The status, changes, and disturbances in geomorphological regimes can be regarded as controlling and regulating factors for biodiversity. Therefore, monitoring geomorphology at local, regional, and global scales is not only necessary to conserve geodiversity, but also to preserve biodiversity, as well as to improve biodiversity conservation and ecosystem management. Numerous remote sensing (RS) approaches and platforms have been used in the past to enable a cost-effective, increasingly freely available, comprehensive, repetitive, standardized, and objective monitoring of geomorphological characteristics and their traits. This contribution provides a state-of-the-art review for the RS-based monitoring of these characteristics and traits, by presenting examples of aeolian, fluvial, and coastal landforms. Different examples for monitoring geomorphology as a crucial discipline of geodiversity using RS are provided, discussing the implementation of RS technologies such as LiDAR, RADAR, as well as multi-spectral and hyperspectral sensor technologies. Furthermore, data products and RS technologies that could be used in the future for monitoring geomorphology are introduced. The use of spectral traits (ST) and spectral trait variation (STV) approaches with RS enable the status, changes, and disturbances of geomorphic diversity to be monitored. We focus on the requirements for future geomorphology monitoring specifically aimed at overcoming some key limitations of ecological modeling, namely: the implementation and linking of in-situ, close-range, air- and spaceborne RS technologies, geomorphic traits, and data science approaches as crucial components for a better understanding of the geomorphic impacts on complex ecosystems. This paper aims to impart multidimensional geomorphic information obtained by RS for improved utilization in biodiversity monitoring. © 2020 by the authors.
Das Projekt "Sedimentbewegungen in der Deutschen Bucht" wird vom Umweltbundesamt gefördert und von Bundesanstalt für Wasserbau durchgeführt. Zur Halbzeit eines BAW-Forschungsprojektes zum 'Aufbau von integrierten Modellsystemen zur Analyse der langfristigen Morphodynamik in der Deutschen Bucht' werden erste Ergebnisse sichtbar. Transportprozesse im Wandel der Zeitläufe: Wie werden sich die Watten und Vorländer der deutschen Nordseeküste anpassen, sollte in Folge des Klimawandels der Meeresspiegel steigen? Eine Antwort auf diese Frage ist nicht nur für die Sicherheit der Seedeiche bedeutsam, sondern auch für die Zufahrten zu den Seehäfen. Einerseits beeinflusst das Flachwasser im Ästuarbereich maßgebend das Tide- und Sedimentregime in den Tideflüssen und hat somit Auswirkungen auf die zukünftige Unterhaltung der Seehafenzufahrten. Zum anderen hat sich gezeigt, dass in einer Betrachtung über Jahrzehnte hinweg die kleinräumigen Transportprozesse in der Deutschen Bucht und in den Außenbereichen der Ästuare auch durch die Transportprozesse, die in der gesamten Nordsee stattfinden, mitgeprägt werden. Die Dimension dieser weiträumigen Transportprozesse in der Nordsee wird in der Satellitenaufnahme der oberflächennahen Ausbreitung der Schwebstofffahnen aus den Ästuarmündungen deutlich (Bild 1). Allerdings entzieht sich dieses Phänomen noch weitgehend der fachwissenschaftlichen Betrachtung, denn über die tatsächlichen Transportprozesse in der Nordsee, zumal in der Deutschen Bucht, ist wenig bekannt: Es fehlen zum Beispiel grundlegende, flächendeckende Informationen über das anstehende Material an der Gewässersohle, über den Bodenaufbau oder über die relevanten Kräfte, die den Transport antreiben, wie Wind und Seegang. Und schließlich fehlen die geeigneten Werkzeuge, um die komplexen Transportprozesse berechnen zu können. BAW hat Federführung bei Forschungsprojekt: Im Rahmen eines im Wettbewerb ausgeschriebenen Forschungsschwerpunktes des Kuratoriums für Forschung im Küsteningenieurwesen (KFKI) konnte sich die BAW mit einem Forschungsantrag zum Thema 'Aufbau von integrierten Modellsystemen zur Analyse der langfristigen Morphodynamik in der deutschen Bucht (AUFMOD)' durchsetzen. An dem Projekt unter Federführung der BAW beteiligen sich weitere neun Kooperationspartner. Gestartet Ende 2009, läuft die Förderung zunächst bis 2012 (siehe: www.kfki.de/prj-aufmod/de).
Das Projekt "Sonderforschungsbereich 1211 (SFB): Evolution der Erde und des Lebens unter extremer Trockenheit" wird vom Umweltbundesamt gefördert und von Universität zu Köln, Institut für Geologie und Mineralogie durchgeführt. Ziel dieses Projekts ist es, die Forschung im Bereich der wechselseitigen Beziehung zwischen biologischer Evolution und Landschaftsevolution maßgeblich voranzutreiben. Arbeitsgebiete sind aride bis hyperaride Systeme, in denen sowohl biologische Aktivität als auch Erdoberflächenprozesse vorwiegend und sehr stark durch die Verfügbarkeit von Wasser limitiert sind. In diesem Projekt sollen die Schlüsselmerkmale biologischer Aktivität in extrem wasserlimitierten Habitaten der Erde identifiziert und Erdoberflächenprozesse, die unter nahezu wasserfreien Bedingungen ablaufen, charakterisiert werden. Die Bestimmung kritischer Schwellenwerte der Umweltbedingungen, die eine biologische Kolonisation und/oder Landschaftstransformationen erlauben, stellt ein wesentliches Ziel dar. Das zeitliche und räumliche Muster biologischer Kolonisation und Isolation wird zusammen mit der Chronologie der Landschaftsentwicklung in Bezug zur auschlaggebenden gemeinsamen Triebkraft, dem (Paleo-) Klima, untersucht. Diese Ziele sollen durch: (i) paleoklimatische Rekonstruktion und Observation des gegenwärtigen Klimas, zur Entwicklung geeigneter Klimamodelle, (ii) Erfassung der biogeographischen Migrationsgeschichte, Phylogenie (Pflanzen, Insekten, Protisten und Bakterien) und deren molekularer Datierung und (iii) räumliche Erfassung, Prozesscharakterisierung und Datierung von (fossilen) Landschaftselementen (Entwässerungssysteme, Hänge, fluviale und aeolische Sedimente, Böden), angegangen werden. Die Datierung geologischer Archive (i & iii) erfordert eine innovative (Weiter-) Entwicklung isotopengeologischer Methoden, welche entsprechend durchgeführt werden sollen.Es werden u.a. wesentliche Beiträge zu den sich entwickelnden Konzepten des evolutionären Timelags (Guerreo et al. 2013, PNAS 110, 11469-11474), des Einflusses geographischer Barrieren auf klimabedingte Speziesmigration (Burrows et al. 2014, Nature 507, 492-495), der Biogeomorphologie (Corenbilt et al. 2011, Earth Sci. Rev. 106, 307-331), sowie der Entwicklung neuer Methoden zur Datierung und Prozesscharakterisierung von Erdoberflächenprozessen und biologischer Evolution erwartet.
Das Projekt "Untersuchungen zur Genese schleswig-holsteinischer Binnendünen" wird vom Umweltbundesamt gefördert und von Bildungswissenschaftliche Hochschule Flensburg - Universität, Institut für Geographie und ihre Didaktik,Regionale Landeskunde durchgeführt. In Schleswig-Holstein gibt es eine große Zahl von Binnendünen und Flugsandgebieten. Sie wurden in verschiedenen Publikationen schon zu Beginn des 20. Jahrhunderts beschrieben. Deutungsversuche über ihre Genese schlossen sich an. Eine systematische Untersuchung fehlt bisher, vor allem im Hinblick auf ihr Alter herrscht noch keine Einigkeit. Zwar ist allgemein akzeptiert, dass sie im Spätglazial und Frühholozän entstanden sind, über ihre weitere Entwicklung, vor allem seit dem Eingriff des Menschen in den Landschaftshaushalt, besteht noch Unsicherheit. Es gibt deutliche Hinweise auf eine Umgestaltung seit der römischen Eisenzeit, als man mit der Verhüttung von Raseneisenerz begann und großflächig Wälder rodete. Im Mittelalter und während des dreißigjährigen Krieges mag es Aktivitätsphasen äolischer Umlagerung gegeben haben, auch hierfür gibt es Indizien. Sicher hat die Kolonisation der Heidegebiete Jütlands seit Ende des 18. Jahrhunderts die Auswehung von Sanden und Ackerland begünstigt, und auch heute treten hin und wieder Sandstürme auf den Sanderflächen besonders im Landesteil Schleswig auf. Erste Vorarbeiten haben ergeben, dass in verschiedenen Binnendünen mächtige fossile Podsole erhalten sind. An einem Beispiel konnte ein Boden datiert werden. Die Fortsetzung der Untersuchungen hat zum Ziel, Anhaltspunkte für den Landschaftswandel auf den Sandern, in den ehemaligen Schmelzwasserrinnen und dem Elburstromtal zu finden.
Das Projekt "Variabilität des Ostasiatischen Monsuns während der letzten 65.000 Jahre - laminierte Seesedimente aus dem Sihailongwan-Maarsee, NE-China" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. Laminierte Seesedimente sind unschätzbare Informationsquellen zur Geschichte der Umwelt und des Klimas direkt aus der Lebenssphäre des Menschen. Ein exzellentes Beispiel dafür ist der Sihailongwan-Maarsee aus NE-China. In einem immer noch dicht bewaldeten Vulkangebiet gelegen, bieten seine Sedimente ein ungestörtes Abbild der Monsunvariationen über zehntausende von Jahren. Nur die letzten ca. 200 Jahre zeigen einen deutlichen lokalen anthropogenen Einfluss. Das Monsunklima der Region mit Hauptniederschlägen während des Sommers und extrem kalten Wintern unter dem Einfluss des Sibirischen Hochdrucksystems bildet die Voraussetzung für die Bildung von saisonal deutlich geschichteten Sedimenten (Warven), die in dem tiefen Maarsee dann auch überwiegend ungestört erhalten bleiben. Insbesondere die Auftauphase im Frühjahr bringt einen regelmässigen Sedimenteintrag in den See, der das Gerüst für eine derzeit bis 65.000 Jahre vor heute zurückreichende Warvenchronologie bildet. Für das letzte Glazial zeigen Pollenspektren aus dem Sihailongwan-Profil Vegetationsvariationen im Gleichklang mit bekannten klimatischen Variationen des zirkum-nordatlantischen Raumes (Dansgaard-Oeschger-Zyklen) zu dieser Zeit. Der Einfluss dieser Warmphasen auf das Ökosystem See war jedoch sehr unterschiedlich. So sind die Warven aus den Dansgaard-Oeschger (D/O) Zyklen 14 bis 17 mit extrem dicken Diatomeenlagen (hauptsächlich Stephanodiscus parvus/minutulus) denen vom Beginn der spätglazialen Erwärmung zum Verwechseln ähnlich, während Warven aus dem D/O-Zyklus 8 kaum Unterschiede zu überwiegend klastischen Warven aus kalten Interstadialen aufweisen. Gradierte Ereignislagen mit umgelagertem Bodenmaterial sind deutliche Hinweise auf ein Permafrost-Regime während der Kaltphasen. Auch während des Spätglazials treten deutliche klimatische Schwankungen auf, die der in europäischen Sedimentarchiven definierten Gerzensee-Oszillation und der Jüngeren Dryas zeitlich exakt entsprechen. Das frühe Holozän ist von einer Vielzahl Chinesischer Paläoklima-Archive als Phase mit intensiverem Sommermonsun bekannt. Überraschenderweise sind die minerogenen Fluxraten im Sihailongwan-See während des frühen Holozäns trotz dichter Bewaldung des Einzugsgebietes sehr hoch. Sowohl Mikrofaziesanalysen der Sedimente als auch geochemische Untersuchungen deuten auf remoten Staub als Ursache dieses verstärkten klastischen Eintrags hin. Der insbesondere in den letzten Jahrzehnten zunehmende Einfluss des Menschen zeigt sich in den Sedimenten des Sihailongwan-Maarsees vor allem in einem wiederum zunehmenden Staubeintrag und einer Versauerung im Einzugsgebiet. Der anthropogene Einflusss auf die lokale Vegetation ist immer noch gering.
Das Projekt "Optimierung der Kontrolle äolischer Bodenerosion mit Windschutzzäunen" wird vom Umweltbundesamt gefördert und von Universität Köln, Institut für Geophysik und Meteorologie durchgeführt. Dieses Vorhaben ist vom Bedarf eines Simulationswerkzeugs für die Optimierung von Maßnahmen zum Schutz von Sedimentböden vor Winderosion motiviert. Zur Kontrolle äolischer Bodenerosion werden verschiedene Reihen von Windschutzzäunen, häufig in Kombination mit Vegetation, aufgestellt, um die Windgeschwindigkeit zu verringern bzw. Sedimentabscheidung herbeizuführen. Die Wirksamkeit einer Windschutzzäunenreihe zum Schutz großskaliger Sedimentlandschaften lässt sich angesichts der Zeitskalen von Erosionsprozessen sowie deren starker Abhängigkeit von lokaler Topographie und Windverhalten jedoch nur schwer durch Feldmessungen alleine vorhersagen bzw. untersuchen. Deshalb soll in diesem Projekt ein numerisches Werkzeug für die Simulation des Sandtransports in Gegenwart von Windschutzzäunen entwickelt werden, mit dessen Unterstützung Optimierungsstrategien für den Schutz von Sedimentböden vor Winderosion konzipiert werden können. Dieses Werkzeug koppelt numerische Strömungsmechanik (CFD) für die Berechnung des turbulenten Windfeldes über der Topographie mit morphodynamischer Modellierung der damit verbundenen äolischen Landschaft. Um die Simulationen zu validieren, werden Feldmessungen äolischer Scherspannung am Boden sowie des Sandflusses und der Entwicklung der Bodentopographie im Dünenfeld von Jericoacoara, Nordosten Brasiliens, durchgeführt, und deren Ergebnisse mit Vorhersagen der Simulationen abgeglichen. Darauffolgend wird das numerische Werkzeug verwendet, um Strategien für die Entwicklung optimierter Reihen von Windschutzzäunen bezüglich Porosität, Abstand und Höhe unter verschiedenen Bedingungen von Wind und Sedimentverfügbarkeit abzuleiten. Um den Effekt der Windschutzzäune auf die Entwicklung einer Vegetationsdecke zu untersuchen, werden die Simulationen anschließend um ein Modell für die Wechselwirkung zwischen Wind, Teilchen in Saltation und Vegetation erweitert. Die daraus gewonnenen Erkenntnisse sollen später in den Aufbau verbesserter Maßnahmen zur Dünenimmobilisierung sowie zur Bekämpfung äolischer Desertifikation einfließen.
Das Projekt "Geophysikalische Untersuchungen von Beckenstrukturen und Sedimentinventar in der Inneren Mongolei, NW China" wird vom Umweltbundesamt gefördert und von Technische Universität Berlin, Institut für Angewandte Geowissenschaften, Fachgebiet Angewandte Geophysik (mit Schwerpunkt Umwelt- und Ingenieurgeophysik) durchgeführt. Dieses Projekt ist ein Teil des DFG-Bündelprojektes 'Rekonstruktiondes spätpleistozänen und holozänen Environments in der westlichen Inneren Mongolei, NW-China'. Zur Klärung der tektonischen, sedimentologischen und hydrogeologischen Entwicklung eines Sedimentbeckens in der Badain Jaran Shamao werden in einem multimethodischen Ansatz elektrisch-elektromagnetische Messungen durchgeführt (Spektrale Induzierte Polarisation, Magnetotellurik, Transiente Elektromagnetik, Bodenradar, Geoelektrik). Aufbauend auf langjährigen Erfahrungen in Wüstengebieten sind optimierte multimethodische Messstrategien und Methoden zur gemeinsamen Inversion der verschiedenen Meßdaten weiter zu entwickeln. Das Vorhaben ist Teil eines interdisziplinären Bündelantrages (Paläoklimatologie, Hydrogeologie, Strukturgeologie, Fernerkundung, Bodenkunde). Hauptforschungsziel des Gesamtantrages ist die Klärung der Frage, ob in Nordafrika nachgewiesene spätquartäre abrupte Klimawechsel in den zentralasiatischen Wüsten einen kontemporären Verlauf zeigen. Ziel: Das Ziel des Projektes ergibt sich aus der Frage, ob in Nordafrika nachgewiesene, spätquartäre, abrupte Klimawechsel in den zentralasiatischen Wüsten einen kontemporären Verlauf zeigen. Seitdem die afrikanische Platte etwa die heutige geographische Position erreicht hat und das tibetische Plateau eine bedeutende Höhenlage entwickelte, besteht ein von letzterem ausgehender, hochtroposphärische Strahlstrom, welcher zu einem Delta über Nordafrika führt mit der Folge der weitgehenden Unterdrückung der für die übrigen Wüstengebiete charakteristischen Sommerniederschläge. Es ist daher von besonderem Interesse zu wissen, ob die am Nordrand des tibetischen Plateaus gelegenen Wüstengebiete eine korrelate Änderung des Environments erfuhren, da die Albedo über dem tibetischen Plateau und seinen Randgebieten Rückwirkungen auf die Zirkulation über den altweltlichen Wüstengürteln zur Folge haben müsste. Deren Steuerung durch Vergletscherung, Vegetationsbedeckung und topographische Position müsste sich in den fluvialen Akkumulationsräumen in den ariden Gebieten nördlich Tibets abzeichnen. Sie bieten besonders günstige Voraussetzungen, da sie wahrscheinlich seit dem Beginn des Quartärs geschlossene und langfristig endorheische Becken darstellen, in denen zeitweise ausgedehnte Endseen entstanden. Die Sedimentmächtigkeit überschreitet nach Vorstudien 230m. Es handelt sich um feinklastische Sedimente, die zum Teil rhythmisch geschichtete sind und einen Zeitraum von 800.000 Jahren überspannen. Es ist eine Feinauflösung sowohl der potamologischen, äolischen wie limnologischen Sedimentführung auf die klimatisch gesteuerten Einträge zu erwarten. Insofern erweisen sich die Sedimentationsräume als Archive für die klimatisch und gegebenenfalls tektonisch gesteuerte Variabilität und Entwicklung innerhalb des tibetischen Orogens und seines nördlichen Vorlandes. (...)
Das Projekt "Teilprojekt A03: Äolischer Transport: Statistisch-dynamische Modellierung äolischer Prozesse in der Atacama Wüste über geologische Zeitskalen und deren Bedeutung für das Leben in extrem wasserlimitierten Gebieten" wird vom Umweltbundesamt gefördert und von Universität zu Köln, Institut für Geophysik und Meteorologie, Bereich Meteorologie, Arbeitsgruppe Atmosphärische Modellierung durchgeführt. Ein wesentlicher Aspekt dieses Projektes ist es, eine verbesserte Darstellung von Bodenkrusten (biotisch uns abiotisch) in Modellen für äolische Erosion und Transportprozesse zu entwickeln. Ziel ist es, die langfristige Wechselwirkung zwischen äolischen, biologischen und Bodenbildungs-Prozessen, beeinflusst von atmosphärischen Parametern wie z.B. Luftfeuchtigkeit, in der Atacama Wüste zu untersuchen. Es besteht ein starker Bezug zu biologischen, boden- und materialkundlichen Teilprojekten des SFB.
Das Projekt "Teilchenbasierte Simulation der Staubemission" wird vom Umweltbundesamt gefördert und von Universität Köln, Institut für Geophysik und Meteorologie durchgeführt. Ziel dieses Projektes ist es, ein teilchenbasiertes numerisches Modell für die Simulation der Staubemission im Rahmen des äolischen Sandtransports zu entwickeln. Die Quantifizierung dieser Emission ist für die zuverlässige Repräsentation des Staubzykluses in Klimamodellen wesentlich, da die Aufnahme von Staubpartikeln in die Atmosphäre hauptsächlich durch den Beschuss des Sedimentbettes mit Sandpartikeln verursacht wird. Um den vertikalen Fluss emittierter Staubteilchen als Funktion der Boden- und Windbedingungen vorherzusagen, wurden verschiedene empirische Staubparametrisierungsschemata erarbeitet. Die Physik interpartikulärer Wechselwirkungen ist jedoch durch weitgehend unverstandene stochastische Kräfte gekennzeichnet, was die Entwicklung eines zuverlässigen theoretischen Staubemissionsmodells erschwert. Deshalb soll im vorliegenden Projekt ein numerisches Simulationswerkzeug, welches numerische Strömungsmechanik mit einem auf der Diskrete-Elemente-Methode basierenden Modell für granulare Dynamik koppelt, entwickelt werden, um die Trajektorien äolischer Sand- sowie emittierter Staubpartikel zu berechnen. Dabei werden die Trajektorien aller Teilchen in Luft und im Sedimentbett aus der Wirkung der Schwerkraft sowie interpartikulärer bzw. Teilchen-Wind-Wechselwirkungen berechnet, sodass auf die Annahme einer Splash-Funktion verzichtet wird. Zunächst soll ein physikalisches Modell für die interpartikulären Wechselwirkungen --- welche sowohl Kontakt- als auch van-der-Waals-Kräfte einbeziehen --- unter Berücksichtigung deren stochastischer Natur entwickelt werden. Um die Parameter dieses Modells zu bestimmen, werden Windkanalmessungen von Staubemissionsraten aus einem Sedimentbett unter gegebenen Partikelgrößenverteilungen und Windgeschwindigkeiten mit Vorhersagen der Simulationen verglichen. Daraufhin soll die Staubemission unter verschiedenen Verfügbarkeitsbedingungen mobilisierbarer Sedimente untersucht werden. Dies ist wichtig, um ein Parametrisierungsschema für die Staubemission aus schwer erodierbaren Böden (z.B. Böden mit biogener Kruste) aufstellen zu können.
Das Projekt "CIRCVAL - Thermally forced circulations in an Alpine valley" wird vom Umweltbundesamt gefördert und von Universität Wien, Institut für Meteorologie und Geophysik durchgeführt. Lower air volume in valleys than in adjacent plains together with diabatic heating or cooling induces an along-valley temperature and pressure gradient which drives the valley wind. This phenomenon will be quantified for the Mesolcina valley in the Swiss Alps. The method we develop is based on high resolution topography data. From this information the temperature and pressure tendency can be derived for a period with sensible heat flux at the surface. To calculate the wind field, the circulation theorem will be applied. The results of the model runs will be compared to measured data from the field experiment VOTALP (Vertical Ozone Transport in the Alps). In this campaign ground based and airborne instruments collected data of the atmospheric conditions in the valley and the synoptic windfield above.
Origin | Count |
---|---|
Bund | 74 |
Type | Count |
---|---|
Förderprogramm | 73 |
unbekannt | 1 |
License | Count |
---|---|
geschlossen | 1 |
offen | 73 |
Language | Count |
---|---|
Deutsch | 60 |
Englisch | 29 |
Resource type | Count |
---|---|
Keine | 25 |
Webseite | 49 |
Topic | Count |
---|---|
Boden | 68 |
Lebewesen & Lebensräume | 68 |
Luft | 70 |
Mensch & Umwelt | 74 |
Wasser | 65 |
Weitere | 74 |