API src

Found 23 results.

Related terms

Wärmeleitfähigkeit bei Permanentem Welkepunkt (PWP) - im Spätsommer

Diese Karte stellt die mittlere Wärmeleitfähigkeit als gewichtetes Mittel bis 2m Tiefe mit Wassergehalten bei Permanentem Welkepunkt (pF 4,2) dar. Sie entspricht den standortabhängigen, im Jahresverlauf niedrigsten Wärmeleitfähigkeiten wie sie im Spätsommer am Ende der Vegetationsperiode zu erwarten sind. Grundwasserstände wurden bei der Berechnung berücksichtigt. Die Wärmeleitfähigkeit (λ) bestimmt die Eigenschaft des Bodens, thermische Energie durch Konduktion zu transportieren. Sie ist die entscheidende Kenngröße für die Nutzung des Bodens als Wärmequelle und -speicher und muss u.a. bei der Anwendung oberflächennaher Geothermie (Erdwärmekollektoren) oder beim Bau erdverlegter Stromkabel berücksichtigt werden.

Abflussbildung durch Niederschläge 1990

Verdunstung Die Abflussbildung wird aus der Differenz der langjährigen Jahresmittelwerte des Niederschlags und der realen Verdunstung berechnet. Die reale Verdunstung , wie sie im Mittel tatsächlich an Standorten und in Gebieten auftritt, wird aus den wichtigsten Einflussgrößen Niederschlag und Wärmeangebot (Strahlungssaldo) sowie den mittleren Speichereigenschaften der verdunstenden Flächen berechnet. Das Wärmeangebot wird durch die der Wärmemenge entsprechende verdunstende Wassermenge — die sogenannte potentielle Verdunstung — ersetzt. Bei ausreichender Feuchtezufuhr zur verdunstenden Fläche nähert sich die reale Verdunstung der potentiellen. Die reale Verdunstung wird zusätzlich durch die Speichereigenschaften der verdunstenden Fläche modifiziert. Höhere Speicherwirkung (z. B. größere Bindigkeit des Bodens und größere Durchwurzelungstiefe) bewirkt eine höhere Verdunstung. Dem aufgezeigten Zusammenhang zwischen realer Verdunstung einerseits sowie Niederschlag, potentieller Verdunstung und Verdunstungseffektivität des Standorts andererseits genügt die Beziehung nach Bagrov (vgl. Glugla et al. 1971, Glugla et al. 1976, Bamberg et al. 1981 und vgl. Abb. 1). Mit der Bagrov-Beziehung kann bei Kenntnis der Klimagrößen Niederschlag P und potentielle Verdunstung EP (Quotient P/EP) sowie des Effektivitätsparameters n der Quotient reale Verdunstung / potentielle Verdunstung (ER/EP) und somit die reale Verdunstung ER für Standorte und Gebiete ohne Grundwassereinfluss ermittelt werden. Zur Berechnung der grundwasserbeeinflussten Verdunstung wird ebenfalls das Bagrov-Verfahren in modifizierter Form genutzt, indem die mittlere Kapillarwasserzufuhr aus dem Grundwasser dem Niederschlag zugerechnet wird. Mit wachsendem Niederschlag P nähert sich die reale Verdunstung ER der potentiellen Verdunstung EP, d. h. der Quotient ER/EP nähert sich dem Wert 1. Bei abnehmendem Niederschlag P (P/EP geht gegen den Wert 0) nähert sich die reale Verdunstung ER dem Niederschlag P. Die Intensität, mit der diese Randbedingungen erreicht werden, wird durch die Speichereigenschaften der verdunstenden Fläche (Effektivitätsparameter n) verändert. Nutzbare Feldkapazität Die Speichereigenschaften des Standorts werden insbesondere durch die Nutzungsform (zunehmende Speicherwirksamkeit in der Reihenfolge versiegelte Fläche, vegetationsloser Boden, landwirtschaftliche, gärtnerische bzw. forstliche Nutzung) sowie die Bodenart (zunehmende Speicherwirksamkeit mit höherer Bindigkeit des Bodens) bestimmt. Maß für die Speicherwirksamkeit des unversiegelten Bodens ist die nutzbare Feldkapazität als Differenz der Feuchtewerte des Bodens für Feldkapazität (Beginn der Wasserversickerung im Boden) und für den permanenten Welkepunkt (bleibende Trockenschäden an den Pflanzen). Weitere Landnutzungsfaktoren, wie Hektarertrag, Baumart und -alter, modifizieren den Parameterwert n. Der Parameter n wurde in Auswertung von Beobachtungsergebnissen zahlreicher in- und ausländischer Lysimeterstationen und von Wasserhaushaltsuntersuchungen in Flusseinzugsgebieten quantifiziert. Für Standorte und Gebiete mit flurnahem Grundwasser tritt infolge Kapillaraufstiegs von Grundwasser in die verdunstungsbeeinflusste Bodenzone je nach Grundwasser-Flurabstand und Bodeneigenschaften eine gegenüber grundwasserunbeeinflussten Bedingungen erhöhte Verdunstung auf. Die Abflussbildung vermindert sich. Übersteigt die reale Verdunstung den Niederschlag, tritt Wasserzehrung auf, und die Werte für die Abflussbildung werden negativ (z. B. Fluss- und Seeniederungen). Bei Gewässerflächen tritt infolge höheren Wärmeangebots (geringeres Reflexionsvermögen der Einstrahlung) eine gegenüber Landflächen erhöhte potentielle Verdunstung auf. Die tatsächliche Gewässerverdunstung wird näherungsweise dieser erhöhten potentiellen Verdunstung gleichgesetzt. Einschätzung der Berechnungsverfahrens Die Aussagekraft und Genauigkeit des Berechnungsverfahrens wurde durch Vergleich des aus der Abflussbildung berechneten Gesamtabflusses mit beobachteten Abflusswerten geschlossener Flusseinzugsgebiete geprüft. Danach liegt die mittlere Abweichung des berechneten Abflusses vom Beobachtungswert für Gebietsgrößen zwischen 25 und 50 km 2 bei ca. ± 15 bis ± 10 %, für Gebiete zwischen 50 und 1.000 km 2 bei ca. ± 10 bis ± 5 % und für die Gebiete über 1.000 km 2 unter ± 5 %. Für die hier dargestellten einzelnen Rasterflächen (1 km 2 ) wird die mittlere Abweichung mit etwa ± 25 % eingeschätzt. Die Berechnungswerte der Abflussbildung wurden auf volle 5 mm/a auf- bzw. abgerundet. Die Abflussberechnung erfolgte mit dem Rechenprogramm RASTER (vgl. Glugla et al. 1989). Punktuelle Versickerung, z. B. durch Grundwasseranreicherung für Wasserwerke wurde nicht berücksichtigt. Bei gärtnerischer Nutzung wurde zusätzlich zum Niederschlag für die Beregnung ein einheitlicher Näherungswert in Ansatz gebracht.

Teilprojekt 4: Planung und Test der Echtzeitsensorik zur Überwachung des Wetters und der Bodenfeuchte

Das Projekt "Teilprojekt 4: Planung und Test der Echtzeitsensorik zur Überwachung des Wetters und der Bodenfeuchte" wird vom Umweltbundesamt gefördert und von Umwelt - Geräte - Technik GmbH durchgeführt. Das Projekt verfolgt einen integrierten Ansatz und adressiert nachhaltige, innovative, kostengünstige und robuste Lösungen zur Verbesserung des Landmanagements im Agrarbereich. Dabei zielt das Projekt auf die Verbesserung der Pflanzenproduktivität durch neuartige, wassersparende Boden- und Bewässerungstechniken wie Mulchen und unterirdische Tropfbewässerung zur Erhaltung der Feuchtigkeit im Boden sowie eine Diversifizierung des Pflanzenanbaus (Trocken- und Salzbeständigkeit). UGT konzentriert sich hierbei auf die Planung und den Aufbau von zwei bodenhydrologischen Messplätzen an zwei Pilotstandorten. Durch den Einsatz der von UGT patentierten Fullrange Tensiometern (DE 10 2016 108 531 A1 2017.01.12) in verschiedenen Messtiefen mit einem Messbereich einer Wasserspannung bis pF 4,2 (permanenter Welkepunkt) in Kombination mit dem für salzhaltige Böden neu zu entwickelnden Kombisensor UMP2.1 (Bodenfeuchte, Bodentemperatur, Salinität) kann das am jeweiligen Standort pflanzenverfügbare Bodenwasser in Echtzeit erfasst werden. Schwankende Salinitäten sowie hohe Salzkonzentrationen haben einen direkten, störenden Einfluss auf die Messgenauigkeit von Bodenfeuchtesonden. Ein neuer Messalgorithmus sowie eine angepasste elektrotechnische und mechanische Konstruktion sollen diese Einflüsse kompensieren. Bei der Entwicklung kann auf eine jahrelange Erfahrung im Sensorbau zurückgegriffen werden. Die Daten werden an den Projektpartner HUB und IRRI zur direkten Steuerung der SDI übergeben (siehe 1.3). Um das lokale Wettergeschehen erfassen zu können und um u.a. Evapotranspirationswerte am jeweiligen Standort besser ableiten zu können, werden an den beiden Pilotstandorten zwei Wetterstationen mit den notwendigen Messsensoren (Niederschlag, Lufttemperatur und Feuchte, Globalstrahlung, Windgeschwindigkeit, atmosphärischer Druck) eingerichtet .

Differenz der Wärmeleitfähigkeit bei Feldkapazität (FK) - Permanentem Welkepunkt (PWP)

Diese Karte stellt die mittlere Wärmeleitfähigkeit mit Wassergehalten als Differenz aus Feldkapazität (FK) und Permanentem Welkepunkt (pF 4,2) dar. Sie veranschaulicht die wassergehaltsabhängigen Unterschiede zwischen saisonal höchster und niedrigster Wärmeleitfähigkeit und vermittelt einen Eindruck der zu erwartenden jahreszeitlichen Dynamik der Wärmeleitfähigkeit an einem Standort. Die Differenzen werden in folgende Klassen unterteilt: Differenz λFK - λPWP [W/m*K] sehr gering ≤ 0,2 gering 0,21 - 0,40 mittel 0,41 - 0,65 hoch 0,66 - 0,91 sehr hoch 0,92 - 1,20 Die Wärmeleitfähigkeit (λ) bestimmt die Eigenschaft des Bodens, thermische Energie durch Konduktion zu transportieren. Sie ist die entscheidende Kenngröße für die Nutzung des Bodens als Wärmequelle und -speicher und muss u.a. bei der Anwendung oberflächennaher Geothermie (Erdwärmekollektoren) oder beim Bau erdverlegter Stromkabel berücksichtigt werden.

Oberflächenabfluss, Versickerung und Gesamtabfluss aus Niederschlägen 2017

Mitte der 90er Jahre wurde in Kooperation mit der Bundesanstalt für Gewässerkunde, Außenstelle Berlin, ein Modell entwickelt, programmiert und angewendet, das die wichtigsten Größen des Wasserhaushaltes berechnet. Die etwa 25 erforderlichen Grunddaten bzw. Eingangsparameter konnten für jede der ca. 25.000 Einzelflächen aus dem Informationssystem Stadt und Umwelt (ISU) zur Verfügung gestellt werden. Dieses Modell wurde verbessert (ABIMO 3.2) und mit aktualisierten Daten erneut angewendet. Das von Glugla entwickelte Abflussbildungsmodell ABIMO ist auf der Grundlage bereits seit den 70er Jahren entwickelter Modelle zur Berechnung des Grundwasserdargebots entstanden, und um Bausteine erweitert worden, die der speziellen Situation in urbanen Gebieten Rechnung tragen. Diese Erweiterung wurde gutachterlich durch das Institut für Ökologie (Bodenkunde) der TU Berlin und durch eine Diplomarbeit am Fachbereich Geographie der FU Berlin unterstützt. Bei der rechentechnischen Realisierung, die durch ein externes Softwarebüro erfolgte, wurde es außerdem an die spezielle Datenlage in Berlin angepasst. Das Berechnungsverfahren ermittelt zunächst die tatsächliche Verdunstung, um den Gesamtabfluss (Niederschlag minus Verdunstung) zu errechnen. Im zweiten Arbeitsschritt wird der Oberflächenabfluss als Teil des Gesamtabflusses bestimmt. Die Differenz aus Gesamtabfluss und Oberflächenabfluss bildet dann den Versickerungsanteil. Einen Eindruck von der Komplexität des Verfahrens vermittelt Abb. 2. Der Gesamtabfluss wird aus der Differenz der langjährigen Jahresmittelwerte des Niederschlags und der realen Verdunstung berechnet. Die reale Verdunstung , wie sie im Mittel tatsächlich an Standorten und in Gebieten auftritt, wird aus den wichtigsten Einflussgrößen Niederschlag und potentielle Verdunstung sowie den mittleren Speichereigenschaften der verdunstenden Flächen berechnet. Bei ausreichender Feuchtezufuhr zur verdunstenden Fläche nähert sich die reale Verdunstung der potentiellen. Die reale Verdunstung wird zusätzlich durch die Speichereigenschaften der verdunstenden Fläche modifiziert. Höhere Speicherwirkung (z. B. größere Bindigkeit des Bodens und größere Durchwurzelungstiefe) bewirkt eine höhere Verdunstung. Dem aufgezeigten Zusammenhang zwischen den mehrjährigen Mittelwerten der realen Verdunstung einerseits sowie des Niederschlags, der potentiellen Verdunstung und der Verdunstungseffektivität des Standorts andererseits genügt die Beziehung nach Bagrov (vgl. Glugla et al. 1971, Glugla et al. 1976, Bamberg et al. 1981 und Abb. 3). Die Bagrov-Beziehung beruht auf der Auswertung langjähriger Lysimeter-Versuche und beschreibt das nichtlineare Verhältnis zwischen Niederschlag und Verdunstung in Abhängigkeit von den Standorteigenschaften. Mit der Bagrov-Beziehung kann bei Kenntnis der Klimagrößen Niederschlag P und potentielle Verdunstung EP (Quotient P/EP) sowie des Effektivitätsparameters n der Quotient reale Verdunstung / potentielle Verdunstung (ER/EP) und somit die reale Verdunstung ER für Standorte und Gebiete ohne Grundwassereinfluss ermittelt werden. Zur Berechnung der grundwasserbeeinflussten Verdunstung wird ebenfalls das Bagrov-Verfahren in modifizierter Form genutzt, indem die mittlere Kapillarwasserzufuhr aus dem Grundwasser dem Niederschlag zugerechnet wird. Mit wachsendem Niederschlag P nähert sich die reale Verdunstung ER der potentiellen Verdunstung EP, d. h. der Quotient ER/EP nähert sich dem Wert 1. Bei abnehmendem Niederschlag P (P/EP geht gegen den Wert 0) nähert sich die reale Verdunstung ER dem Niederschlag P. Die Intensität, mit der diese Randbedingungen erreicht werden, wird durch die Speichereigenschaften der verdunstenden Fläche (Effektivitätsparameter n) verändert. Die Speichereigenschaften des Standorts werden insbesondere durch die Nutzungsform (zunehmende Speicherwirksamkeit in der Reihenfolge versiegelte Fläche, vegetationsloser Boden, landwirtschaftliche, gärtnerische bzw. forstliche Nutzung) sowie die Bodenart (zunehmende Speicherwirksamkeit mit höherer Bindigkeit des Bodens) bestimmt. Maß für die Speicherwirksamkeit des unversiegelten Bodens ist die nutzbare Feldkapazität als Differenz der Feuchtewerte des Bodens für Feldkapazität (Beginn der Wasserversickerung im Boden) und für den permanenten Welkepunkt (bleibende Trockenschäden an den Pflanzen). Weitere Landnutzungsfaktoren, wie Hektarertrag, Baumart und -alter, modifizieren den Parameterwert n. Der Parameter n wurde in Auswertung von Beobachtungsergebnissen zahlreicher in- und ausländischer Lysimeterstationen und von Wasserhaushaltsuntersuchungen in Flusseinzugsgebieten quantifiziert. Für Standorte und Gebiete mit flurnahem Grundwasser tritt infolge Kapillaraufstiegs von Grundwasser in die verdunstungsbeeinflusste Bodenzone je nach Grundwasserflurabstand und Bodeneigenschaften eine gegenüber grundwasserunbeeinflussten Bedingungen erhöhte Verdunstung auf. Die Abflussbildung vermindert sich. Übersteigt die reale Verdunstung den Niederschlag, tritt Wasserzehrung auf, und die Werte für die Abflussbildung werden negativ (z. B. Fluss- und Seeniederungen). Bei Gewässerflächen tritt infolge höheren Wärmeangebots (geringeres Reflexionsvermögen der Einstrahlung) eine gegenüber Landflächen erhöhte potentielle Verdunstung auf. Die tatsächliche Gewässerverdunstung wird näherungsweise dieser erhöhten potentiellen Verdunstung gleichgesetzt. Punktuelle Versickerung, z. B. durch die Grundwasseranreicherungsanlagen der Wasserwerke wurde nicht berücksichtigt. Bei gärtnerischer Nutzung (Kleingärten, Wochenendhäuser, Parks, Friedhöfe, Baumschulen/Gartenbau und z.T. bei Wohn- oder Gemeinbedarfs- und Sondernutzungen) wurde zum Niederschlag für die Bewässerung ein Näherungswert addiert (50 – 100 mm/Jahr). Nachdem der mittlere Gesamtabfluss als Differenz aus Niederschlag und realer Verdunstung berechnet wurde, wird nun in einem zweiten Arbeitsschritt der Oberflächenabfluss bestimmt. Auf Dachflächen, die in die Kanalisation entwässern, entspricht der Oberflächenabfluss dem Gesamtabfluss. Flächen, die nicht an die Kanalisation angeschlossen sind, erzeugen keinen Oberflächenabfluss. Unbebaut versiegelte Flächen infiltrieren abhängig von der Art der Oberflächenbeläge (Belagsarten) einen Teil des Abflusses in den Untergrund. Dieser Infiltrationsfaktor ist abhängig von der Breite, dem Alter und der Art der Fugen. Der nicht versickernde Abfluss wird – abhängig von dem Anschlussgrad an die Kanalisation – als Oberflächenabfluss über die Kanalisation abgeleitet oder versickert, sofern er nicht von der Kanalisation erfasst, am Rande der versiegelten Flächen. Ebenso versickern die Anteile der nicht an die Kanalisation angeschlossenen Dachflächen (vgl. Tab. 1). Die Differenz aus Gesamtabfluss und Oberflächenabfluss entspricht somit der Versickerung als Ausgangsgröße für die Grundwasserneubildung. Die Verdunstung der Block(teil)flächen wird dann aus der Differenz von korrigiertem Niederschlag (Korrigierter Niederschlag = Niederschlag multipliziert mit dem Faktor 1,09 pauschal für Berlin) und Gesamtabfluss berechnet. Für die Anwendung des Verfahrens für urbane Gebiete mussten die Parameter n und die Infiltrationsfaktoren für die unterschiedlichen Versiegelungsmaterialien bestimmt werden. Hierzu wurden sowohl Lysimeterversuche mit verschiedenen Versiegelungsmaterialien als auch Berechnungen zum Benetzungsverlust ausgewertet (vgl. Wessolek/Facklam 1997). Die gewählten Größen für die genannten Parameter sind in Tab. 2 aufgeführt. Die mit dem Alterungsprozess durch Verdichtung und Verschlämmung der Fugen einhergehende Veränderung dieser Parameter wurde dabei berücksichtigt. Aufgrund nach wie vor unzureichender wissenschaftlicher Grundlagen sind die Angaben jedoch noch mit gewissen Unsicherheiten verbunden. Darüber hinaus wäre für hydrologische Fragestellungen eine andere Zusammenfassung der Belagsarten zu Belagsklassen wünschenswert. Um einen Eindruck zu vermitteln, wie die unterschiedlichen Flächennutzungen, Versiegelungsparameter und Bedingungen der Kanalisation den Wasserhaushalt beeinflussen wurde für ca. 35 Beispielsflächen mit typischen Nutzungen und ihren unterschiedlichen typischen Eigenschaften das Modell ABIMO angewandt und die Ergebnisse in Tab. 3 dargestellt. Das Verhältnis von Oberflächenabfluss, Versiegelung und Verdunstung ist entscheidend vom Ausmaß der Versiegelung und der Ableitung des Regenwassers in die Kanalisation abhängig. Für die aktuelle Berechnung wird seit der Ausgabe 2012 die Version des Programms ABIMO 3.2 verwendet. Diese Version unterscheidet sich von der alten vor allem durch eine verbesserte Parametersteuerung bei der Zuordnung der Werte für den Anschlussgrad der Dachflächen an die Kanalisation. Berücksichtigung des Einflusses begrünter Dächer auf die Daten zum Wasserhaushalt Durch die mit der Umweltatlaskarte 06.11 Gründächer (Ausgabe 2017) erstmalig vorliegenden flächendeckenden räumlichen Daten zu begrünten Dachflächen konnte für die aktuelle Ausgabe die Effekte der Gründächer auf den Wasserhaushalt erstmalig mit berechnet werden. Da das ursprüngliche Modell die Berücksichtigung grüner Dächer nicht vorsieht, musste ein Verfahren entwickelt werden, das erlaubt, diese Effekte trotzdem zu bilanzieren. Dazu war es zunächst erforderlich, belastbare Werte zum Verdunstungsverhalten aus der Literatur zu ermitteln. Die Literaturrecherche ergab unterschiedliche Jahresabflussbeiwerte für intensiv und extensiv begrünte Dächer (vgl. z. B. Rüngeler 1998, SenStadtWohn 2017). In der für die verwendete Datengrundlage ( Karte 06.11 , Ausgabe 2017) gewählten Methode wird auf Basis der spektralen Reflexionseigenschaften der Fernerkundungsdaten nur zwischen extensiv und intensiv begrünt unterschieden. Weitere wichtige Eigenschaften, wie z. B. Höhe des Bewuchses oder Substrataufbau können auf diese Weise nicht erfasst werden und liegen daher für die Auswertung bzgl. des Wasserhaushaltes auch nicht vor. Für die weitere Berechnung wurde deshalb von einem einheitlichen Jahresabflussbeiwert von 0,5 für alle Gründächer ausgegangen, d. h. sie verdunsten 50 % des Niederschlages. Ein normales, unbegrüntes Dach verdunstet auch einen geringen Teil des Niederschlages. Die Berechnung dieser Verdunstung erfolgt für jede Block- und Blockteilfläche mit ABIMO 3.2. Unbegrünte Gebäudedächer verdunsten demnach zwischen 75,5 mm/a und 83,6 mm/a unabhängig von den Kanalisierungsgraden und den Belagsarten. Das entspricht 12,3 % und 13,4 % des korrigierten Niederschlages. Zunächst wurde die zusätzliche Verdunstung eines begrünten Daches mit der folgenden Formel berechnet: Verdunstung GründachZusätzlich = Verdunstung Gründach – Verdunstung Normaldach Anschließend wurde die zusätzliche Verdunstung aller begrünten Dächer einer Block- bzw. Blockteilfläche summiert und von den Parametern Gesamtabfluss, Oberflächenabfluss sowie Versickerung abgezogen. Die Verdunstung mit Gründach berechnet sich aus der Verdunstung und der zusätzlichen Verdunstung. Diese Berechnungen wurde außerhalb des Programms ABIMO 3.2 im Nachgang durchgeführt (vgl. Goedecke/Gerstenberg 2019). Endergebnis Im Ergebnis der Berechnungen liegen für ca. 25.000 Einzelflächen aktualisierte langjährige Mittelwerte für den Gesamtabfluss, die Verdunstung, den Oberflächenabfluss und die Versickerung inkl. der Berücksichtigung der Gründächer vor. Die Werte wurden klassifiziert in mm/Jahr in den vorliegenden Karten dargestellt; die Gesamtmengen in m³/Jahr wurden ebenfalls errechnet und bilanziert. Es muss beachtet werden, dass die dargestellten Werte Mittelwerte über die als einheitliche Flächen dargestellten Blöcke sind, die in der Realität inhomogene Strukturen aufweisen. Die Abflüsse versiegelter und unversiegelter Flächen werden hier zu einem Durchschnittswert pro Block gemittelt. Außerdem werden die Abflüsse der Straßen den angrenzenden Blöcken zugeschlagen. Aus den Karten kann z. B. nicht abgelesen werden, wie hoch die Versickerungsleistung eines Quadratmeters unversiegelten Bodens ist. Hierzu ist daher eine ebenfalls flächendeckende und blockbezogene Berechnung mit veränderten Randparametern – also unter der Annahme gänzlich unversiegelter Verhältnisse – vorgenommen worden, deren Ergebnisse in der Karte 02.13.4 dargestellt sind.

Oberflächenabfluss, Versickerung und Gesamtabfluss aus Niederschlägen 1990

In den vergangenen Jahren wurde in Kooperation mit der Bundesanstalt für Gewässerkunde, Außenstelle Berlin, ein Modell entwickelt, programmiert und angewendet, das die wichtigsten Größen des Wasserhaushaltes berechnet. Die etwa 25 erforderlichen Grunddaten bzw. Eingangsparameter konnten für jede der ca. 25 000 Einzelflächen aus dem Umweltinformationssystem (UIS) zur Verfügung gestellt werden. Das von Glugla entwickelte Abflußbildungsmodell ABIMO ist auf der Grundlage bereits seit den 70er Jahren entwickelter Modelle zur Berechnung des Grundwasserdargebots entstanden, und um Bausteine erweitert worden, die der speziellen Situation in urbanen Gebieten Rechnung tragen. Diese Erweiterung wurde gutachterlich durch das Institut für Ökologie (Bodenkunde) der TU Berlin und durch eine Diplomarbeit am Fachbereich Geographie der FU Berlin unterstützt. Bei der rechentechnischen Realisierung, die durch ein externes Softwarebüro erfolgte, wurde es außerdem an die spezielle Datenlage in Berlin angepaßt. Das Berechnungsverfahren ermittelt zunächst die tatsächliche Verdunstung, um den Gesamtabfluß (Niederschlag minus Verdunstung) zu errechnen. Im zweiten Arbeitsschritt wird der Oberflächenabfluß als Teil des Gesamtabflusses bestimmt. Die Differenz aus Gesamtabfluß und Oberflächenabfluß bildet dann den Versickerungsanteil. Einen Eindruck von der Komplexität des Verfahrens vermittelt Abb. 2. Der Gesamtabfluß wird aus der Differenz der langjährigen Jahresmittelwerte des Niederschlags und der realen Verdunstung berechnet. Die reale Verdunstung , wie sie im Mittel tatsächlich an Standorten und in Gebieten auftritt, wird aus den wichtigsten Einflußgrößen Niederschlag und potentielle Verdunstung sowie den mittleren Speichereigenschaften der verdunstenden Flächen berechnet. Bei ausreichender Feuchtezufuhr zur verdunstenden Fläche nähert sich die reale Verdunstung der potentiellen. Die reale Verdunstung wird zusätzlich durch die Speichereigenschaften der verdunstenden Fläche modifiziert. Höhere Speicherwirkung (z. B. größere Bindigkeit des Bodens und größere Durchwurzelungstiefe) bewirkt eine höhere Verdunstung. Dem aufgezeigten Zusammenhang zwischen den mehrjährigen Mittelwerten der realen Verdunstung einerseits sowie des Niederschlags, der potentiellen Verdunstung und der Verdunstungseffektivität des Standorts andererseits genügt die Beziehung nach Bagrov (vgl. Glugla et al. 1971, Glugla et al. 1976, Bamberg et al. 1981 und Abb. 3). Die Bagrov-Beziehung beruht auf der Auswertung langjähriger Lysimeter-Versuche und beschreibt das nichtlineare Verhältnis zwischen Niederschlag und Verdunstung in Abhängigkeit von den Standorteigenschaften. Mit der Bagrov-Beziehung kann bei Kenntnis der Klimagrößen Niederschlag P und potentielle Verdunstung EP (Quotient P/EP) sowie des Effektivitätsparameters n der Quotient reale Verdunstung / potentielle Verdunstung (ER/EP) und somit die reale Verdunstung ER für Standorte und Gebiete ohne Grundwassereinfluß ermittelt werden. Zur Berechnung der grundwasserbeeinflußten Verdunstung wird ebenfalls das Bagrov-Verfahren in modifizierter Form genutzt, indem die mittlere Kapillarwasserzufuhr aus dem Grundwasser dem Niederschlag zugerechnet wird. Mit wachsendem Niederschlag P nähert sich die reale Verdunstung ER der potentiellen Verdunstung EP, d. h. der Quotient ER/EP nähert sich dem Wert 1. Bei abnehmendem Niederschlag P (P/EP geht gegen den Wert 0) nähert sich die reale Verdunstung ER dem Niederschlag P. Die Intensität, mit der diese Randbedingungen erreicht werden, wird durch die Speichereigenschaften der verdunstenden Fläche (Effektivitätsparameter n) verändert. Die Speichereigenschaften des Standorts werden insbesondere durch die Nutzungsform (zunehmende Speicherwirksamkeit in der Reihenfolge versiegelte Fläche, vegetationsloser Boden, landwirtschaftliche, gärtnerische bzw. forstliche Nutzung) sowie die Bodenart (zunehmende Speicherwirksamkeit mit höherer Bindigkeit des Bodens) bestimmt. Maß für die Speicherwirksamkeit des unversiegelten Bodens ist die nutzbare Feldkapazität als Differenz der Feuchtewerte des Bodens für Feldkapazität (Beginn der Wasserversickerung im Boden) und für den permanenten Welkepunkt (bleibende Trockenschäden an den Pflanzen). Weitere Landnutzungsfaktoren, wie Hektarertrag, Baumart und -alter, modifizieren den Parameterwert n. Der Parameter n wurde in Auswertung von Beobachtungsergebnissen zahlreicher in- und ausländischer Lysimeterstationen und von Wasserhaushaltsuntersuchungen in Flußeinzugsgebieten quantifiziert. Für Standorte und Gebiete mit flurnahem Grundwasser tritt infolge Kapillaraufstiegs von Grundwasser in die verdunstungsbeeinflußte Bodenzone je nach Grundwasser-Flurabstand und Bodeneigenschaften eine gegenüber grundwasserunbeeinflußten Bedingungen erhöhte Verdunstung auf. Die Abflußbildung vermindert sich. Übersteigt die reale Verdunstung den Niederschlag, tritt Wasserzehrung auf, und die Werte für die Abflußbildung werden negativ (z. B. Fluß- und Seeniederungen). Bei Gewässerflächen tritt infolge höheren Wärmeangebots (geringeres Reflexionsvermögen der Einstrahlung) eine gegenüber Landflächen erhöhte potentielle Verdunstung auf. Die tatsächliche Gewässerverdunstung wird näherungsweise dieser erhöhten potentiellen Verdunstung gleichgesetzt. Punktuelle Versickerung, z. B. durch die Grundwasseranreicherunganlagen der Wasserwerke wurde nicht berücksichtigt. Bei gärtnerischer Nutzung (Kleingärten) wurde zum Niederschlag für die Bewässerung ein einheitlicher Näherungswert addiert. Nachdem der mittlere Gesamtabfluß als Differenz aus Niederschlag und realer Verdunstung berechnet wurde, wird nun in einem zweiten Arbeitsschritt der Oberflächenabfluß bestimmt. Auf Dachflächen, die in die Kanalisation entwässern, entspricht der Oberflächenabfluß dem Gesamtabfluß. Flächen, die nicht an die Kanalisation angeschlossen sind, erzeugen keinen Oberflächenabfluß. Unbebaut versiegelte Flächen infiltrieren abhängig von der Art der Oberflächenbeläge (Belagsarten) einen Teil des Abflusses in den Untergrund. Dieser Infiltrationsfaktor ist abhängig von der Breite, dem Alter und der Art der Fugen. Der nicht versickernde Abfluß wird – abhängig von dem Anschlußgrad an die Kanalisation – als Oberflächenabfluß über die Kanalisation abgeleitet oder versickert, sofern er nicht von der Kanalisation erfaßt, am Rande der versiegelten Flächen. Ebenso versickern die Anteile der nicht an die Kanalisation angeschlossenen Dachflächen (vgl. Tab. 1). Die Differenz aus Gesamtabfluß und Oberflächenabfluß entspricht somit der Versickerung als Ausgangsgröße für die Grundwasserneubildung. Für die Anwendung des Verfahrens für urbane Gebiete mußten die Parameter n und die Infiltrationsfaktoren für die unterschiedlichen Versiegelungsmaterialien bestimmt werden. Hierzu wurden sowohl Lysimeterversuche mit verschiedenen Versiegelungsmaterialien als auch Berechnungen zum Benetzungsverlust ausgewertet (vgl. Wessolek/Facklam 1997). Die gewählten Größen für die genannten Parameter sind in Tab. 2 aufgeführt. Die mit dem Alterungsprozeß durch Verdichtung und Verschlämmung der Fugen einhergehende Veränderung dieser Parameter wurde dabei berücksichtigt. Aufgrund nach wie vor unzureichender wissenschaftlicher Grundlagen sind die Angaben jedoch noch mit gewissen Unsicherheiten verbunden. Darüber hinaus wäre für hydrologische Fragestellungen eine andere Zusammenfassung der Belagsarten zu Belagsklassen wünschenswert. Im Ergebnis der Berechnungen liegen für die 25 000 Einzelflächen langjährige Mittelwerte für den Gesamtabfluß, den Oberflächenabfluß und die Versickerung vor. Die Werte wurden klassifiziert in mm/Jahr in den vorliegenden Karten dargestellt; die Gesamtmengen in m³/Jahr wurden ebenfalls errechnet und bilanziert. Es muß beachtet werden, daß die dargestellten Werte Mittelwerte über die als einheitliche Flächen dargestellten Blöcke sind, die in der Realität inhomogene Strukturen aufweisen. Die Abflüsse versiegelter und unversiegelter Flächen werden hier zu einem Durchschnittswert pro Block gemittelt. Außerdem werden die Abflüsse der Straßen den angrenzenden Blöcken zugeschlagen. Aus den Karten kann z.B. nicht abgelesen werden, wie hoch die Versickerungsleistung eines m² unversiegelten Bodens ist. Hierzu sind im Rahmen des Umweltinformationssystems spezielle ebenfalls flächendeckende und blockbezogene Auswertungen vorgenommen worden.

Oberflächenabfluss, Versickerung, Gesamtabfluss und Verdunstung aus Niederschlägen 2012

Mitte der 90er Jahre wurde in Kooperation mit der Bundesanstalt für Gewässerkunde, Außenstelle Berlin, ein Modell entwickelt, programmiert und angewendet, das die wichtigsten Größen des Wasserhaushaltes berechnet. Die etwa 25 erforderlichen Grunddaten bzw. Eingangsparameter konnten für jede der ca. 25.000 Einzelflächen aus dem Informationssystem Stadt und Umwelt (ISU) zur Verfügung gestellt werden. Dieses Modell wurde verbessert (ABIMO 3) und mit aktualisierten Daten erneut angewendet. Das von Glugla entwickelte Abflussbildungsmodell ABIMO ist auf der Grundlage bereits seit den 70er Jahren entwickelter Modelle zur Berechnung des Grundwasserdargebots entstanden, und um Bausteine erweitert worden, die der speziellen Situation in urbanen Gebieten Rechnung tragen. Diese Erweiterung wurde gutachterlich durch das Institut für Ökologie (Bodenkunde) der TU Berlin und durch eine Diplomarbeit am Fachbereich Geographie der FU Berlin unterstützt. Bei der rechentechnischen Realisierung, die durch ein externes Softwarebüro erfolgte, wurde es außerdem an die spezielle Datenlage in Berlin angepasst. Das Berechnungsverfahren ermittelt zunächst die tatsächliche Verdunstung, um den Gesamtabfluss (Niederschlag minus Verdunstung) zu errechnen. Im zweiten Arbeitsschritt wird der Oberflächenabfluss als Teil des Gesamtabflusses bestimmt. Die Differenz aus Gesamtabfluss und Oberflächenabfluss bildet dann den Versickerungsanteil. Einen Eindruck von der Komplexität des Verfahrens vermittelt Abb. 2. Der Gesamtabfluss wird aus der Differenz der langjährigen Jahresmittelwerte des Niederschlags und der realen Verdunstung berechnet. Die reale Verdunstung , wie sie im Mittel tatsächlich an Standorten und in Gebieten auftritt, wird aus den wichtigsten Einflussgrößen Niederschlag und potentielle Verdunstung sowie den mittleren Speichereigenschaften der verdunstenden Flächen berechnet. Bei ausreichender Feuchtezufuhr zur verdunstenden Fläche nähert sich die reale Verdunstung der potentiellen. Die reale Verdunstung wird zusätzlich durch die Speichereigenschaften der verdunstenden Fläche modifiziert. Höhere Speicherwirkung (z. B. größere Bindigkeit des Bodens und größere Durchwurzelungstiefe) bewirkt eine höhere Verdunstung. Dem aufgezeigten Zusammenhang zwischen den mehrjährigen Mittelwerten der realen Verdunstung einerseits sowie des Niederschlags, der potentiellen Verdunstung und der Verdunstungseffektivität des Standorts andererseits genügt die Beziehung nach Bagrov (vgl. Glugla et al. 1971, Glugla et al. 1976, Bamberg et al. 1981 und Abb. 3). Die Bagrov-Beziehung beruht auf der Auswertung langjähriger Lysimeter-Versuche und beschreibt das nichtlineare Verhältnis zwischen Niederschlag und Verdunstung in Abhängigkeit von den Standorteigenschaften. Mit der Bagrov-Beziehung kann bei Kenntnis der Klimagrößen Niederschlag P und potentielle Verdunstung EP (Quotient P/EP) sowie des Effektivitätsparameters n der Quotient reale Verdunstung / potentielle Verdunstung (ER/EP) und somit die reale Verdunstung ER für Standorte und Gebiete ohne Grundwassereinfluss ermittelt werden. Zur Berechnung der grundwasserbeeinflussten Verdunstung wird ebenfalls das Bagrov-Verfahren in modifizierter Form genutzt, indem die mittlere Kapillarwasserzufuhr aus dem Grundwasser dem Niederschlag zugerechnet wird. Mit wachsendem Niederschlag P nähert sich die reale Verdunstung ER der potentiellen Verdunstung EP, d. h. der Quotient ER/EP nähert sich dem Wert 1. Bei abnehmendem Niederschlag P (P/EP geht gegen den Wert 0) nähert sich die reale Verdunstung ER dem Niederschlag P. Die Intensität, mit der diese Randbedingungen erreicht werden, wird durch die Speichereigenschaften der verdunstenden Fläche (Effektivitätsparameter n) verändert. Die Speichereigenschaften des Standorts werden insbesondere durch die Nutzungsform (zunehmende Speicherwirksamkeit in der Reihenfolge versiegelte Fläche, vegetationsloser Boden, landwirtschaftliche, gärtnerische bzw. forstliche Nutzung) sowie die Bodenart (zunehmende Speicherwirksamkeit mit höherer Bindigkeit des Bodens) bestimmt. Maß für die Speicherwirksamkeit des unversiegelten Bodens ist die nutzbare Feldkapazität als Differenz der Feuchtewerte des Bodens für Feldkapazität (Beginn der Wasserversickerung im Boden) und für den permanenten Welkepunkt (bleibende Trockenschäden an den Pflanzen). Weitere Landnutzungsfaktoren, wie Hektarertrag, Baumart und -alter, modifizieren den Parameterwert n. Der Parameter n wurde in Auswertung von Beobachtungsergebnissen zahlreicher in- und ausländischer Lysimeterstationen und von Wasserhaushaltsuntersuchungen in Flusseinzugsgebieten quantifiziert. Für Standorte und Gebiete mit flurnahem Grundwasser tritt infolge Kapillaraufstiegs von Grundwasser in die verdunstungsbeeinflusste Bodenzone je nach Grundwasser-Flurabstand und Bodeneigenschaften eine gegenüber grundwasserunbeeinflussten Bedingungen erhöhte Verdunstung auf. Die Abflussbildung vermindert sich. Übersteigt die reale Verdunstung den Niederschlag, tritt Wasserzehrung auf, und die Werte für die Abflussbildung werden negativ (z. B. Fluss- und Seeniederungen). Bei Gewässerflächen tritt infolge höheren Wärmeangebots (geringeres Reflexionsvermögen der Einstrahlung) eine gegenüber Landflächen erhöhte potentielle Verdunstung auf. Die tatsächliche Gewässerverdunstung wird näherungsweise dieser erhöhten potentiellen Verdunstung gleichgesetzt. Punktuelle Versickerung, z. B. durch die Grundwasseranreicherungsanlagen der Wasserwerke wurde nicht berücksichtigt. Bei gärtnerischer Nutzung (Kleingärten, Wochenendhäuser, Parks, Friedhöfe, Baumschulen/Gartenbau und z.T. bei Wohn- oder Gemeinbedarfs- und Sondernutzungen) wurde zum Niederschlag für die Bewässerung ein Näherungswert addiert (50 – 100 mm/Jahr). Nachdem der mittlere Gesamtabfluss als Differenz aus Niederschlag und realer Verdunstung berechnet wurde, wird nun in einem zweiten Arbeitsschritt der Oberflächenabfluss bestimmt. Auf Dachflächen, die in die Kanalisation entwässern, entspricht der Oberflächenabfluss dem Gesamtabfluss. Flächen, die nicht an die Kanalisation angeschlossen sind, erzeugen keinen Oberflächenabfluss. Unbebaut versiegelte Flächen infiltrieren abhängig von der Art der Oberflächenbeläge (Belagsarten) einen Teil des Abflusses in den Untergrund. Dieser Infiltrationsfaktor ist abhängig von der Breite, dem Alter und der Art der Fugen. Der nicht versickernde Abfluss wird – abhängig von dem Anschlussgrad an die Kanalisation – als Oberflächenabfluss über die Kanalisation abgeleitet oder versickert, sofern er nicht von der Kanalisation erfasst, am Rande der versiegelten Flächen. Ebenso versickern die Anteile der nicht an die Kanalisation angeschlossenen Dachflächen (vgl. Tab. 1). Die Differenz aus Gesamtabfluss und Oberflächenabfluss entspricht somit der Versickerung als Ausgangsgröße für die Grundwasserneubildung. Für die Anwendung des Verfahrens für urbane Gebiete mussten die Parameter n und die Infiltrationsfaktoren für die unterschiedlichen Versiegelungsmaterialien bestimmt werden. Hierzu wurden sowohl Lysimeterversuche mit verschiedenen Versiegelungsmaterialien als auch Berechnungen zum Benetzungsverlust ausgewertet (vgl. Wessolek/Facklam 1997). Die gewählten Größen für die genannten Parameter sind in Tab. 2 aufgeführt. Die mit dem Alterungsprozess durch Verdichtung und Verschlämmung der Fugen einhergehende Veränderung dieser Parameter wurde dabei berücksichtigt. Aufgrund nach wie vor unzureichender wissenschaftlicher Grundlagen sind die Angaben jedoch noch mit gewissen Unsicherheiten verbunden. Darüber hinaus wäre für hydrologische Fragestellungen eine andere Zusammenfassung der Belagsarten zu Belagsklassen wünschenswert. Um einen Eindruck zu vermitteln, wie die unterschiedlichen Flächennutzungen, Versiegelungsparameter und Bedingungen der Kanalisation den Wasserhaushalt beeinflussen wurde für ca. 35 Beispielsflächen mit unterschiedlichen Eingangsgrößen das Modell ABIMO angewandt und die Ergebnisse in Tabelle 3 dargestellt. Das Verhältnis von Oberflächenabfluss, Versiegelung und Verdunstung ist entscheidend vom Ausmaß der Versiegelung und der Ableitung des Regenwassers in die Kanalisation abhängig. Für die aktuelle Berechnung wurde eine neue Version des Programms ABIMO verwendet. Diese Version unterscheidet sich von der alten vor allem durch eine verbesserte Parametersteuerung bei der Zuordnung der Werte für den Anschlussgrad der Dachflächen an die Kanalisation. Im Ergebnis der Berechnungen liegen für die 25.000 Einzelflächen aktualisierte langjährige Mittelwerte für den Gesamtabfluss, die Verdunstung, den Oberflächenabfluss und die Versickerung vor. Die Werte wurden klassifiziert in mm/Jahr in den vorliegenden Karten dargestellt; die Gesamtmengen in m³/Jahr wurden ebenfalls errechnet und bilanziert. Es muss beachtet werden, dass die dargestellten Werte Mittelwerte über die als einheitliche Flächen dargestellten Blöcke sind, die in der Realität inhomogene Strukturen aufweisen. Die Abflüsse versiegelter und unversiegelter Flächen werden hier zu einem Durchschnittswert pro Block gemittelt. Außerdem werden die Abflüsse der Straßen den angrenzenden Blöcken zugeschlagen. Aus den Karten kann z.B. nicht abgelesen werden, wie hoch die Versickerungsleistung eines m² unversiegelten Bodens ist. Hierzu ist daher eine ebenfalls flächendeckende und blockbezogene Berechnung mit veränderten Randparametern – also unter der Annahme gänzlich unversiegelter Verhältnisse – vorgenommen worden, deren Ergebnisse in der Karte 02.13.4 dargestellt sind.

Oberflächenabfluss, Versickerung, Gesamtabfluss und Verdunstung aus Niederschlägen 2005

Vor etwa 10 Jahren wurde in Kooperation mit der Bundesanstalt für Gewässerkunde, Außenstelle Berlin, ein Modell entwickelt, programmiert und angewendet, das die wichtigsten Größen des Wasserhaushaltes berechnet. Die etwa 25 erforderlichen Grunddaten bzw. Eingangsparameter konnten für jede der ca. 25 000 Einzelflächen aus dem Informationssystem Stadt und Umwelt (ISU) zur Verfügung gestellt werden. Dieses Modell wurde verbessert (ABIMO 3) und mit aktualisierten Daten zur Ableitung des Regenwassers über die Kanalisation erneut angewendet. Das von Glugla entwickelte Abflussbildungsmodell ABIMO ist auf der Grundlage bereits seit den 70er Jahren entwickelter Modelle zur Berechnung des Grundwasserdargebots entstanden, und um Bausteine erweitert worden, die der speziellen Situation in urbanen Gebieten Rechnung tragen. Diese Erweiterung wurde gutachterlich durch das Institut für Ökologie (Bodenkunde) der TU Berlin und durch eine Diplomarbeit am Fachbereich Geographie der FU Berlin unterstützt. Bei der rechentechnischen Realisierung, die durch ein externes Softwarebüro erfolgte, wurde es außerdem an die spezielle Datenlage in Berlin angepasst. Das Berechnungsverfahren ermittelt zunächst die tatsächliche Verdunstung, um den Gesamtabfluss (Niederschlag minus Verdunstung) zu errechnen. Im zweiten Arbeitsschritt wird der Oberflächenabfluss als Teil des Gesamtabflusses bestimmt. Die Differenz aus Gesamtabfluss und Oberflächenabfluss bildet dann den Versickerungsanteil. Einen Eindruck von der Komplexität des Verfahrens vermittelt Abb. 2. Der Gesamtabfluss wird aus der Differenz der langjährigen Jahresmittelwerte des Niederschlags und der realen Verdunstung berechnet. Die reale Verdunstung , wie sie im Mittel tatsächlich an Standorten und in Gebieten auftritt, wird aus den wichtigsten Einflussgrößen Niederschlag und potentielle Verdunstung sowie den mittleren Speichereigenschaften der verdunstenden Flächen berechnet. Bei ausreichender Feuchtezufuhr zur verdunstenden Fläche nähert sich die reale Verdunstung der potentiellen. Die reale Verdunstung wird zusätzlich durch die Speichereigenschaften der verdunstenden Fläche modifiziert. Höhere Speicherwirkung (z. B. größere Bindigkeit des Bodens und größere Durchwurzelungstiefe) bewirkt eine höhere Verdunstung. Dem aufgezeigten Zusammenhang zwischen den mehrjährigen Mittelwerten der realen Verdunstung einerseits sowie des Niederschlags, der potentiellen Verdunstung und der Verdunstungseffektivität des Standorts andererseits genügt die Beziehung nach Bagrov (vgl. Glugla et al. 1971, Glugla et al. 1976, Bamberg et al. 1981 und Abb. 3). Die Bagrov-Beziehung beruht auf der Auswertung langjähriger Lysimeter-Versuche und beschreibt das nichtlineare Verhältnis zwischen Niederschlag und Verdunstung in Abhängigkeit von den Standorteigenschaften. Mit der Bagrov-Beziehung kann bei Kenntnis der Klimagrößen Niederschlag P und potentielle Verdunstung EP (Quotient P/EP) sowie des Effektivitätsparameters n der Quotient reale Verdunstung / potentielle Verdunstung (ER/EP) und somit die reale Verdunstung ER für Standorte und Gebiete ohne Grundwassereinfluss ermittelt werden. Zur Berechnung der grundwasserbeeinflussten Verdunstung wird ebenfalls das Bagrov-Verfahren in modifizierter Form genutzt, indem die mittlere Kapillarwasserzufuhr aus dem Grundwasser dem Niederschlag zugerechnet wird. Mit wachsendem Niederschlag P nähert sich die reale Verdunstung ER der potentiellen Verdunstung EP, d. h. der Quotient ER/EP nähert sich dem Wert 1. Bei abnehmendem Niederschlag P (P/EP geht gegen den Wert 0) nähert sich die reale Verdunstung ER dem Niederschlag P. Die Intensität, mit der diese Randbedingungen erreicht werden, wird durch die Speichereigenschaften der verdunstenden Fläche (Effektivitätsparameter n) verändert. Die Speichereigenschaften des Standorts werden insbesondere durch die Nutzungsform (zunehmende Speicherwirksamkeit in der Reihenfolge versiegelte Fläche, vegetationsloser Boden, landwirtschaftliche, gärtnerische bzw. forstliche Nutzung) sowie die Bodenart (zunehmende Speicherwirksamkeit mit höherer Bindigkeit des Bodens) bestimmt. Maß für die Speicherwirksamkeit des unversiegelten Bodens ist die nutzbare Feldkapazität als Differenz der Feuchtewerte des Bodens für Feldkapazität (Beginn der Wasserversickerung im Boden) und für den permanenten Welkepunkt (bleibende Trockenschäden an den Pflanzen). Weitere Landnutzungsfaktoren, wie Hektarertrag, Baumart und -alter, modifizieren den Parameterwert n. Der Parameter n wurde in Auswertung von Beobachtungsergebnissen zahlreicher in- und ausländischer Lysimeterstationen und von Wasserhaushaltsuntersuchungen in Flusseinzugsgebieten quantifiziert. Für Standorte und Gebiete mit flurnahem Grundwasser tritt infolge Kapillaraufstiegs von Grundwasser in die verdunstungsbeeinflusste Bodenzone je nach Grundwasser-Flurabstand und Bodeneigenschaften eine gegenüber grundwasserunbeeinflussten Bedingungen erhöhte Verdunstung auf. Die Abflussbildung vermindert sich. Übersteigt die reale Verdunstung den Niederschlag, tritt Wasserzehrung auf, und die Werte für die Abflussbildung werden negativ (z. B. Fluss- und Seeniederungen). Bei Gewässerflächen tritt infolge höheren Wärmeangebots (geringeres Reflexionsvermögen der Einstrahlung) eine gegenüber Landflächen erhöhte potentielle Verdunstung auf. Die tatsächliche Gewässerverdunstung wird näherungsweise dieser erhöhten potentiellen Verdunstung gleichgesetzt. Punktuelle Versickerung, z. B. durch die Grundwasseranreicherunganlagen der Wasserwerke wurde nicht berücksichtigt. Bei gärtnerischer Nutzung (Kleingärten) wurde zum Niederschlag für die Bewässerung ein einheitlicher Näherungswert addiert. Nachdem der mittlere Gesamtabfluss als Differenz aus Niederschlag und realer Verdunstung berechnet wurde, wird nun in einem zweiten Arbeitsschritt der Oberflächenabfluss bestimmt. Auf Dachflächen, die in die Kanalisation entwässern, entspricht der Oberflächenabfluss dem Gesamtabfluss. Flächen, die nicht an die Kanalisation angeschlossen sind, erzeugen keinen Oberflächenabfluss. Unbebaut versiegelte Flächen infiltrieren abhängig von der Art der Oberflächenbeläge (Belagsarten) einen Teil des Abflusses in den Untergrund. Dieser Infiltrationsfaktor ist abhängig von der Breite, dem Alter und der Art der Fugen. Der nicht versickernde Abfluss wird – abhängig von dem Anschlussgrad an die Kanalisation – als Oberflächenabfluss über die Kanalisation abgeleitet oder versickert, sofern er nicht von der Kanalisation erfasst, am Rande der versiegelten Flächen. Ebenso versickern die Anteile der nicht an die Kanalisation angeschlossenen Dachflächen (vgl. Tab. 1). Die Differenz aus Gesamtabfluss und Oberflächenabfluss entspricht somit der Versickerung als Ausgangsgröße für die Grundwasserneubildung. Für die Anwendung des Verfahrens für urbane Gebiete mussten die Parameter n und die Infiltrationsfaktoren für die unterschiedlichen Versiegelungsmaterialien bestimmt werden. Hierzu wurden sowohl Lysimeterversuche mit verschiedenen Versiegelungsmaterialien als auch Berechnungen zum Benetzungsverlust ausgewertet (vgl. Wessolek/Facklam 1997). Die gewählten Größen für die genannten Parameter sind in Tab. 2 aufgeführt. Die mit dem Alterungsprozess durch Verdichtung und Verschlämmung der Fugen einhergehende Veränderung dieser Parameter wurde dabei berücksichtigt. Aufgrund nach wie vor unzureichender wissenschaftlicher Grundlagen sind die Angaben jedoch noch mit gewissen Unsicherheiten verbunden. Darüber hinaus wäre für hydrologische Fragestellungen eine andere Zusammenfassung der Belagsarten zu Belagsklassen wünschenswert. Um einen Eindruck zu vermitteln, wie die unterschiedlichen Flächennutzungen, Versiegelungsparameter und Bedingungen der Kanalisation den Wasserhaushalt beeinflussen wurde für ca. 35 Beispielsflächen mit unterschiedlichen Eingangsgrößen das Modell ABIMO angewandt und die Ergebnisse in Tabelle 3 dargestellt. Das Verhältnis von Oberflächenabfluss, Versiegelung und Verdunstung ist entscheidend vom Ausmaß der Versiegelung und der Ableitung des Regenwassers in die Kanalisation abhängig. Für die aktuelle Berechnung wurde eine neue Version des Programms ABIMO verwendet. Diese Version unterscheidet sich von der alten vor allem durch eine verbesserte Parametersteuerung bei der Zuordnung der Werte für den Anschlussgrad der Dachflächen an die Kanalisation. Im Ergebnis der Berechnungen liegen für die 25 000 Einzelflächen aktualisierte langjährige Mittelwerte für den Gesamtabfluss, den Oberflächenabfluss und die Versickerung vor. Die Werte wurden klassifiziert in mm/Jahr in den vorliegenden Karten dargestellt; die Gesamtmengen in m³/Jahr wurden ebenfalls errechnet und bilanziert. Es muss beachtet werden, dass die dargestellten Werte Mittelwerte über die als einheitliche Flächen dargestellten Blöcke sind, die in der Realität inhomogene Strukturen aufweisen. Die Abflüsse versiegelter und unversiegelter Flächen werden hier zu einem Durchschnittswert pro Block gemittelt. Außerdem werden die Abflüsse der Straßen den angrenzenden Blöcken zugeschlagen. Aus den Karten kann z.B. nicht abgelesen werden, wie hoch die Versickerungsleistung eines m² unversiegelten Bodens ist. Hierzu ist daher eine ebenfalls flächendeckende und blockbezogene Berechnung mit veränderten Randparametern – also unter der Annahme gänzlich unversiegelter Verhältnisse – vorgenommen worden, deren Ergebnisse in der Karte 02.13.4 dargestellt sind.

Oberflächenabfluss, Versickerung, Gesamtabfluss und Verdunstung aus Niederschlägen 2001

Vor knapp 10 Jahren wurde in Kooperation mit der Bundesanstalt für Gewässerkunde, Außenstelle Berlin, ein Modell entwickelt, programmiert und angewendet, das die wichtigsten Größen des Wasserhaushaltes berechnet. Die etwa 25 erforderlichen Grunddaten bzw. Eingangsparameter konnten für jede der ca. 25 000 Einzelflächen aus dem Informationssystem Stadt und Umwelt (ISU) zur Verfügung gestellt werden. Dieses Modell wurde nun unverändert aber mit den aktualisierten Daten (vgl. Datengrundlage) angewendet. Das von Glugla entwickelte Abflussbildungsmodell ABIMO ist auf der Grundlage bereits seit den 70er Jahren entwickelter Modelle zur Berechnung des Grundwasserdargebots entstanden, und um Bausteine erweitert worden, die der speziellen Situation in urbanen Gebieten Rechnung tragen. Diese Erweiterung wurde gutachterlich durch das Institut für Ökologie (Bodenkunde) der TU Berlin und durch eine Diplomarbeit am Fachbereich Geographie der FU Berlin unterstützt. Bei der rechentechnischen Realisierung, die durch ein externes Softwarebüro erfolgte, wurde es außerdem an die spezielle Datenlage in Berlin angepasst. Das Berechnungsverfahren ermittelt zunächst die tatsächliche Verdunstung, um den Gesamtabfluss (Niederschlag minus Verdunstung) zu errechnen. Im zweiten Arbeitsschritt wird der Oberflächenabfluss als Teil des Gesamtabflusses bestimmt. Die Differenz aus Gesamtabfluss und Oberflächenabfluss bildet dann den Versickerungsanteil. Einen Eindruck von der Komplexität des Verfahrens vermittelt Abb. 2. Der Gesamtabfluss wird aus der Differenz der langjährigen Jahresmittelwerte des Niederschlags und der realen Verdunstung berechnet. Die reale Verdunstung , wie sie im Mittel tatsächlich an Standorten und in Gebieten auftritt, wird aus den wichtigsten Einflussgrößen Niederschlag und potentielle Verdunstung sowie den mittleren Speichereigenschaften der verdunstenden Flächen berechnet. Bei ausreichender Feuchtezufuhr zur verdunstenden Fläche nähert sich die reale Verdunstung der potentiellen. Die reale Verdunstung wird zusätzlich durch die Speichereigenschaften der verdunstenden Fläche modifiziert. Höhere Speicherwirkung (z. B. größere Bindigkeit des Bodens und größere Durchwurzelungstiefe) bewirkt eine höhere Verdunstung. Dem aufgezeigten Zusammenhang zwischen den mehrjährigen Mittelwerten der realen Verdunstung einerseits sowie des Niederschlags, der potentiellen Verdunstung und der Verdunstungseffektivität des Standorts andererseits genügt die Beziehung nach Bagrov (vgl. Glugla et al. 1971, Glugla et al. 1976, Bamberg et al. 1981 und Abb. 3). Die Bagrov-Beziehung beruht auf der Auswertung langjähriger Lysimeter-Versuche und beschreibt das nichtlineare Verhältnis zwischen Niederschlag und Verdunstung in Abhängigkeit von den Standorteigenschaften. Mit der Bagrov-Beziehung kann bei Kenntnis der Klimagrößen Niederschlag P und potentielle Verdunstung EP (Quotient P/EP) sowie des Effektivitätsparameters n der Quotient reale Verdunstung / potentielle Verdunstung (ER/EP) und somit die reale Verdunstung ER für Standorte und Gebiete ohne Grundwassereinfluss ermittelt werden. Zur Berechnung der grundwasserbeeinflussten Verdunstung wird ebenfalls das Bagrov-Verfahren in modifizierter Form genutzt, indem die mittlere Kapillarwasserzufuhr aus dem Grundwasser dem Niederschlag zugerechnet wird. Mit wachsendem Niederschlag P nähert sich die reale Verdunstung ER der potentiellen Verdunstung EP, d. h. der Quotient ER/EP nähert sich dem Wert 1. Bei abnehmendem Niederschlag P (P/EP geht gegen den Wert 0) nähert sich die reale Verdunstung ER dem Niederschlag P. Die Intensität, mit der diese Randbedingungen erreicht werden, wird durch die Speichereigenschaften der verdunstenden Fläche (Effektivitätsparameter n) verändert. Die Speichereigenschaften des Standorts werden insbesondere durch die Nutzungsform (zunehmende Speicherwirksamkeit in der Reihenfolge versiegelte Fläche, vegetationsloser Boden, landwirtschaftliche, gärtnerische bzw. forstliche Nutzung) sowie die Bodenart (zunehmende Speicherwirksamkeit mit höherer Bindigkeit des Bodens) bestimmt. Maß für die Speicherwirksamkeit des unversiegelten Bodens ist die nutzbare Feldkapazität als Differenz der Feuchtewerte des Bodens für Feldkapazität (Beginn der Wasserversickerung im Boden) und für den permanenten Welkepunkt (bleibende Trockenschäden an den Pflanzen). Weitere Landnutzungsfaktoren, wie Hektarertrag, Baumart und -alter, modifizieren den Parameterwert n. Der Parameter n wurde in Auswertung von Beobachtungsergebnissen zahlreicher in- und ausländischer Lysimeterstationen und von Wasserhaushaltsuntersuchungen in Flusseinzugsgebieten quantifiziert. Für Standorte und Gebiete mit flurnahem Grundwasser tritt infolge Kapillaraufstiegs von Grundwasser in die verdunstungsbeeinflusste Bodenzone je nach Grundwasser-Flurabstand und Bodeneigenschaften eine gegenüber grundwasserunbeeinflussten Bedingungen erhöhte Verdunstung auf. Die Abflussbildung vermindert sich. Übersteigt die reale Verdunstung den Niederschlag, tritt Wasserzehrung auf, und die Werte für die Abflussbildung werden negativ (z. B. Fluss- und Seeniederungen). Bei Gewässerflächen tritt infolge höheren Wärmeangebots (geringeres Reflexionsvermögen der Einstrahlung) eine gegenüber Landflächen erhöhte potentielle Verdunstung auf. Die tatsächliche Gewässerverdunstung wird näherungsweise dieser erhöhten potentiellen Verdunstung gleichgesetzt. Punktuelle Versickerung, z. B. durch die Grundwasseranreicherungsanlagen der Wasserwerke wurde nicht berücksichtigt. Bei gärtnerischer Nutzung (Kleingärten) wurde zum Niederschlag für die Bewässerung ein einheitlicher Näherungswert addiert. Nachdem der mittlere Gesamtabfluss als Differenz aus Niederschlag und realer Verdunstung berechnet wurde, wird nun in einem zweiten Arbeitsschritt der Oberflächenabfluss bestimmt. Auf Dachflächen, die in die Kanalisation entwässern, entspricht der Oberflächenabfluss dem Gesamtabfluss. Flächen, die nicht an die Kanalisation angeschlossen sind, erzeugen keinen Oberflächenabfluss. Unbebaut versiegelte Flächen infiltrieren abhängig von der Art der Oberflächenbeläge (Belagsarten) einen Teil des Abflusses in den Untergrund. Dieser Infiltrationsfaktor ist abhängig von der Breite, dem Alter und der Art der Fugen. Der nicht versickernde Abfluss wird – abhängig von dem Anschlussgrad an die Kanalisation – als Oberflächenabfluss über die Kanalisation abgeleitet oder versickert, sofern er nicht von der Kanalisation erfasst, am Rande der versiegelten Flächen. Ebenso versickern die Anteile der nicht an die Kanalisation angeschlossenen Dachflächen (vgl. Tab. 1). Die Differenz aus Gesamtabfluss und Oberflächenabfluss entspricht somit der Versickerung als Ausgangsgröße für die Grundwasserneubildung. Für die Anwendung des Verfahrens für urbane Gebiete mussten die Parameter n und die Infiltrationsfaktoren für die unterschiedlichen Versiegelungsmaterialien bestimmt werden. Hierzu wurden sowohl Lysimeterversuche mit verschiedenen Versiegelungsmaterialien als auch Berechnungen zum Benetzungsverlust ausgewertet (vgl. Wessolek/Facklam 1997). Die gewählten Größen für die genannten Parameter sind in Tab. 2 aufgeführt. Die mit dem Alterungsprozess durch Verdichtung und Verschlämmung der Fugen einhergehende Veränderung dieser Parameter wurde dabei berücksichtigt. Aufgrund nach wie vor unzureichender wissenschaftlicher Grundlagen sind die Angaben jedoch noch mit gewissen Unsicherheiten verbunden. Darüber hinaus wäre für hydrologische Fragestellungen eine andere Zusammenfassung der Belagsarten zu Belagsklassen wünschenswert. Um einen Eindruck zu vermitteln, wie die unterschiedlichen Flächennutzungen, Versiegelungsparameter und Bedingungen der Kanalisation den Wasserhaushalt beeinflussen wurde für ca. 35 Beispielsflächen mit unterschiedlichen Eingangsgrößen das Modell ABIMO angewandt und die Ergebnisse in Tabelle 3 dargestellt. Das Verhältnis von Oberflächenabfluss, Versiegelung und Verdunstung ist entscheidend vom Ausmaß der Versiegelung und der Ableitung des Regenwassers in die Kanalisation abhängig. Im Ergebnis der Berechnungen liegen für die 25 000 Einzelflächen aktualisierte langjährige Mittelwerte für den Gesamtabfluss, den Oberflächenabfluss und die Versickerung vor. Die Werte wurden klassifiziert in mm/Jahr in den vorliegenden Karten dargestellt; die Gesamtmengen in m³/Jahr wurden ebenfalls errechnet und bilanziert. Es muss beachtet werden, dass die dargestellten Werte Mittelwerte über die als einheitliche Flächen dargestellten Blöcke sind, die in der Realität inhomogene Strukturen aufweisen. Die Abflüsse versiegelter und unversiegelter Flächen werden hier zu einem Durchschnittswert pro Block gemittelt. Außerdem werden die Abflüsse der Straßen den angrenzenden Blöcken zugeschlagen. Aus den Karten kann z.B. nicht abgelesen werden, wie hoch die Versickerungsleistung eines m² unversiegelten Bodens ist. Hierzu ist daher eine ebenfalls flächendeckende und blockbezogene Berechnung mit veränderten Randparametern – also unter der Annahme gänzlich unversiegelter Verhältnisse – vorgenommen worden, deren Ergebnisse in der Karte 02.13.4 dargestellt sind.

Mechanismus der Vergilbung gruener Blaetter nach Infektion mit Schaderregern

Das Projekt "Mechanismus der Vergilbung gruener Blaetter nach Infektion mit Schaderregern" wird vom Umweltbundesamt gefördert und von Technische Universität München, Institut für Botanik und Mikrobiologie, Lehrstuhl für Botanik durchgeführt.

1 2 3