Während die Auswirkungen von Klimawandel auf physiologische und ökologische Prozesse das Thema zahlreicher Untersuchungen waren, sind evolutionäre Prozesse im Zusammenhang mit Klimawandel weit weniger gut untersucht. Insbesondere mangelt es an Studien zu möglichen komplexen Wechselwirkungen zwischen ökologischen und evolutionären Prozessen in einer sich ändernden Umwelt. Artspezifische Unterschiede in Anpassungsraten könnten die Dynamik der gesamten Art-Gemeinschaft beeinflussen, umgekehrt könnten sich ökologische Prozesse wie Interaktionen zwischen Arten, Immigration und Emigration auf das Anpassungspotential von Arten auswirken. Die Tatsache, dass Klimawandel zu Veränderungen in mehreren Umweltfaktoren führt, macht Vorhersagen über mögliche Auswirkungen noch schwieriger, da sich Veränderungen in mehreren Stressoren interaktiv auf ökologische und evolutionäre Prozesse auswirken könnten. Die Ziele des vorgeschlagenen Projektes sind die Analyse von ökologischen und evolutionären Prozessen und deren Wechselwirkung (1) bei Veränderung von mehreren Stressoren, (2) bei Umweltveränderung in trophisch einfachen versus trophisch komplexen Gemeinschaften, und (3) bei Umweltveränderung in isolierten versus verbundenen Habitaten. Diese Fragestellungen sollen mit einer Kombination aus Modellierung, Mikrokosmen- und Mesokosmen-Experimenten untersucht werden. In einem Selektionsexperiment über hunderte von Generationen werden mehrere Algenarten bei konstanten bzw. steigenden CO2- und/oder Temperatur-Werten exponiert. Ebenso werden mehrere Ciliatenarten bei konstanter bzw. steigender Temperatur gehalten. Reziproke Transplantationsexperimente testen, ob eine mögliche Anpassung von Algen an steigende CO2-Werte durch gleichzeitige Erhöhung der Temperatur beeinflusst wird. Weiters wird getestet, ob sich Arten von verschiedenen trophischen Ebenen (Algen versus Ciliaten) in ihrer Anpassungsfähigkeit unterscheiden. Reziproke Transplantationsexperimente der gesamten Gemeinschaft werden testen, ob evolutionäre Prozesse die Dynamik der Gemeinschaft beeinflussen. Interaktive Effekte von Umweltveränderung und Habitatkonnektivität auf ökologische und evolutionäre Prozesse werden sowohl in einem Mikrokosmenexperiment als auch in einem Mesokosmenexperiment untersucht. Der Effekt von steigender Temperatur (Mikrokosmenexperiment) bzw. abnehmendem pH-Wert (Mesokosmenexperiment) wird in isolierten bzw. verbundenen Habitaten verglichen. In einem theoretischen Ansatz werden die drei Fragestellungen in einem Modell verknüpft. Zunächst werden Evolution und Umweltveränderung in ein Metagemeinschaftsmodell integriert. Entlang eines Konnektivitäts-Gradienten wird die relative Bedeutung von lokaler Anpassung im Vergleich zu Wanderungsprozessen untersucht. usw.
Dieser Dienst stellt für das INSPIRE-Thema Verteilung der Arten - Laubmoose__Bryopsida_E-O aus den Geofachdaten bereit.:Dieser Layer visualisiert die saarländischen Wimpern-Hedwigsmoos (Varietaet) Fundorte.
Die Messstelle Brücke Leising (Messstellen-Nr: 4174) befindet sich im Gewässer Altmühl in Bayern. Die Messstelle dient der Überwachung des biologischen Zustands, des chemischen Zustands, des Grundwasserstands im oberen Grundwasserstockwerk.
Ein Massensterben der Herzmuschel, das im Sommer 1976 begann und auch in den folgenden Jahren nicht zum Stillstand kam, ist Gegenstand folgender Untersuchungen: a) Populationsentwicklung an vier Terminstationen; b) Belastung mit Pestiziden und Buntmetallen; c) quantitative Belastung mit Parasiten (Trematodenlarven, Copepoden, Ciliaten).
Unser Projekt fokussiert sich auf die Effekte individueller Merkmalsvariation (phänotypischer Plastizität) und genetischer Merkmalsvariation (polyklonale Systeme) auf Populations-, Gemeinschafts- und Merkmalsdynamiken, in bi- und tritrophischen System, mit Algen, herbivore Ciliaten und ihren Räubern (karnivore Ciliaten). In unserem System wirkt phänotypische Plastizität auf zwei Ebenen. Die herbivoren Ciliaten (Euplotes aediculatus und E. octocarinatus) können phänotypisch plastische Verteidigungen gegen ihre Räuber ausbilden, die aber einen Trade-off zwischen Verteidigung und Konkurrenzstärke bedingen. Wir werden dabei verschiedene Euplotes-Stämme, die sich in ihren Reaktionsnormen der Plastizität, ihrer Wachstumsrate und ihrer Konkurrenzstärke unterscheiden, in mono- und polyklonalen Experimenten, untersuchen. Dementsprechend betrachten wir Merkmalsdynamiken auf der Ebene der Plastizität und auch über die selektionsbedingte Verschiebung der klonalen Zusammensetzungen. Darüber hinaus verwenden wir Prädatoren, die entweder ihrerseits mit phänotypisch plastischen Merkmalen induzierbare Verteidigungen der Beute, zumindest teilweise, ausgleichen können (Lembadion bullinum), oder Räuber, die nicht plastisch reagieren (Stenostomum sphagnetorum). Mit unserem System testen wir folgende Hypothesen:1. Variationen von Merkmalen in Form klonspezifischer Reaktionsnormen (phänotypische Plastizität) auf der Konsumenten- fördert die Stabilität und Beständigkeit der trophischen Ebenen in einem tri-trophischen System.2. Polyklonale Konsumentensysteme mit klonspezifischen Reaktionsnormen der Merkmale erhöhen die Stabilität im Vergleich zu monoklonalen Systemen. 3. Merkmalsvariation auf der Konsumentenebene kann die trophischen Dynamiken in einem tritrophischen System, in Abhängigkeit der Geschwindigkeit der Anpassung, stärker stabilisieren als Merkmalsvariation auf zwei trophischen Ebenen (Räuber und Beute).Unser Projekt kombiniert empirische Experimente mit mathematischer Modellierung. Es ist eng mit anderen Projekten im SPP vernetzt, hat aber das Alleinstellungsmerkmal, dass wir das einzige tritrophische System mit Plastizität auf der Prädatorenebene betrachten. Unser Projekt wird, durch die Kombination experimenteller Ansätze und mathematischer Modellierung, zu einem tieferen Verständnis ökologischer Prozesse im generellen, sowie von Räuber-Beute- und Nahrungsnetz-Dynamiken führen.
Der Einfluss von Biodiversitätsverlust auf die Dynamiken von Nahrungsnetzen hängt von der Komplexität und Konfiguration der Nahrungsnetze, der trophischen Position der Organismen, sowie derer spezifischen Eigenschaften ab, wie zum Beispiel Konsumentenspezialisierung, Fraß- und Wachstumsraten. Funktionelle Eigenschaften von Organismen und deren gegenläufige Abhängigkeiten (trade-offs) spielen eine Schlüsselrolle für Ökosystemfunktion. Das beantragte Projekt verfolgt das Ziel, die Bedeutung von inter- und intraspezifischer Merkmalsvariabilität (trait variation) für den zeitlichen Verlauf von Biomassen und mittleren Eigenschaften in einem limnischen Modell-System mit Ciliaten als Konsumenten und Mikroalgen als Beute zu untersuchen. Wir werden insbesondere den trade-off zwischen Hungerresistenz und maximaler Fraßrate in Abhängigkeit von unterschiedlicher Ressourcenverfügbarkeit untersuchen. Hierbei konzentrieren wir uns auf zwei Typen von Hungerresistenz, die mit unterschiedlichen Konsumenteneigenschaften einhergehen, nämlich 1) die Fähigkeit den Grundmetabolismus auf Kosten der Reproduktion zu reduzieren, und 2) die Fähigkeit zusätzlich zur Phagotrophie Kohlenstoff photosynthetisch zu fixieren (Mixotrophie). Darüber hinaus wollen wir untersuchen, wie induzierbare Angriffs- und Verteidigungsstrategien (Formen von großen Morphotypen, die dann innerhalb ihrer trophischen Ebene fressen können, bzw. die fraßresistenter sind) mit diesem trade-off interagieren indem trophische Interaktionen verändert werden. Laborexperimente werden durchgeführt, in denen die inter- und intraspezifische Merkmalsvariabilität von Konsumenten in unterschiedlichen Nahrungsnetzen und bei unterschiedlicher Ressourcenverfügbarkeit (Beute und Licht) manipuliert werden. Die kontinuierliche oder gepulste Hinzugabe von Ressourcen, die zeitweise Ressourcen-Limitierung mit sich bringt, wird einen großen Einfluss auf die Biomassen und mittleren Eigenschaften der Populationen und Gemeinschaften haben. Außerdem werden die Konsequenzen dieser inter- und intraspezifischen Merkmalsvariabilität für das gegenseitige Wechselspiel zwischen Merkmals- und Biomassedynamik auf unterschiedlichen hierarchischen Ebenen (Klone, Arten, Gemeinschaften) in einem komplexeren System über einen längeren Zeitraum untersucht. Alle Laborexperimente werden mit mathematischer Modellierung komplementiert, welche dazu verhelfen soll, das experimentelle Design darauffolgender Experimente zu optimieren und die den beobachteten Populationsdynamiken zugrundeliegenden Mechanismen zu identifizieren. Dieser gemeinsame Ansatz wird das bestehende experimentelle und theoretische Wissen über das Wechselspiel von Biomasse- und Merkmalsdynamiken in Mehrarten-Nahrungsnetzen erheblich erweitern und wird darüber hinaus unser Verständnis über die Konsequenzen von Konsumenten-Merkmalsvariabilität (i.e. ihr adaptives Potential unter Ressourcenfluktuationen) für Ökosystemprozesse und -funktionen maßgeblich stärken.
Die Messstelle oh Br. Muhr am See (Messstellen-Nr: 3727) befindet sich im Gewässer Altmühl. Die Messstelle dient der Überwachung des biologischen Zustands, des chemischen Zustands.
Die Messstelle Tiefste Stelle, Boje Nähe Ablaß-Bauwerk (Messstellen-Nr: 2210) befindet sich im Gewässer Großer Brombachsee. Die Messstelle dient der Überwachung des biologischen Zustands, des chemischen Zustands.
Nährstoffarme Bereiche bilden die große Mehrheit des Ozeans, aber das Schicksal der dominierenden kleinen Autotrophen in diesen Bereichen ist wenig erforscht und noch weniger verstanden. Formen kleiner als 5 mym machen die große Mehrheit der Autotrophen in nährstoffarmen Systemen aus, und Protisten sind vermutlich die Haupträuber dieser Fraktion, aber besonders im Meer ist diese Verbindung wenig erforscht. Offene, grundlegende Fragen sind: Wie viel, und mit welcher Effizienz fließt Primärproduktion der kleinen Autotrophen in höhere trophische Ebenen? Sind kleine Ciliaten im Meer genauso wichtige Konsumenten kleiner Autotropher wie im Süßwasser oder sind heterotrophe Nanoflagellaten (HNF) die Haupträuber? Sind Synechococcus und Prochlorococcus, die beiden wichtigsten Vertreter der kleinen Autotrophen, in gleichem Masse frassempfindlich? Wie wichtig ist Nährstoff-Recycling durch Protisten, um Primärproduktion zu erhalten? Das vorgeschlagene Projekt wird im Golf von Aqaba stattfinden, einem oligroptrophen Tiefseesystem nicht weit vom Labor entfernt und deshalb logistisch für experimentelle Arbeit optimal geeignet. Das Projekt ist als Zusammenarbeit mit Prof. Anton Post, Eilat, Israel geplant. Experimente werden in Jahreszeiten durchgeführt, in denen unterschiedliche Autotrophe dominieren. Dabei werden Interaktionen zwischen gesamten trophischen Ebenen innerhalb der Planktongemeinschaft aber auch zwischen Arbeiten berücksichtigt, um allgemeine Vorhersagen für oligotrophe Systeme zu machen.
| Origin | Count |
|---|---|
| Bund | 159 |
| Land | 81 |
| Wissenschaft | 6 |
| Zivilgesellschaft | 1 |
| Type | Count |
|---|---|
| Chemische Verbindung | 5 |
| Daten und Messstellen | 34 |
| Ereignis | 2 |
| Förderprogramm | 78 |
| Gesetzestext | 5 |
| Hochwertiger Datensatz | 4 |
| Taxon | 75 |
| Text | 4 |
| unbekannt | 41 |
| License | Count |
|---|---|
| geschlossen | 49 |
| offen | 150 |
| unbekannt | 12 |
| Language | Count |
|---|---|
| Deutsch | 203 |
| Englisch | 54 |
| Resource type | Count |
|---|---|
| Archiv | 1 |
| Bild | 13 |
| Datei | 94 |
| Dokument | 17 |
| Keine | 84 |
| Webdienst | 4 |
| Webseite | 42 |
| Topic | Count |
|---|---|
| Boden | 59 |
| Lebewesen und Lebensräume | 211 |
| Luft | 38 |
| Mensch und Umwelt | 207 |
| Wasser | 128 |
| Weitere | 155 |