1. Vorhabenziel Das Ziel ist die Erstellung einer Konzeption eines Forschungstestfelds für die Windenergienutzung im komplexen Gelände. Ein wichtiges Merkmal ist die wissenschaftliche Begleitung der Testfeldplanung, um die Ziele der Forschungseinrichtungen und technischen Ziele der Hersteller und Zulieferer im Vorfeld zu berücksichtigen. Im Vorhaben des KIT sollen folgende Ziele erreicht werden: (1) Meteorologische und geotechnische Charakterisierung möglicher Standorte für ein Testgelände, (2) Messungen der Strömungsverhältnisse mit SODAR (dauerhaft) und RASS (kampagnenweise) an einem ausgewählten Standort, (3) Modellierung der Windverhältnisse am Standort mit einem mesoskaligen Modell, (4) Bewertung des Standorts aus meteorologischer und geotechnischer Sicht, (5) Definition des konstruktiven Aufbaus der WEA in mechanisch-elektrischer Sicht und Konzeption der Turmkonstruktion, (6) Entwicklung von dauerhaften Messstrategien für das Testfeld. 2. Arbeitsplanung (1) Charakterisierung möglicher Standorte aufgrund vorhandenen Wissens und Daten aus meteorologischen und geotechnischen Daten, (2) Reparatur, Transport und längerfristige Aufstellung des vorhandenen Sodars auf dem Testgelände und kürzere Messkampagne mit dem vorhandenen RASS, (3) Modellierung mit dem verfügbaren Modell WRF, (4) Auswertung der Ergebnisse der Schritte (1) bis (3), (5) Untersuchungen von Tragstrukturen mit physikalisch abgesicherten Simulationen, (6) Entwicklung der Messstrategie aufgrund der Schritte (1) bis (4), (6).
Die DLR hat in ihrem Institut fuer Optoelektronik seit Jahren die Fernmessung des Windes mittels Laser Doppler Verfahren erprobt. Ein mobiles System existiert zur Fernmessung des Windes in der atmosphaerischen Grundschicht. Der Wind bzw das Windprofil ist wichtigster Parameter fuer alle Transportprozesse, fuer die Bestimmung des Massentransports von Gasen und fuer Austauschfragen. Ein flugzeuggetragenes System soll gemeinsam mit CNRS (Frankreich) entwickelt, getestet und eingesetzt werden. Mit diesem System werden mesoskalige Windphaenomene erfasst werden koennen. Die Austauschprozesse zwischen der atmosphaerischen Grundschicht und der freien Troposphaere als auch zwischen der Troposphaere und der Stratosphaere koennen studiert werden. Neben diesen Forschungen mit dem entwickelten System ist die Systementwicklung selbst auch nutzbar fuer die parallele Entwicklung eines Raumfahrtsensors zur Erfassung des globalen Windfeldes, wie er von ESA und NASA geplant ist.
Fuer messtechnische Untersuchungen von Windenergieanlagen (WEA) sowie fuer die Charakterisierung von Standortbedingungen sind Messungen des Wind- und Turbulenzfeldes unersetzlich. Bislang wurden in Fragen der Windenergienutzung Windmessungen zumeist mit auf Masten installierten Sensoren durchgefuehrt. Mit dem Trend zu groesseren WEA werden Mastmessungen zunehmend impraktikabel, da der Aufwand fuer die Mastinstallation ueberproportional mit der Masthoehe anwaechst. Ferner haben die fest installierten Masten den Nachteil nur fuer gesonderte Windrichtungen der Messaufgabe entsprechend positioniert zu sein. Auf der Suche nach alternativen Windmessmethoden erscheint vor allem die indirekte Windmessung mit Hilfe des akustischen Fernsondierungsverfahrens (Sodar gleich Sound detection and ranging) geeignet, da mit vergleichsweise geringem Aufwand eine hohe Informationsdichte und Datenverfuegbarkeit erreichbar wird. Bei dieser Technik werden vom Boden ausgesandte Schallwellen an turbulenten Strukturen in der atmosphaerischen Grenzschicht reflektiert und dann am Boden wieder empfangen. Der Schall erfaehrt durch den Transport mit dem mittleren Wind eine Doppler-Verschiebung in der Frequenz, aus welcher auf die Windgeschwindigkeit in dem jeweiligen Streuvolumen geschlossen werden kann. Im Gegensatz zu Mastmessungen, bei denen der Wind nur auf diskreten Hoehen gemessen wird, ermoeglichen Sodars eine instantane Windfeldbestimmung ueber den gesamten Hoehebereich von WEA. Durch eine geeignete Positionierung und Ausrichtung mehrerer Sende- und Empfangsantennen kann eine Bestimmung aller drei Komponenten des Windvektors erreicht werden. Speziell sogenannte Mini-Sodars koennen am Boden leicht manoevriert werden, wodurch eine Unabhaengigkeit der Messungen von der Windrichtung moeglich wird. Doppler-Sodar-Geraete werden weltweit seit etwa 20 Jahren betrieben und finden vor allem in der Umweltueberwachung ihre Anwendung. Entsprechend ist der Hoehenbereich heute kommerziell erhaeltlicher Geraete in der Groessenordnung 50-1000 m und somit kaum dem fuer die Windenergie interessanten Bereich bis ca. 150 m angepasst. Um die Sodar-Technik fuer die Windenergienutzung zugaenglich zu machen, wurde im Jahre 1994 von der Europaeischen Gemeinschaft das vom DEWI koordinierte Projekt SODAR for Siting and Operating of Wind Energy Converters (SOSOWEC) unterstuetzt.
Die an der Aussenstelle Collm der Universitaet Leipzig seit 1959 gemessenen Winddaten im Mesopausenbereich werden nach meteorologischen Gesichtspunkten aufgearbeitet. Erste Ergebnisse sind: 1) Es lassen sich Klimatrends mit Hilfe des Dateienmaterials bestimmen. 2) Prozesse der Stratosphaere (QBO, Stratosphaerenerwaermungen) bilden sich in der Mesopause (80-110 km Hoehe) ab und koennen so registriert werden. 3) Prozesse planetarer Groessenordnung (planetare Wellen, solare Variabilitaet) sind mit den Daten zu registrieren.