API src

Found 19 results.

Related terms

basemap.world WebVektor

Die basemap.world Web Vektor ist ein von Bund und Ländern gemeinsam entwickelter und durch das Bundesamt für Kartographie und Geodäsie (BKG) bereitgestellter Internet-Kartendienst im Vektorformat. Auf der Grundlage von amtlichen und open source Geobasisdaten vermittelt er eine attraktive, weltweit einheitliche Kartendarstellung in Zoomstufen von einer globalen Übersicht bis zur Einzelhausdarstellung. Seine leistungsfähige Realisierung und seine moderne kartographische Gestaltung unterstützen vielfältige Anwendungsbereiche. Datengrundlagen für die basemap.world Web Vektor sind beispielsweise das ATKIS Basis-DLM, Hauskoordinaten und 3D Gebäudemodelle aus den Bundesländern sowie die am BKG gepflegten Digitalen Landschaftsmodelle 1:250 000 und 1:1 000 000 für das deutsche Bundesgebiet, sowie OpenStreetMap und NaturalEarth für die weltweite Abdeckung.

Natural Radionuclides in Groundwater (NORM) (WMS)

Considering water as the primary resource necessary for social life, agriculture, industry, and wealth, the importance of groundwater investigation is clear. Apart from many other pollutants, this work focusses on geogenic uranium (U) and radium (Ra), which both stand for natural radionuclides (NORM) that need to be considered frame of groundwater exploration and monitoring programmes due to their specific mobility and chemo-/radiotoxicity. As investigation of U and – to a lesser extent - Ra is done by an increasing number of scientific working groups, the global dataset is improving continuously. In order to give a summarized overview on available and recent literature, scientific papers, reports, and governmental documents have been reviewed for U-238 mass concentrations and Ra-226 and Ra-228 activity concentrations and collected in tables and global maps. Further natural isotopes of U and Ra have been rarely subject of investigation. The collected data were evaluated and interpreted in frame of an associated scientific publication (see citation). From the available data it can be concluded that high geogenic U occur mainly under oxidizing conditions and carbonate rich groundwater, which might be seen as indicator for elevated U concentrations. Certain geological formations, as for example sedimentary, granitic, and volcanic host rocks, promote high U concentrations in groundwater. For geogenic Ra, the search for definite indications proved difficult, since less clear correlation is given for any observed factor. In a global perspective, the most promising evidence for elevated Ra are highly reducing redox conditions, as well as the occurrence of Fe/Mn mineral phases. Furthermore, barite represents a sink for Ra due to its ability to incorporate Ra isotopes. Dissolution of those mineral phases eventually results in co-dissolution of Ra, when Ra is found in host rocks of investigated aquifers, or downstream of such groundwater reservoirs. Furthermore, cation exchange might enhance Ra mobility process, especially in case of sedimentary aquifers with low sorption capacity and/or aquifers with high salinity. Given those chemical requirements for the occurrence of U and Ra, a negative correlation between mother and daughter nuclide can be established. When knowledge on present geological and geochemical constraints is available, elevated U and Ra concentrations might be predictable, as long as anthropogenic influence is excluded.

Natural Radionuclides in Groundwater (NORM)

Considering water as the primary resource necessary for social life, agriculture, industry, and wealth, the importance of groundwater investigation is clear. Apart from many other pollutants, this work focusses on geogenic uranium (U) and radium (Ra), which both stand for natural radionuclides (NORM) that need to be considered frame of groundwater exploration and monitoring programmes due to their specific mobility and chemo-/radiotoxicity. As investigation of U and – to a lesser extent - Ra is done by an increasing number of scientific working groups, the global dataset is improving continuously. In order to give a summarized overview on available and recent literature, scientific papers, reports, and governmental documents have been reviewed for U-238 mass concentrations and Ra-226 and Ra-228 activity concentrations and collected in tables and global maps. Further natural isotopes of U and Ra have been rarely subject of investigation. The collected data were evaluated and interpreted in frame of an associated scientific publication (see citation). From the available data it can be concluded that high geogenic U occur mainly under oxidizing conditions and carbonate rich groundwater, which might be seen as indicator for elevated U concentrations. Certain geological formations, as for example sedimentary, granitic, and volcanic host rocks, promote high U concentrations in groundwater. For geogenic Ra, the search for definite indications proved difficult, since less clear correlation is given for any observed factor. In a global perspective, the most promising evidence for elevated Ra are highly reducing redox conditions, as well as the occurrence of Fe/Mn mineral phases. Furthermore, barite represents a sink for Ra due to its ability to incorporate Ra isotopes. Dissolution of those mineral phases eventually results in co-dissolution of Ra, when Ra is found in host rocks of investigated aquifers, or downstream of such groundwater reservoirs. Furthermore, cation exchange might enhance Ra mobility process, especially in case of sedimentary aquifers with low sorption capacity and/or aquifers with high salinity. Given those chemical requirements for the occurrence of U and Ra, a negative correlation between mother and daughter nuclide can be established. When knowledge on present geological and geochemical constraints is available, elevated U and Ra concentrations might be predictable, as long as anthropogenic influence is excluded.

Karte der Geowissenschaftlichen Sammlungen der BGR basierend auf GewiS (WMS)

Die Karte der Geowissenschaftlichen Sammlungen der BGR zeigt die Fundorte der Sammlungsobjekte. Die dargestellte Lage der Fundorte basiert auf vorhandenen Koordinaten („Fundort erfasst“) oder auf nachträglich bestimmten Koordinaten, die auf Textbeschreibungen basieren („Position ermittelt“). Über den BGR-Geoviewer können Sie über einen Link direkt in die GewiS-Anwendung (https://gewis.bgr.de) und damit in die Beschreibung der Sammlungsobjekte gelangen.

Pilot Screening of Environmental Hazard Potentials of Mine Sites (OekoRess III)

The online map displays the location, surface extension and environmental hazard potentials for 100 mine sites for iron, copper and bauxite. The map contains standard map tools, filter functions and info boxes providing back-ground information on the OekoRess III project and the applied evaluation method. When the user clicks on each mine site displayed, a drop-down list appears that contains further site-specific information and a link for down-loading a factsheet (pdf).

Karte der Geowissenschaftlichen Sammlungen der BGR basierend auf GewiS

Die Karte der Geowissenschaftlichen Sammlungen der BGR zeigt die Fundorte der Sammlungsobjekte. Die dargestellte Lage der Fundorte basiert auf vorhandenen Koordinaten („Fundort erfasst“) oder auf nachträglich bestimmten Koordinaten, die auf Textbeschreibungen basieren („Position ermittelt“). Über den BGR-Geoviewer können Sie über einen Link direkt in die GewiS-Anwendung (https://gewis.bgr.de) und damit in die Beschreibung der Sammlungsobjekte gelangen

World Karst Aquifer Map (WHYMAP WOKAM) (WMS)

The World-wide Hydrogeological Mapping and Assessment Programme (WHYMAP) provides data and information about the earth´s major groundwater resources. The World Karst Aquifer Map (WOKAM) allows a more precise global quantification of karst systems. The map will help to increase awareness of karst groundwater resources in the context of global water issues and will serve as a basis for other karst-related research questions at global scales: for example those related to climate change, biodiversity, food production, geochemical cycles and urbanisation.

World Karst Aquifer Map (WHYMAP WOKAM)

The World-wide Hydrogeological Mapping and Assessment Programme (WHYMAP) provides data and information about the earth´s major groundwater resources. The World Karst Aquifer Map (WOKAM) allows a more precise global quantification of karst systems. The map will help to increase awareness of karst groundwater resources in the context of global water issues and will serve as a basis for other karst-related research questions at global scales: for example those related to climate change, biodiversity, food production, geochemical cycles and urbanisation.

Global Groundwater Vulnerability to Floods and Droughts (WHYMAP GWV) (WMS)

The World-wide Hydrogeological Mapping and Assessment Programme (WHYMAP) provides data and information about the earth´s major groundwater resources. The Map of Global Groundwater Vulnerability to Floods and Droughts indicates the vulnerability level of groundwater resources of the earth. It presents the intrinsic vulnerability of groundwater systems and the sensitivity or resistance of those systems to natural disasters.

River and Groundwater Basins of the World (WHYMAP RGWB) (WMS)

The World-wide Hydrogeological Mapping and Assessment Programme (WHYMAP) provides data and information about the earth´s major groundwater resources. The River and Groundwater Basins Map shows the areal extent of the global groundwater and surface water basins.

1 2