Das Ziel des Projektkonsortiums ist es die regional stark verankerte Obstbaulandwirtschaft nachhaltig zu unterstützen. Der Fokus des Vorhabens liegt dabei auf den Themen Bewässerung und Pflanzenschutz und hat zum Ziel durch den Einsatz smarter Messtechnik und intelligenter Auswertealgorithmen Einsparungen von Betriebsmitteln, wie Diesel, Pflanzenschutzmittel und Wasser zu ermöglichen. Erreicht werden soll dieses Ziel durch ein Neudenken der etablierten Bewirtschaftungsmethoden, die sich auf Expertenwissen und langjährige nicht quantifizierbare Erfahrungen beruhen. Die begrenzte Erfassbarkeit der komplexen Einflussfaktoren wie Klima, Vorjahresertrag, Blühverlauf uvm. auf die Erntemenge und -qualität lassen sich vom Erzeuger nicht im Detail überblicken und führen somit zu verallgemeinerten Behandlungen der gesamten Anbaufläche mit Pflanzenschutzmitteln anstatt punktuell zu agieren. Mit dem Ansatz eines multisensoriellen Bilderfassungssystems können alle Obstbäume und Anbauflächen automatisiert erfasst und katalogisiert werden. Die Bild- und Sensordaten können entlang der Saison Aufschluss über die Kenngrößen der Pflanzen (Wachstum, Frucht- und Blütenzahl, durchgeführte Behandlungen) liefern und über Jahre hinweg gesichert und mit Hilfe von KI-Algorithmen analysiert werden, wodurch relevantere Handlungsempfehlungen teilflächen- und baumspezifisch abgeleitet werden können. Mit Hilfe autonomer Robotik können die individuell abgestimmten Behandlungen der Bäume durchgeführt werden. Die Sammlung der Daten in einem zentralen interaktiven Hofmanagementsystem bietet zudem eine Schnittstelle, um hochaufgelöste Wetterdaten von verteilten Stationen zu integrieren, wodurch ein teilflächenspezifischer Einsatz der Frostschutzberegnung und somit eine Einsparung von Wasser erreicht werden kann. Durch die Vernetzung und Kooperation der Projektpartner mit lokalen Partnern und Obstbauern kann das erworbene Forschungswissen nachhaltig in der Region an Interessierte weitergegeben werden.
Das Projekt WegDemo verfolgt anbindend an das erfolgreiche bis Ende 2007 gelaufene Pilotprojekt WegenerNet, ein dreiteiliges Ziel hin zur Erreichung einer professionell geführten, in Forschung und Region nachgefragten Klima- und Wetterdatenressource WegenerNet: 1.) Aufbereitung der WegenerNet Stationsdaten in operationell verfügbare hochauflösende Wetter- und Klimamonitoring-Felder für alle Daten ab Jänner 2007 (Basisauflösung 1 km x 1 km; gesamtes WegenerNet-Gebiet); 2.) Publikation, Verbreitung und Positionierung der Ergebnisse und Informationen zum aufgebauten (weltweit einzigartigen) Feldexperiment in Forschungs-Community, Öffentlichkeit und Region; 3.) Demonstration des WegenerNet Vollbetriebs in operationeller Form, Festigung der Wartungs-, Service- und Entwicklungsaufgaben bei Stationsinfrastruktur und Sensorik, beim Prozessierungssystem und bei den Nutzerschnittstellen (insbes. Web). Per Sommer 2009 soll das WegenerNet nach Abschluss des WegDemo Projekts schließlich in einen langfristig angelegten operationellen Betrieb als eine in dieser Art international einzigartige Ressource für hoch auflösende Wetter- und Klimabeobachtung übergehen. Weiters werden im Laufe des WegDemo Projektes die Kooperationen mit den komplementären flächendeckenden Messungen im WegenerNet-Gebiet zur hoch auflösenden Blitzbeobachtung (LiNet der Forschungsgruppe Sferics/Dept. f. Physik, Univ. München, D) und zur hoch auflösenden Wolken-, Regen- und Hagelbeobachtung (3D Doppler-Wetterradar der Steirische Hagelabwehrgenossenschaft und TU Graz) intensiviert werden. Ebenso werden (längerfristige) Zukunftsplanungen durchgeführt.
PhytOakmeter (www.phytoakmeter.de) is a field platform using the Quercus robur oak clone DF159 outplanted since 2010. This platform is used to monitor the impact of climate change and land use management on the "soil - plant - interactor" complex. Sites from PhytOakmeter are located either in forest or grassland habitats and represent a wide range of environmental contexts with specific stressors. All sites are equipped with loggers measuring air and soil temperature and soil moisture. Soil cores have been collected to analyze their chemical and physical characteristic. The DKr plot in Kreinitz (Germany) started in 2010 with 12 oak trees outplanted yearly between 2010 and 2019 over two 11m x 15m grassland plots. Soil temperature and soil moisture were measured between 2016 and 2025, and soil chemistry was assessed yearly in the root-affected zone of trees aged between one and five years. Soil porosity and texture were evaluated in 2020. The bundled publication is supplemented by recorded precipitation and weather data from an automatic weather station located on site.
<p>Dieser Datensatz beinhaltet historische Wetterdaten der Station des DWD (Station-Nummer: 02712) im Konstanzer Silvanerweg 6 über einen längeren Zeitraum.</p> <p>Am 25.07.2017 ist eine Änderung des Gesetzes über den Deutschen Wetterdienst ("DWD-Gesetz") in Kraft getreten. Der DWD wird gesetzlich beauftragt, seine Wetter- und Klimainformationen weitgehend entgeltfrei zur Verfügung zu stellen. Zurzeit stehen viele Geodaten wie Modellvorhersagen, Radardaten, aktuelle Mess- und Beobachtungsdaten sowie eine große Zahl von Klimadaten auf dem Open Data Server <a href="https://opendata.dwd.de/"><strong>https://opendata.dwd.de</strong> </a>zur Verfügung. Die Klimadaten werden unter <strong><a href="https://opendata.dwd.de/climate_environment/">https://opendata.dwd.de/climate_environment/CDC</a></strong> bereitgestellt.</p> <p>Die frei zugänglichen Daten dürfen entsprechend der "Verordnung zur Festlegung der Nutzungsbestimmungen für die Bereitstellung von Geodaten des Bundes (GeoNutzV)" unter Beigabe eines Quellenvermerks ohne Einschränkungen weiterverwendet werden (<a href="https://gdz.bkg.bund.de">https://gdz.bkg.bund.de</a>). Im Hinblick auf die Gestaltung der Quellenvermerke fordert der Deutsche Wetterdienst (DWD) (gemäß § 7 DWD-Gesetz, § 3 GeoNutzV) zur Beachtung nachfolgender Hinweise auf:</p> <ul> <li>Die Pflicht zur Einbindung beigegebener Quellenvermerke gilt für die unveränderte Verwendung von Geodaten und anderer Leistungen des DWD. Auch bei Bildung von Auszügen oder Änderung des Datenformats sind Quellenvermerke einzubinden. Eine Abbildung des DWD-Logos ist als Quellenvermerk im Sinne der GeoNutzV ausreichend.</li> <li>Bei weitergehenden Veränderungen, Bearbeitungen, neuen Gestaltungen oder sonstigen Abwandlungen erwartet der DWD mindestens eine Nennung des DWD in zentralen Quellenverzeichnissen oder im Impressum.</li> <li>Veränderungshinweise gemäß GeoNutzV können z.B. lauten: "Datenbasis: Deutscher Wetterdienst, Rasterdaten bildlich wiedergegeben", "Datenbasis: Deutscher Wetterdienst, Einzelwerte gemittelt" oder "Datenbasis:Deutscher Wetterdienst, eigene Elemente ergänzt".</li> </ul> <p>Bei einer Verwendung, die nicht der Zweckbestimmung der Leistung des DWD gerecht wird, sind beigegebene Quellenvermerke zu löschen. Das gilt insbesondere für Wetterwarnungen, wenn nicht sichergestellt ist, dass diese jederzeit vollständig und unverzüglich allen Nutzern zur Verfügung gestellt werden.</p> <p><strong>Quelle: </strong>Deutscher Wetterdienst (DWD)</p>
The weather station was set up in the beginning of the sampling period in August 2019 and ran the entire sampling period with an interruption between 30th January 2020 and 11th June 2020. Air and soil temperatures, relative humidity and photosynthetic flux density were measured on hourly intervals. Please note that the ground temperature sensor was situated 20 above the ground and therefore the measured medium depends on the conditions of the field site. Before rewetting, the medium was air, but after rewetting, when the area was usually inundated with water it indicates water temperatures.
<p>Dieser Datensatz enthält Links zu den Daten der DWD Wetterstation Münster/Osnabrück.</p> <p><strong>Stationsinformationen</strong></p> <ul> <li>Stationsname: Münster/Osnabrück</li> <li>Stations-Kennziffer: 10315</li> <li>Stations_ID: 1766</li> <li>ICAO-Kennun: EDDG</li> <li>Stationshöhe in Metern: 48</li> <li>Geogr. Breite: 52° 08'</li> <li>Geogr. Länge: 07° 42'</li> <li>Automat. seit: 01.08.1995</li> <li>Beginn Klimareihe: 1989</li> <li>Geokoordinate Lat/Lon: 52.1344, 7.6969</li> </ul> <p><strong>Lizenzinformationen</strong></p> <p>Die Geodaten des DWD dürfen entsprechend der Creative Commons BY 4.0 - Lizenz (<a class="RichTextExtLink ExternalLink" href="https://creativecommons.org/licenses/by/4.0/" rel="noopener noreferrer" target="_blank" title="Externer Link Creative Commons BY 4.0 (Bedingungen) (Öffnet neues Fenster)">CC BY 4.0</a>) unter Beigabe eines Quellenvermerks zum DWD weiterverwendet werden. Die konkreten Nutzungsbedingungen finden sich auf der DWD-Homepage im Bereich <a class="RichTextIntLink NavNode" href="https://www.dwd.de/DE/service/rechtliche_hinweise/rechtliche_hinweise_node.html;jsessionid=4658D880DB719CAA223919BA2C9FA60E.live21064" rel="noopener noreferrer" target="_blank" title="Rechtliche Hinweise (Öffnet neues Fenster)">Rechtliche Hinweise</a>.</p> <p><strong>Alternative Bezugsquelle</strong></p> <p>Da der Open-Data-Server des DWD teilweise unübersichtlich ist, werden die Daten des DWD zusätzlich über eine offen zugängliche API <a href="https://brightsky.dev/">bereitgstellt durch das zivilgesellschaftlich betriebene Projekt "Brightsky Dev"</a>. Bitte beachten Sie bei der Nutzung von brightsky.dev, dass es sich um ein von einer Privatperson freiwillig betriebenes Projekt handelt.</p> <p>Stichworte: Niederschlag, Niederschlagsdaten, Regen, Regendaten</p>
Entwicklung des Notfallschutzes in Deutschland Nach dem Unfall von Tschornobyl wurde 1986 das Bundesumweltministerium gegründet, drei Jahre später das Bundesamt für Strahlenschutz . Als direkte Folge von Tschornobyl entstand in Deutschland das "Integrierte Mess- und Informationssystem" (kurz IMIS ). Darin werden alle Messdaten offizieller Stellen zur Umweltradioaktivität gesammelt und ausgewertet. Mit 1.700 rund um die Uhr aktiven Überwachungssonden löst das flächendeckende ODL -Messnetz bei erhöhter Radioaktivität in der Luft Deutschlands automatisch Alarm aus. Nach dem Unfall in Fukushima 2011 sind Untersuchungsergebnisse des BfS in eine Empfehlung der Strahlenschutzkommission ( SSK ) zur Ausweitung der bisherigen Planungszonen für den Notfallschutz in der Umgebung von Kernkraftwerken eingeflossen. 1986: der Kalte Krieg ist noch nicht vorbei, Deutschland ist getrennt in DDR und BRD, und auch die (weltweite) Kommunikation geschieht ganz anders als heutzutage: Internet und Smartphones sind noch nicht erfunden. Als im April 1986 erste Meldungen und Bilder über einen Störfall im sowjetischen Kernkraftwerk Tschornobyl ( russ. : Tschernobyl) bekannt wurden, herrschte zunächst Unsicherheit über das, was passiert war. Erst nach und nach gaben staatliche Stellen Bewertungen über das Ereignis ab. Die durch politische Rahmenbedingungen ohnehin dünne Informationslage wurde für die Bevölkerung in Deutschland zusätzlich diffus, da verschiedene staatliche Stellen unterschiedliche Verhaltensempfehlungen abgaben. Es gab keine bundesweit einheitlichen Richtwerte, keine gesetzliche Grundlagen und nur wenige Stellen, die die Radioaktivität in der Luft messen konnten. Internationale Abkommen über den schnellen gegenseitigen Informationsaustausch zu nuklearen Unfällen fehlten. 1989: Gründung des BfS In der Folge des Unfalls von Tschornobyl ( russ. : Tschernobyl) wurde noch im Jahr 1986 das Ministerium für Umwelt-, Naturschutz und Reaktorsicherheit ( BMU ) gegründet. Drei Jahre später folgte 1989 die Gründung des Bundesamtes für Strahlenschutz ( BfS ), welches unter anderem dafür zuständig ist, die Kontamination der Umwelt nach einem radiologischen Unfall schnell zu ermitteln und die Lage zu bewerten. Verschiedene wissenschaftliche Einrichtungen wurden im BfS integriert, so zum Beispiel das Institut für Strahlenhygiene des Bundesgesundheitsamtes in Neuherberg bei München, das Institut für Atmosphärische Radioaktivität des Bundesamtes für Zivilschutz in Freiburg, Teile der Physikalisch-Technischen Bundesanstalt in Braunschweig und (nach dem Mauerfall 1989) das Staatliche Amt für Atomsicherheit und Strahlenschutz der DDR in Berlin. Als Hauptsitz des BfS wurde Salzgitter gewählt. Gesetzliche Grundlagen Das Fehlen gesetzlicher Vorgaben führte nach dem Reaktorunfall von Tschornobyl ( russ. : Tschernobyl) dazu, dass teilweise unterschiedliche Grenzwerte und Maßnahmen im Bund und in den Bundesländern empfohlen wurden. Um die rechtliche Voraussetzung für ein bundesweit koordiniertes Handeln in vergleichbaren Situationen zu schaffen, wurde bereits am 19. Dezember 1986 das "Gesetz zum vorsorgenden Schutz der Bevölkerung gegen Strahlenbelastung" (Strahlenschutzvorsorgegesetz) erlassen. Zweck dieses Gesetzes war es, die routinemäßige Überwachung der Radioaktivität in der Umwelt neu zu regeln. Außerdem galt es, "die Strahlenexposition der Menschen und die radioaktive Kontamination der Umwelt im Falle von Ereignissen mit möglichen, nicht unerheblichen radiologischen Auswirkungen unter Beachtung des Standes der Wissenschaft und unter Berücksichtigung aller Umstände durch angemessene Maßnahmen so gering wie möglich zu halten". Inzwischen regelt das 2017 verabschiedete Strahlenschutzgesetz ( StrlSchG ) die Maßnahmen zum Schutz der Bevölkerung vor radioaktiven Stoffen . Es vereinheitlicht die bisherigen gesetzlichen Regelwerke im Strahlenschutz und sieht unter anderem den Aufbau des Radiologischen Lagezentrums des Bundes ( RLZ ) unter Leitung des Bundesumweltministeriums vor. Meilensteine in der Entwicklung 2022: Angriffskrieg gegen die Ukraine Seit Beginn des russischen Angriffskrieges gegen die Ukraine im Februar 2022 finden erstmals in Europa militärische Auseinandersetzungen in einem Land mit Kernkraftwerken statt. Der Krieg in der Ukraine hat auch den radiologischen Notfallschutz in Deutschland beeinflusst: Die bis dahin etablierten und regelmäßig geübten Notfallschutz-Strukturen werden nun konkret auf dieses Ereignis angewandt und weiterentwickelt. Die Rufbereitschaften im BfS haben ihre Arbeit intensiviert . Unsere Kolleg*innen erstellen u.a. zweimal täglich eine mögliche Ausbreitungsberechnung anhand von Wetterdaten und zweimal wöchentlich eine Situationsdarstellung der Lage in der Ukraine. Welche Auswirkungen eine Freisetzung von Radioaktivität in ukrainischen, aber auch in anderen europäischen Kraftwerken auf Deutschland haben könnten, hat das BfS bereits vor Ausbruch des Krieges in der Ukraine regelmäßig untersucht. Wie bei internationalen Übungen und in unterschiedlichen Notfallszenarien in der Vergangenheit erprobt, überprüft das BfS auch im konkreten Fall des Ukraine-Krieges täglich etwa 500 bis 600 Messwerte aus der gesamten Ukraine und benachbarten Ländern. Die Daten stammen aus verschiedenen Messeinrichtungen sowohl vonseiten der Behörden vor Ort als auch der Zivilgesellschaft. Unsere Kolleg*innen werten routinemäßig unterschiedliche Quellen aus, um einen bestmöglichen Überblick zu erhalten und mögliche Falschmeldungen zu identifizieren. Zudem stehen sie, wie auch in Friedenszeiten, in einem engen Austausch mit internationalen Partnern, darunter mit der IAEA und der Europäischen Union ( EU ). Die radiologische Bedrohungslage hat sich durch das Kriegsgeschehen verändert: In dem Angriffskrieg auf die Ukraine werden immer wieder Kernkraftwerke in Kriegshandlungen hineingezogen. Außerdem gibt es neue oder aktueller gewordene Szenarien im Umfeld hybrider Bedrohungslagen, darunter Cyberangriffe und Straftaten im Zusammenhang mit radioaktiven Stoffen . Selbst der Einsatz von Kernwaffen in Europa scheint nicht mehr ausgeschlossen zu sein. Deutschland braucht in der neuen Sicherheitslage einen noch stärkeren radiologischen Notfallschutz und gute Vorbereitung. Dazu gehört auch, die Abläufe in unterschiedlichen Krisenszenarien immer wieder zu üben. Unsere Expert*innen beobachten nicht nur die Lage in der Ukraine genau, sondern üben auch andere Szenarien, um den radiologischen Notfallschutz weiter zu stärken. Medien zum Thema Mehr aus der Mediathek Strahlenschutz im Notfall Auch nach dem Ausstieg Deutschlands aus der Kernkraft brauchen wir einen starken Notfallschutz. Wie das funktioniert, erklärt das BfS in der Mediathek. Stand: 30.06.2025
Die Zielsetzung bei meteorologischen Beobachtungen in Bayern unterlag einem Wandel im Lauf der Geschichte. Anfangs zeichneten einzelne Äbte das Wetter auf mit dem Ziel, die Klosterökonomie zu verbessern. 1781 organisierte die Akademie der Wissenschaften ein regionales Messnetz, bei dem vor allem Instrumente zum Einsatz kamen und eine einheitliche Beobachtungsmethode zugrunde gelegt wurde. Die Ideen und fachlichen Vorgaben dazu waren von Heinrich Lambert schon 1761 ausgearbeitet worden. Als 1803 die Klöster aufgelöst wurden, die die Beobachtungen vorgenommen hatten, wurden die Landgerichtsärzte zu Beobachtungen verpflichtet, doch war keine zentrale Steuerung vorgesehen. Neue Ansätze der Akademie ab 1807 zur Restituierung des Netzes fanden nicht die erforderliche Unterstützung der Ministerien, so dass nur zwei amtliche Stationen existierten und daneben durch Privatinitiativen Beobachtungen in einzelnen Städten zustande kamen. Ab 1839 gelang es Lamont von der Sternwarte Bogenhausen, erneut ein Messnetz zu organisieren, das aber zeitlich befristet war. 1863 kam ein forstmeteorologisches Projekt zustande. Nach internationalen Vorarbeiten entstand 1878 ein modernes staatliches Beobachtungsnetz mit einer Zentralanstalt in München, die auch Datenprüfungen vornahm. Die im Vorgängerprojekt erfolgreich begonnenen Recherchen und Zusammenstellungen von relevantem Archiv- und Literaturmaterial bietet eine gute Grundlage für eine Geschichte der Meteorologie in Bayern, sie sind aber noch fortzuführen und auszuarbeiten. Über die Situation vor 1820 geben private Briefe von Gelehrten und Instrumentenbauern zusätzliche Anhaltspunkte. Die konkreten Arbeitsziele sind:1. Edition der Briefe des Augsburger Feinmechanikers Georg Friedrich Brander (1713-1783), die im Zeitraum 1756-1783 an das Kloster Polling geschickt wurden (etwa 140 Briefe).2. Edition der Briefe des Benediktiners Placidus Heinrich, OSB in Regensburg, an Augustin Stark in Augsburg aus dem Zeitraum 1804-1824 (etwa 50 Briefe). 3. Geschichte der Meteorologie in Bayern.
| Origin | Count |
|---|---|
| Bund | 716 |
| Global | 12 |
| Kommune | 7 |
| Land | 127 |
| Wissenschaft | 149 |
| Zivilgesellschaft | 13 |
| Type | Count |
|---|---|
| Daten und Messstellen | 137 |
| Ereignis | 26 |
| Förderprogramm | 608 |
| Hochwertiger Datensatz | 1 |
| Text | 49 |
| Umweltprüfung | 34 |
| unbekannt | 103 |
| License | Count |
|---|---|
| geschlossen | 97 |
| offen | 837 |
| unbekannt | 24 |
| Language | Count |
|---|---|
| Deutsch | 705 |
| Englisch | 338 |
| Resource type | Count |
|---|---|
| Archiv | 19 |
| Bild | 5 |
| Datei | 163 |
| Dokument | 18 |
| Keine | 472 |
| Webdienst | 2 |
| Webseite | 357 |
| Topic | Count |
|---|---|
| Boden | 560 |
| Lebewesen und Lebensräume | 806 |
| Luft | 740 |
| Mensch und Umwelt | 958 |
| Wasser | 566 |
| Weitere | 875 |