die im Arbeitsplan beschrieben Aktivitäten notwendig.
Starkes Nachtleuchten tritt in der oberen Mesosphäre und der unteren Thermosphäre (MUT) der oberen Erdatmosphäre auf und enthält eine Emissionsschicht, die von angeregtem Stickstoffdioxid (NO2) hervorgerufen wird. Anregungsmechanismen, die zum angeregten Stickstoffdioxid in der MUT und Stratosphäre beitragen, stehen im Mittelpunkt dieses Projekts, da sie nicht gut verstanden sind. Stickstoffdioxid ist auch in der Stratosphäre wichtig, da es zum Ozonabbau beiträgt. Die Photochemie von reaktiven Stickstoffverbindungen (N, NO, NO2) wird in der MUT und der Stratosphäre auf der Grundlage der jetzt verfügbaren globalen Emissionsmessungen analysiert. Für diese Aufgabe wird das MAC-Modell (Multiple Airglow Chemie) erweitert, um Reaktionen mit reaktiven Sauerstoff- und Wasserstoffverbindungen (O(3P), O(1D), O3 und H, OH, HO2) zu berücksichtigen. Berechnungen mittels der aktuellen MAC Version ermöglichen die Berücksichtigung von reaktiven Sauerstoff- und Wasserstoff-verbindungen. Diese Berechnungen wurden auf der Grundlage von in situ Raketenmessungen in der MUT validiert. In Anbetracht früherer Studien zur Untersuchung der Stickstoffdioxid-emissionen wird die Berechnung der Konzentrationen der wichtigsten Repräsentanten von reaktiven Sauerstoff-, Wasserstoff- und Stickstoffverbindungen in der Stratosphäre unter Verwendung der erweiterten Version des MAC-Modells auf der Grundlage neuer Messungen durchgeführt. Reaktionen, die in der erweiterten Version des MAC-Modells berücksichtigt werden, können in ein photochemisches Modul eines GCM (general circulation model) übernommen werden.