API src

Found 395 results.

Related terms

Wasserhaushalt Hamburg

Rasterkarten zum Wasserhaushalt, bzw. zur Grundwasserneubildung, berechnet mit mGROWA (FZ Jülich, 2021). Im Webdienst werden 6 Layer gezeigt: - Grundwasserneubildung des hydrolog. Jahres 2019 [Min] - Grundwasserneubildung des hydrolog. Jahres 2008 [Max] - mittlere jährliche Grundwasserneubildung (1991 - 2019) - mittlere jährliche Grundwasserneubildung (1961 - 1990, Klimareferenzperiode) - Direktabfluss Mittlere Rate (1991-2020) - Tatsächliche Verdunstung Mittlere Rate (1991-2020) Beschreibung: Etwa ein Viertel des Niederschlags gelangt in Hamburg über den Boden ins Grundwasser und bildet damit einen erheblichen Anteil unserer täglichen Wasserversorgung und ist ökologische Grundlage für die Vegetation und den Boden als Wasserspeicher. Der übrige Niederschlag wird im Wesentlichen durch Verdunstung und Abfluss ins Sielnetz und in die Gewässer bestimmt. Aktuell werden pro Jahr bei durchschnittlichen Niederschlägen (etwa 770 mm pro Jahr) 136 Millionen Kubikmeter (m³) Grundwasser auf Hamburger Gebiet neu gebildet. Im Trockenjahr 2019 waren es nur 75 Millionen m³, was sich in stark fallenden Grundwasserständen, fehlender Bodenfeuchte und sich durch teilweises Trockenfallen von Gewässern für Tier und Pflanze als Trockenstress auswirkte. Auf die Beobachtung der Entwicklung der Grundwasserneubildung kommt deshalb in Zeiten des Klimawandels besondere Bedeutung zu. Neben klimatischen Veränderungen ist deshalb ein ausgefeiltes Flächen- und Ressourcenmanagement nötig, um der wachsenden urbanen Versiegelung und dem steigenden Wasserverbrauch mit Strategien und Maßnahmen hin zu einem naturnahen Wasserhaushalt entgegenzuwirken. Datengrundlagen und Methodik: Grundlage für die Berechnung und Darstellung von flächen- und zeitlich differenzierten Rasterkarten der verschiedenen Wasserhaushaltskomponenten ist das rasterzellenbasierte Wasserhaushaltsmodell mGROWA des Forschungszentrums Jülich. In mGROWA wurden zunächst standortbezogen auf Basis der jeweiligen Niederschlagsmengen und klimatischen Einflussgrößen die tatsächliche Verdunstung und der Gesamtabfluss in täglicher Auflösung mit einer Zellengröße von 25 x 25 m berechnet. Die berechneten Tageswerte wurden nachfolgend auf langjährig, jährliche und monatliche Zeiträume aggregiert. Danach wurde der Gesamtabfluss auf Basis der Standorteigenschaften in verschiedene Abflusskomponenten aufgeteilt. In der Datenzusammenstellung sind neben den Rasterkarten der potentiellen und tatsächlichen Verdunstung, des Gesamtabflusses und der Standorteigenschaften die Rasterkarten der Abflusskomponenten urbaner Direktabfluss, Sickerwasserrate, Zwischen- und Dränageabflüsse, sowie letztendlich die Grundwasserneubildung enthalten. Im Folgenden dargestellt werden auszugsweise die Karten zum mittleren langjährigen Mittel 1961-1990 (Klimareferenzperiode) und 1991-2019, das Nassjahr 2008 mit sehr großer und das Trockenjahr 2019 mit sehr geringer Neubildung.

Klimaerlebnisbaum - Ludwigkai - Tilia

Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.An der Station am Ludwigkai sind mehrere Linden der Art Tilia mit Sensoren versehen. Die Daten eines dieser Bäume stehen in diesem Datensatz in der oben beschriebenen, verarbeiteten Form zur Verfügung.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 13.11.2024 13 Uhr](https://opendata.smartandpublic.eu/datasets/a879dea4-b157-4cac-9144-ce3d3e65e862?locale=en), [ab 13.11.2024 14 Uhr](https://opendata.smartandpublic.eu/datasets/338fe900-beac-4406-bdb8-b32c0e058cdb?locale=en)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen.Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)

Screening genetischer Ressourcen von Kichererbse (Cicer arietinum) und Saat-Platterbse (Lathyrus sativus): Anpassung an den Klimawandel in Deutschland mit alternativen Leguminosen für die menschliche Ernährung, Screening genetischer Ressourcen von Kichererbse (Cicer arietinum) und Saat-Platterbse (Lathyrus sativus): Anpassung an den Klimawandel in Deutschland mit alternativen Leguminosen für die menschliche Ernährung

Übergeordnetes Ziel ist es, genetische Ressourcen von Kichererbse (Cicer arietinum) und Saat-Platterbse (Lathyrus sativus) auf ihre Eignung für den Anbau in Deutschland zu prüfen, um das Kulturartenspektrum für konventionell und ökologisch wirtschaftende Landwirte zu erweitern. Beide Arten sind sehr gut an trockene und warme Klimabedingungen angepasst. Damit stellen sie vielversprechende Alternativen zu verbreitet angebauten Leguminosen wie Erbsen oder Ackerbohnen dar, die aufgrund des Klimawandels zunehmend geringere Ertragsstabilität aufweisen. Im Projekt werden daher für beide Kulturen genetische Ressourcen identifiziert, auf die Eignung für den heimischen Anbau geprüft und selektiert, um interessierten Landwirten geeignete Genotypen zur Verfügung zu stellen. Dabei zielt die Selektion von Kichererbsen auf Standorte mit hohen Wärmesummen ab, während die Saat-Platterbse auch für kühlere Standorte mit leichten Böden geeignet ist, auf denen aufgrund des Klimawandels in Zukunft häufig mit Trockenstress zu rechnen ist. Somit werden im Projekt möglichst umfassend die verschiedenen Klimaregionen in Deutschland abgebildet.

Klimaerlebnisbaum - Zu Rheinstraße - Tilia

Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.An der Station in der Zu Rheinstraße sind mehrere Bäume der Art Robinia und Linde Tilia mit Sensoren versehen. Die Daten einer der Linden stehen in diesem Datensatz in der oben beschriebenen, verarbeiteten Form zur Verfügung.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 13.11.2024 13 Uhr](https://opendata.smartandpublic.eu/datasets/74e7c788-0882-4ffe-b0dc-74cb0e0fb782), [ab 13.11.2024 14 Uhr](https://opendata.smartandpublic.eu/datasets/b976e56e-9fbf-42dd-86db-1677c2a5dc91?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen.Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)

Klimaerlebnisbaum - Landesgartenschaugelände - Tilia

Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.An der Station auf dem Landesgartenschaugelände sind mehrere Linden der Art Tilia mit Sensoren versehen. Die Daten eines dieser Bäume stehen in diesem Datensatz in der oben beschriebenen, verarbeiteten Form zur Verfügung.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 14.04.2025 12 Uhr](https://opendata.smartandpublic.eu/datasets/2525e376-990b-45cb-90b3-71a2e5ae3cbc?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub), [ab 14.04.2025 13 Uhr](https://opendata.smartandpublic.eu/datasets/7507c65c-a1b2-446d-82e1-fcc14a793552?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen.Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)

Klimaerlebnisbaum - Rottendorf - Robinia

Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.An der Station in Rottendorf sind mehrere Bäume der Art Robinia mit Sensoren versehen. Die Daten eines dieser Bäume stehen in diesem Datensatz in der oben beschriebenen, verarbeiteten Form zur Verfügung.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 13.11.2024 13 Uhr](https://opendata.smartandpublic.eu/datasets/9b901002-a1fd-47b0-89d4-eb12f9117233?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub), [ab 23.11.2024 14 Uhr](https://opendata.smartandpublic.eu/datasets/713101d0-8137-4da5-9010-8281fadd8bff?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen.Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)

Klimaerlebnisbaum - Zu Rheinstraße - Robinia

Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.An der Station in der Zu Rheinstraße sind mehrere Bäume der Art Robinia und Linde Tilia mit Sensoren versehen. Die Daten einer der Robinien stehen in diesem Datensatz in der oben beschriebenen, verarbeiteten Form zur Verfügung.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 13.11.2024 21 Uhr](https://opendata.smartandpublic.eu/datasets/d1f68fc3-c76d-4147-b01e-dfe490ab6331?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub), [ab 13.11.2024 22 Uhr](https://opendata.smartandpublic.eu/datasets/5dc3648a-66fd-4310-accf-7256db111d5c?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen.Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)

Tierische Schaderreger: Großer Waldgärtner

In den letzten Jahren wurden zunehmend Großkiefern als Gestaltungselement gepflanzt. Die Verwendung von Großkiefern im Stadtgrün ist nicht unproblematisch, da sie besonders während der ersten Standjahre durch den Befall mit Borkenkäfern gefährdet sind und absterben können. Vor allem Neupflanzungen in der Nähe von Altbäumen und in Waldrandlagen sind häufig von einem Befall betroffen. Ebenso hat der Witterungsverlauf der letzten Jahre die Entwicklung von Borkenkäfern äußerst begünstigt. Sie treten in bzw. nach warmen / heißen Trockenphasen/-jahren bevorzugt auf. Flugverlauf Lebensweise Erkennungsmerkmale Maßnahmen Am Standort Köpenick, der stark von Kiefern geprägt ist, konnte in dem Jahr 2023 kaum ein Waldgärtner nachgewiesen werden. Aufgrund der Witterungsbedingungen fand der Flug erst Ende April statt. Käfer konnten in der KW 17 bis KW 19 gefangen werden. Die hohen Fangzahlen der vergangenen Jahre konnten nicht bestätigt werden. Im Jahr 2024 konnte lediglich ein Waldgärtner in der KW 24 gefangen werden. Besonders anfällig sind Bäume die verstärkt unter Trockenheit leiden bzw. sich noch im Umpflanzschock befinden. Hier bohren sich die Käfer zur Paarung und Eiablage sowohl in die Stämme als auch in die Astansatzstellen im unteren Kronenbereich ein und beeinträchtigen den Wasser- und Assimilatstrom. In der Folge kann es, je nach Stärke des Befalls, zu Welkeerscheinungen in der Krone aber auch zum Absterben des gesamten Gehölzes kommen. Von einem Befall können frisch gepflanzte Kiefern-Großbäume, kleinere Kiefernbüsche, geschwächte oder absterbende Bäume betroffen sein. Kronenverlichtungen und -missbildungen, schüttere und büschelige Triebe sowie am Boden liegende Absprünge sind die Merkmale eines Befalls. Zunächst reagiert der Baum mit Zuwachsverlusten und Verbräunungen, später dann mit partiellen Absterbeerscheinungen bis hin zum kompletten Absterben. Hinweise für einen beginnenden Befall können neben den Kronensymptomen auch Befallsmerkmale am Stamm sein. Einbohrlöcher, Harztrichter und -fluss, Bohrmehl, abblätternde Rinde oder Spechthiebe weisen auf einen Befall mit Borkenkäfern hin. Eine direkte Bekämpfung der Käfer ist nicht möglich. Daher sind eine optimale Wasser- und Nährstoffversorgung und der richtige Standort die besten Maßnahmen im Sinne des vorbeugenden Pflanzenschutzes. Folgende Faktoren sollten möglichst vermieden werden: Pflanzungen in einem Altbestand oder in die Nähe von Altbäumen dergleichen Gattung, besonders bei vorhandenem Befall Nachpflanzungen in einer bereits befallenen Neupflanzung schlechter Zustand der Gehölze: zu groß, überständig, von geringer Qualität, unzureichende Wurzeln unvorbereitete Standorte: Verdichtungen, Vernässungen Pflanzstress: Pflanzung zu ungünstigen Zeiten, zu tiefe Pflanzung Wasserstress: zu wenig Wasser => Austrocknung der Pflanzen vor oder nach der Pflanzung zu viel Wasser => zu wenig Bodenluft, die Folge sind absterbende Wurzeln Konkurrenz durch Unkrautbesatz Beschädigungen am Stammgrund oder an der Wurzel durch Maschinen oder Wühlmäuse Stammschutz Um der Besiedlung von Borkenkäfern entgegenzuwirken, kann bei Neuanlagen und Neupflanzungen durch gewerbliche Betriebe (Garten- und Landschaftsbau, gärtnerische Dienstleitungen) eine Stammstreichung mit einem zugelassenen Insektizid durchgeführt werden. Aktuell (April 2024) stehen dafür nur die Präparate Karate Zeon, ZulassungsNr. 024675-00 und Kusti ZulassungsNr. 024675-60 mit dem Wirkstoff Lambda-Cyhalothrin zur Verfügung. Eine Genehmigung nach § 17 PflSchG (Pflanzenschutzgesetz) für die Anwendung im Streichverfahren liegt vor. (§ 17 PflSchG beinhaltet die Anwendung von Pflanzenschutzmitteln auf Flächen, die für die Allgemeinheit bestimmt sind.) Vor und bei der Anwendung sind die Regelungen des Natur-, Landschafts- und Wasserschutzes zu beachten bzw. entsprechende Genehmigungen der zuständigen Behörden einzuholen; ebenso sind die Gebrauchsanleitung und die Anwendungsbestimmungen zu beachten. Soll darüber hinaus ein Stammschutz mit Baumfarbe erfolgen, dann ist die Pflanzenschutzanwendung im Streichverfahren erst nach dem Auftragen der Stammfarbe durchzuführen. Die zur Verfügung stehenden Pflanzenschutzmittel haben keine Zulassung im Haus- und Kleingartenbereich . Treten in diesem Bereich starke Schäden (u.a. Absterben einzelner Äste oder der Krone, beim Ablösen der Rinde, zahlreiche Ein- und Ausbohrlöchern im Stamm- und unteren Kronenbereich) auf, so ist keine erfolgreiche Bekämpfung oder Wiedererholung des Baumes mehr möglich. Bei entsprechenden Problemen im Haus- und Kleingartenbereich bitte unsere Beratung in Anspruch nehmen. Grundsätzlich ist nach der Pflanzung auf eine ausreichende Wasserversorgung zu achten. Trockene und geschwächte Gehölze werden zuerst befallen.

Dezentrales IoT-System zur Steuerung von Aktorik durch Sensorik im Agrarsektor

Zielsetzung: Das Vorhaben hat das Ziel, ein innovatives, dezentrales IoT-System zu entwickeln, das die Bewässerung und Agrarprozesse im Weinbau sowie in anderen landwirtschaftlichen Betrieben revolutionieren soll. Mithilfe hochmoderner Sensorik und Künstlicher Intelligenz (KI) soll der Trockenstress von Pflanzen in Echtzeit überwacht werden , um datenbasierte, intelligente Bewässerungsentscheidungen zu treffen. Dadurch soll der Wasserverbrauch signifikant reduziert werden - Schätzungen zufolge um bis zu 30 %, was Millionen von Litern Wasser jährlich entspricht. Dies trägt nicht nur zur Schonung wertvoller Süßwasserressourcen bei, sondern schützt auch die Grundwasserqualität und unterstützt die nachhaltige Nutzung von Ressourcen. Der Anlass für das Projekt liegt in den zunehmenden Herausforderungen, vor denen die Landwirtschaft angesichts des Klimawandels steht. Längere Trockenperioden, steigende Temperaturen und die globale Wasserknappheit setzen traditionelle Bewässerungsmethoden unter Druck, die oft ineffizient und verschwenderisch sind. Laut dem Weltwasserbericht der Vereinten Nationen von 2021 werden etwa 69 % des weltweit verfügbaren Süßwassers in der Landwirtschaft genutzt, wobei ineffiziente Praktiken wie Großflächenberegnung erhebliche Verluste verursachen. Besonders in Weinbauregionen führt die übermäßige Nutzung von Wasser zu ökologischen und wirtschaftlichen Problemen. Das Vorhaben möchte diese Problematik adressieren, indem es innovative Technologien einsetzt, die den Wasserverbrauch optimieren und die landwirtschaftliche Produktivität erhöhen. Darüber hinaus verfolgt das Projekt einen umfassenden Ansatz: Neben der Entwicklung und Erprobung von Sensorik und Hardware wird eine KI-basierte Bewässerungssteuerung entwickelt , die in realen landwirtschaftlichen Betrieben getestet wird. Das IoT-System ermöglicht eine präzise und ressourcenschonende Bewässerung in der Landwirtschaft. Dazu werden Sensoren zur Messung von Bodenfeuchtigkeit, Temperatur, Luftfeuchtigkeit und Pflanzenzustand in einer Pilotanlage installiert. Die erfassten Daten werden über eine drahtlose Infrastruktur in eine Cloud übertragen, wo sie verarbeitet und analysiert werden. Eine KI wertet die Daten aus, erkennt Zusammenhänge zwischen den Messwerten und dem Trockenstress der Pflanzen und steuert die Bewässerung automatisch.

Nutzung von Genomvariation zur Optimierung der stomatären Eigenschaften und zur Schaffung von klimaresistentem und nahrhaftem Reis

Steigende Temperaturen und Wassermangel verringern die Ernteerträge und die Qualität der Ernte in vielen landwirtschaftlichen Regionen. Dieses Problem wird sich durch den Klimawandel voraussichtlich noch verstärken. Wir werden uns in diesem Projekt auf Reis, eine er die wichtigste menschliche Nahrungspflanzen, konzentrieren. Der Anbau von Reis ist wasserintensiv, und vom Klimawandel besonders betroffen. Wir wollen mehrere natürliche genetische Variationen identifizieren und testen, die bereits einige Reis-Landrassen in die Lage versetzen, unter warmen und trockenen Klimabedingungen ausreichend Saatgut zu produzieren. Das Projekt hat die Verbesserung der Klimaresistenz von Nutzpflanzen zum Ziel. Ein Fokus liegt dabei auf der Rolle der Spaltöffnungen. Diese regulierbaren Poren steuern den Wasserverlust aus der Pflanze und sind daher entscheidend für die Verdunstungskälte und die Reaktion auf Trockenstress. Wir haben bereits die Genome von fast eintausend Reissorten untersucht, um eine Liste von 30 Genen mit natürlich vorkommenden Variationen zu identifizieren, die mit Wachstum in schwierigen Umgebungen verbunden sind. Sechs dieser Gene wurden priorisiert, und drei von ihnen sind direkt an der Regulierung der Spaltöffnungen beteiligt. Um herauszufinden, welche dieser Gene am ehesten in der Lage sind, Klimaresilienz zu verleihen, werden wir 200 traditionelle Reissorten, die entweder funktionale oder nicht-funktionale Kopien unserer Zielgene enthalten, untersuchen. Wir werden diese Reissorten sowohl in sorgfältig kontrollierten Umgebungen als auch in tropischen Feldversuchen anbauen und ihre Stressresistenz und ihren Nährstoffgehalt messen. Die Daten aus diesen Experimenten werden nicht nur die genetischen Sequenzen aufzeigen, die von Natur aus mit Hitze- und Dürretoleranz verbunden sind, sondern es auch ermöglichen, mit Hilfe von maschinelles Lernen die Eigenschaften, die die beste Vorhersagen für die Leistung der Pflanzen auf dem Feld erbringen, zu ermitteln. Wir werden die Funktion unserer Zielgene durch genetische Manipulation ihrer Expression verifizieren und durch in silico transkriptomische, physiologische und biochemische Analysen neue genomische Ressourcen für die Reisforschungsgemeinschaft bereitstellen. Schließlich werden wir mit Hilfe von Gene Editing versuchen die gefundene Stressresistenz in stressanfälligen modernen Elitereissorte wiederherzustellen. Um dies zu erreichen, brauchen wir die verschiedenen Fähigkeiten unseres multidisziplinären Teams. Darüber hinaus haben wir ein "Bürgerwissenschaftliches" Programm entwickelt, um die Rolle aller 30 klimaassoziierten Reisgenen neben den vorrangigen Zielgenen zu untersuchen. Zu diesem Zweck werden wir mit Schülern in lokalen Schulen in den USA und Großbritannien zusammenarbeiten. Hierbei werden wir zusätzliche Gene untersuchen und den Schülern und Lehrern die Möglichkeit geben, einen Beitrag zu den internationalen Forschungsbemühungen die den Klimawandel bekämpfen zu leisten.

1 2 3 4 538 39 40