Das Projekt "Global Climate and Land 2050 Calculator" wird vom Umweltbundesamt gefördert und von Potsdam-Institut für Klimafolgenforschung e.V. durchgeführt. The Global Calculator will be a simple, transparent model of global greenhouse gas emissions, energy and land in the period to 2050. It will be a highly visually engaging communications tool aimed at involving non-experts in the debate about how we should use the world's resources. It will allow the user to easily answer questions about how the global land and food system adds up, such as 'what is the trade-off between land for bio energy and food production?' and 'what impact could population growth have on global energy demand and climate impacts?'. - 'Global Calculator' web tool and spreadsheet- focused cross-platform, multi-CLC forum for leading Climate-KIC partners to develop a European perspective to global scale and relate global scale issues to EU level
Das Projekt "Flywheel energy storage for wind power generation" wird vom Umweltbundesamt gefördert und von Schaltanlagen-Elektronik-Geräte GmbH & Co. KG durchgeführt. General Information: With the ongoing attempt of the European Commission to reduce CO2 emission and protection of the environment, renewable energies will become more and more important. It is not unlikely that renewables will supply 20 - 50 per cent of the global energy demand in the middle of the next century. Integration of such a large amount of renewable energy in the current grid will however cause several problems due to the irregular output. The more remote the point of connection is from the source to the low voltage grid, the greater the disturbance in the network caused by these fluctuations. Modern turbines use the flywheel effect of the rotor to avoid the sudden large step-changes in output to the local network. More efficient use of the generated power can be made if an energy storage device is used. Photovoltaic cells present an even larger problem due to the larger and more frequent fluctuations in output. A recent study showed that increasing the share of photovoltaic energy above 2.2 per cent would present problems to the Dutch grid. Energy storage combined with renewables would increase the 'firmness' of the renewables supply and would decrease the need to connect them to a strong high voltage grid. The energy storage device could act as a power quality improvement device, importing power of whatever quality and exporting power of assured quality into the grid. Electromechanical energy storage in flywheels is a very good option for short term storage of renewable energies such as mentioned above. The benefits of flywheels over batteries are that flywheels are more compact (higher energy storage density) and they can be discharged totally on a regular duty cycle without causing damage to the system or foreshortening of the useful life. Flywheels furthermore require little maintenance offer no environmental emission as compared to batteries. The flywheel systems developed for a similar purpose in previous European projects had a maximum power up to 50 kW. With the increased power of wind turbines and the large fluctuations in photovoltaic energy there will be a strong need for a high power flywheel system. Since up scaling of the smaller systems is not possible because of several technical difficulties, a new system with a high power converter controller with very good power quality has to be designed. The objective of this project is the development of a modular high power flywheel energy storage system (more than fourfold the power and triple the energy content compared to existing flywheels) to control, store and release, the renewable energy supplied to the grid (figure 2). The system will be integrated in the electricity net in cooperation with the Dutch electrical utility (NUON). ... Prime Contractor: KEMA Nederland BV, Inspection Technology; Arnhem; Netherlands.
Climate science provides strong evidence of the necessity of limiting global warming to 1.5 ˚C, in line with the Paris Climate Agreement. The IPCC 1.5 ˚C special report (SR1.5) presents 414 emissions scenarios modelled for the report, of which around 50 are classified as '1.5 ˚C scenarios', with no or low temperature overshoot. These emission scenarios differ in their reliance on individual mitigation levers, including reduction of global energy demand, decarbonisation of energy production, development of land-management systems, and the pace and scale of deploying carbon dioxide removal (CDR) technologies. The reliance of 1.5 ˚C scenarios on these levers needs to be critically assessed in light of the potentials of the relevant technologies and roll-out plans. We use a set of five parameters to bundle and characterise the mitigation levers employed in the SR1.5 1.5 ˚C scenarios. For each of these levers, we draw on the literature to define 'medium' and 'high' upper bounds that delineate between their 'reasonable', 'challenging' and 'speculative' use by mid century. We do not find any 1.5 ˚C scenarios that stay within all medium upper bounds on the five mitigation levers. Scenarios most frequently 'over use' CDR with geological storage as a mitigation lever, whilst reductions of energy demand and carbon intensity of energy production are 'over used' less frequently. If we allow mitigation levers to be employed up to our high upper bounds, we are left with 22 of the SR1.5 1.5 ˚C scenarios with no or low overshoot. The scenarios that fulfil these criteria are characterised by greater coverage of the available mitigation levers than those scenarios that exceed at least one of the high upper bounds. When excluding the two scenarios that exceed the SR1.5 carbon budget for limiting global warming to 1.5 ˚C, this subset of 1.5 ˚C scenarios shows a range of 15-22 Gt CO2 (16-22 Gt CO2 interquartile range) for emissions in 2030. For the year of reaching net zero CO2 emissions the range is 2039-2061 (2049-2057 interquartile range). © 2021 The Author(s).
Das Projekt "Energy from biomass:Linkages between the agricultural and the energy sector in the EU" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Agrarpolitik und Landwirtschaftliche Marktlehre durchgeführt. Over the last three decades, real energy prices have increased relatively to real prices for agricultural products. Consequently, bioenergy as a share in total energy demand has increased worldwide and is expected to further increase. The potential supply of biomass for energy production has an impact on the future energy balance and demand for energy from biomass has an impact on agricultural markets. This interrelationship has often been analyzed based on either energy system models assuming a given biomass supply, or on agricultural sector models assuming a given biomass demand for energy. Alternatively, some studies address these market interdependencies based on general equilibrium models with a very stylized representation of the energy sector.The objective of this subproject is to analyze ex-ante the interdependence between the energy and the agricultural sector in the EU under energy as well as to analyze agricultural policy scenarios based on the combined use of two well-established partial models: the Integrated Markal Efom System (TIMES) PanEU Model, which is a bottom up dynamic energy system model and the European Simulation Model (ESIM), which is a partial equilibrium comparative static agricultural sector model.The work program includes the identification and creation of interfaces and exchange variables for both models, the conceptualization of the regional dimension of bioenergy markets, the further development of both models, as well as scenario development and analysis. Close interrelations exist with subproject 6: the interface with FARMIS allows addressing regional and farm specific effects of energy policy scenarios; and with subproject 8: the inclusion of agriculture in EU climate policy will have effects on the potential of the agricultural sector to supply biomass for energy, which will be taken into account.
Das Projekt "Sub-project 07: Energy from Biomass: Linkages between the Agricultural & the Energy Sector in the EU" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Agrarpolitik und Landwirtschaftliche Marktlehre, Fachgebiet Agrar- und Ernährungspolitik durchgeführt. Over the last three decades, real energy prices have increased relatively to real prices for agricultural products. Consequently, bioenergy as a share in total energy demand has increased world wide and is expected to increase further. The potential supply of biomass for energy production has an impact on the future energy balance, and demand for energy from biomass has an impact on agricultural markets. This interrelationship has often been analyzed either based on energy system models, assuming a given biomass supply, or based on agricultural sector models assuming a given biomass demand for energy. Alternatively, some studies address this market interdependencies based on general equilibrium models with a very stylized representation of the energy sector. The objective of this subproject is to ex-ante analyze the interdependence between the energy and the agricultural sector in the EU under energy as well as agricultural policy scenarios based on the combined use of two well established partial models: the Integrated Markal Efom System (TIMES) PanEU Model, which is a bottom up dynamic energy system model and the European Simulation Model (ESIM), which is a partial equilibrium comparative static agricultural sector model. The work programme includes the identification and creation of interfaces and exchange variables for both models, the conceptualization of the regional dimension of bioenergy markets, the further development of both models, as well as scenario development and analysis. Close interrelations exist with subproject 6: the interface with FARMIS allows addressing regional and farm specific effects of energy policy scenarios; and with subproject 7: the inclusion of agriculture in EU climate policy will have effects on the potential of the agricultural sector to supply biomass for energy, which will be taken into account.
Das Projekt "Global Energy Scenario - Energy (R)evolution Update 2010" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt, Institut für Technische Thermodynamik, Abteilung Systemanalyse und Technikbewertung durchgeführt. The project develops a new update of the Energy (R)evolution scenario developed in 2006 and updated in 2008 (www.energyblueprint.info). The Energy (R)evolution scenario is a global energy scenario based on the assessment of energy demand and supply patterns and the renewable energy potentials available in ten world regions. The normative scenario is developed in a back-casting process, driven by ambitious CO2-reduction targets and the world-wide phasing-out of nuclear energy. The project elaborates supply scenarios for electricity, heat and transport based on renewable energy technologies and their respective technical potentials, actual costs, cost reduction potentials, and technology maturity. The time horizon of the scenarios is until the year 2050. Scenario development includes a review by counterparts from the ten world regions and discussions with the renewable energy industry on the expected market development in the different technology branches. The update of the Energy (R)evolution Scenario will take into account the most recent trends in global energy demand and supply and CO2 emissions. Compared to the previous version, it will provide in addition an advanced Energy (R)evolution Scenario demonstrating a deployment vision of renewable energy technologies. We will apply a new Mesap-PlaNet version as modelling tool with a multi-regional approach developed by seven2one information systems.
Das Projekt "Global Energy Scenario - Energy (R)evolution Update 2012" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt, Institut für Technische Thermodynamik, Abteilung Systemanalyse und Technikbewertung durchgeführt. The project focuses on a new update of the global Energy (R)evolution scenario, which has been developed biennial since 2006 (http://www.energyblueprint.info/). The Energy (R)evolution scenario is a global energy scenario based on the assessment of energy demand and supply patterns and the renewable energy potentials available in ten world regions. The normative scenario is developed in a back-casting process, driven by ambitious CO2-reduction targets and the world-wide phasing-out of nuclear energy. The project elaborates supply scenarios for electricity, heat and transport based on renewable energy technologies and their respective technical potentials, actual costs, cost reduction potentials, and technology maturity. The time horizon of the scenario is from 2009 to 2050. The Scenario development includes a review by counterparts from the ten world regions and discussions with the renewable energy industry on the expected market development in the different technology branches. The update of the Energy (R)evolution Scenario will take into account the most recent trends in global energy demand and supply and CO2 emissions. Compared to the previous version, it will provide additional insight in on- and offshore wind energy and into the transport and heat sector, based on new data and information compiled during the last two years.
Das Projekt "Global Energy Scenario - Energy Revolution Update 2008" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt, Institut für Technische Thermodynamik, Abteilung Systemanalyse und Technikbewertung durchgeführt. The project develops an update of the Energy Revolution scenario developed in 2006 (see www.energyblueprint.info). The Energy Revolution scenario is a global energy scenario based on the assessment of energy demand and supply patterns and the renewable energy potentials available in ten world regions. The normative scenario is developed in a back-casting process, driven by ambitious CO2-reduction targets and the world-wide phasing-out of nuclear energy. The project develops energy demand projections based on key macroeconomic indicators, and elaborates supply scenarios for the heat and electricity sector. The mobilisation of renewable energy technologies takes into account their respective technical potentials, actual costs, cost reduction potentials, and technology maturity. The time horizon of the scenarios is until the year 2050. Scenario development includes in-depth discussions with counterparts from the ten world regions on specific regional energy policy framing conditions, and with the renewable energy industry on the expected market development in the different technology branches. The update of the Energy Revolution Scenario will take into account the most recent trends in global energy demand and supply and CO2 emissions. Compared to the previous version, it will provide a more detailed assessment of the transportation sector.
Das Projekt "Teilvorhaben 1: Einsatz (extrem) thermophiler Mikroorganismen zur biologischen Wasserstofferzeugung aus biogenen Roh- und Reststoffen" wird vom Umweltbundesamt gefördert und von Technische Universität Hamburg-Harburg, Arbeitsbereich Abfallwirtschaft durchgeführt. Die fermentative Erzeugung von Biowasserstoff stellt eine vielversprechende Methode zur umweltfreundlichen und nachhaltigen Energieerzeugung aus Biomasse bzw. Bioabfällen dar. Hauptziel des Forschungsprojektes war die verfahrenstechnische Entwicklung und Optimierung der biologischen H2-Erzeugung durch Vergärung, so dass aus verschiedenen biogenen Roh- und Reststoffen möglichst hohe Mengen an Wasser-stoff produziert werden. Die Laboruntersuchungen zeigen, dass eine Vielzahl an biogenen Roh- und Reststoffen für die fermentative H2-Erzeugung geeignet ist. Die höchste H2-Produktion wurde erwartungsgemäß mit Glucose erreicht (280 Nl H2/kg oTS). Die untersuchten Agrarprodukte zeigten auch hohe Produktionswerte bis 188 Nl H2/kg oTS. Als Substrate mit dem höchsten H2-Bildungspotential werden Futterrübe, Zuckerrübe, Mais und Kartoffel sowie in erster Linie deren Reststoffe empfohlen. Die Ergebnisse der semikontinuierlichen Versuche belegen eindeutig die Eignung der fermentativen H2-Erzeugung für den kontinuierlichen Betrieb (durchschnittliche H2-Produktion von 224 Nl H2/kg oTS bzw. H2-Umsatz von 72 %). Ein Problem der kontinuierlichen H2-Bildung ist prozessbedingt die Versäuerung des Systems. Daher sollte das System über eine pH-Regelung oder Pufferung verfügen (Optimum pH 5) und mit einer optimalen hydraulischen Verweilzeit (HRT-Optimum 2-3 d) betrieben werden. Der Ablauf der Wasserstoffstufe konnte erfolgreich als Substrat in einer nachgeschalteten Anaerobstufe weiter zu Methan umgesetzt werden. So wird bei der kombinierten Biowasserstoff- und Biomethanerzeugung das gesamte Energiepotential der eingesetzten Substrate genutzt. Der erwartete Energiegewinn liegt dabei ca. 20 % höher als bei der reinen Methanproduktion. Die Forschungsergebnisse zeigen somit, dass die biologische H2-Erzeugung im Rahmen der Vergärung eine vielversprechende Alternative zur Nutzung fossiler Energieträger bietet. Natürlich könnte der hohe Weltenergiebedarf nicht annähernd durch Bio-H2 gedeckt werden, doch er kann einen Beitrag zur nachhaltigen Rohstoff- und Energiebereitstellung leisten sowie die Umwelt durch Ressourcenschutz und CO2-Emissionsverminderung entlasten. Insbesondere für dezentrale Lösungen bietet sich das kombinierte Verfahren der fermentativen H2- und CH4-Erzeugung an. Nicht zu vernachlässigen ist auch die Möglichkeit der effizienteren und emissionsarmen Nutzung des Bio-H2 in Brennstoffzellen.
Das Projekt "Intelligente GaN-Leistungselektronik für effiziente Energiewandlung - ALL2GaN" wird vom Umweltbundesamt gefördert und von AIXTRON SE durchgeführt. ALL2GaN wird das Rückgrat für die europäische Leistungselektronikindustrie sein, indem es eine in der EU entwickelte Werkzeugkasten für die intelligente GaN-Integration. Das Projekt wird die Grundlage für Anwendungen mit deutlich verbesserter Material- und Energieeffizienz schaffen, um den globalen Energiebedarf zu decken und gleichzeitig den CO2 Fußabdruck so gering wie möglich zu halten. In den heutigen Zeiten einer allgegenwärtigen Energiekrise und unter der Bedrohung durch kritische Klimaveränderungen stehen wir vor der Situation, dass jedes kleine bisschen Energie (jedes W), das auf dem Weg von der Quelle bis zum Endverbraucher/Anwendung erhalten bleibt, zählt. Leistungsverluste von Milliarden leistungselektronischer Komponenten, die bei der Energieerzeugung, -übertragung und -umwandlung eingesetzt werden, machen einen nicht zu vernachlässigenden Teil des elektrischen Energieverbrauchs in der EU aus, der sich 2018 auf 2800 TWh (Terawattstunden; Quelle: Eurostat) belief. Im Durchschnitt können 6 elektronische Energieumwandlungen zwischen Erzeugung und Verbrauch veranschlagt werden - alle Wirkungsgrade multipliziert ergeben etwa 730 TWh Umwandlungsverluste, was etwa 365 Megatonnen CO2 entspricht. Diese Energieverluste können durch den Einsatz moderner Leistungshalbleiter erheblich verringert werden. Etwa 40% der elektronischen Energieumwandlungsverluste können durch GaN-Leistungsschalter günstig beeinflusst werden. ALL2GaN zielt auf eine durchschnittliche Verlustreduzierung von 30 % in allen Anwendungsfällen ab, was zu einer langfristigen Verlustreduzierung von etwa 86 TWh (EU), was etwa 43 Megatonnen CO2 pro Jahr entspricht, und das entspricht 437 TWh (weltweit), was etwa 218 eingesparten Megatonnen CO2 entspricht.