Das Projekt "Basic study for the assessment of pathological effects of antifouling paints in snails from the German North Sea cost" wird/wurde gefördert durch: action seeklar e.V. / Umweltstiftung WWF Deutschland. Es wird/wurde ausgeführt durch: Universität Frankfurt am Main, Institut für Ökologie, Evolution und Diversität, Abteilung Aquatische Ökotoxikologie.
Der Semantische Netzwerk Service (SNS) des Umweltbundesamtes bietet Dienste zur Unterstützung bei allen Fragen der Umwelt-Terminologie einschließlich der dort gebräuchlichen geographischen Namen. SNS beinhaltet ein zweisprachiges (deutsch/englisch) semantisches Netz, das aus drei Komponenten besteht: * dem Umweltthesaurus UMTHES® * dem Geo-Thesaurus-Umwelt (Deutsche Geonamen) * der Umweltchronologie (Ereignisse)
Das Projekt "Stand und Perspektiven der Initiative der Vereinten Nationen" wird/wurde gefördert durch: Stiftung Zukunftserbe e.V.. Es wird/wurde ausgeführt durch: Öko-Institut. Institut für angewandte Ökologie e.V..
Das Projekt "Forest management in the Earth system" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Max-Planck-Institut für Meteorologie.The majority of the worlds forests has undergone some form of management, such as clear-cut or thinning. This management has direct relevance for global climate: Studies estimate that forest management emissions add a third to those from deforestation, while enhanced productivity in managed forests increases the capacity of the terrestrial biosphere to act as a sink for carbon dioxide emissions. However, uncertainties in the assessment of these fluxes are large. Moreover, forests influence climate also by altering the energy and water balance of the land surface. In many regions of historical deforestation, such biogeophysical effects have substantially counteracted warming due to carbon dioxide emissions. However, the effect of management on biogeophysical effects is largely unknown beyond local case studies. While the effects of climate on forest productivity is well established in forestry models, the effects of forest management on climate is less understood. Closing this feedback cycle is crucial to understand the driving forces behind past climate changes to be able to predict future climate responses and thus the required effort to adapt to it or avert it. To investigate the role of forest management in the climate system I propose to integrate a forest management module into a comprehensive Earth system model. The resulting model will be able to simultaneously address both directions of the interactions between climate and the managed land surface. My proposed work includes model development and implementation for key forest management processes, determining the growth and stock of living biomass, soil carbon cycle, and biophysical land surface properties. With this unique tool I will be able to improve estimates of terrestrial carbon source and sink terms and to assess the susceptibility of past and future climate to combined carbon cycle and biophysical effects of forest management. Furthermore, representing feedbacks between forest management and climate in a global climate model could advance efforts to combat climate change. Changes in forest management are inevitable to adapt to future climate change. In this process, is it possible to identify win-win strategies for which local management changes do not only help adaptation, but at the same time mitigate global warming by presenting favorable effects on climate? The proposed work opens a range of long-term research paths, with the aim of strengthening the climate perspective in the economic considerations of forest management and helping to improve local decisionmaking with respect to adaptation and mitigation.
Das Projekt "FZT 15: Der Ozean im Erdsystem; Ocean Margins - Research Topics in Marine Geosciences for the 21st Century, Sub project: Infrastructure, Support and Central Management" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bremen, Zentrum für marine Umweltwissenschaften.The research centre 'Ocean Margins' at the University of Bremen was established in July 2001 to geoscientifically investigate the transitional zones between the oceans and the continents. The work of the research centre is a cooperative effort, with expertise provided by the geosciences department and other departments of the university, as well as by MARUM (Center for Marine Environmental Sciences), the Alfred Wegener Institute for Polar and Marine Research, the Max Planck Institute for Marine Microbiology, the Center for Marine Tropical Ecology, and the Senckenberg Research Institute in Wilhelmshaven. Funded by the DFG, the studies focus on four main research fields: Paleoenvironment, Biogeochemical processes, Sedimentation Processes, and Environmental Impact Research. The term 'Ocean Margin' encompasses the region from the coast, across the shelf and continental slope, to the foot of the slope. Over 60 percent of the world's population live in coastal regions. These people have a long history of exploitation of coastal waters, including the recovery of raw materials and food. Human activity has recently been expanding ever farther out into the ocean, where the ocean margins have become more attractive as centers for hydrocarbon exploration, industrial fishing, and other purposes. The research themes of the centre range from environmental changes in the Tertiary to the impact of recent coastal construction, and from microbial degradation in the sediment to large-scale sediment mass wasting along continental margins. New full professorships and junior professorships have been established within the framework of this research centre. In addition to the primary research activities, a research infrastructure will be made available to outside researchers. Graduate education and the public understanding of science also play an important role. In the course of the first two rounds of the Excellence Initiative, the Research Centre was promoted to that status of a cluster of excellence, which has increased the amount of funding it receives up to the average amount of 6.5 million per annum received by clusters of excellence.
Das Projekt "Evaluation of Relevant Aspects of the Environmental Impact Assessments for Completion of the Nuclear Power Stations Rivne Unit 4 and Khmelnitsky Unit 2" wird/wurde gefördert durch: Greenpeace International. Es wird/wurde ausgeführt durch: Öko-Institut. Institut für angewandte Ökologie e.V..
Das Projekt "Biopores in the subsoil: Formation, nutrient turnover and effects on crops with distinct rooting systems (BioFoNT)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bonn, Institut für Organischen Landbau.Perennial fodder cropping potentially increases subsoil biopore density by formation of extensive root systems and temporary soil rest. We will quantify root length density, earthworm abundance and biopore size classes after Medicago sativa, Cichorium intybus and Festuca arundinacea grown for 1, 2 and 3 years respectively in the applied research unit's Central Field Trial (CeFiT) which is established and maintained by our working group. Shoot parameters including transpiration, gas exchange and chlorophyll fluorescence will frequently be recorded. Precrop effects on oilseed rape and cereals will be quantified with regard to crop yield, nutrient transfer and H2-release. The soil associated with biopores (i.e. the driloshpere) is generally rich in nutrients as compared to the bulk soil and is therefore supposed to be a potential hot spot for nutrient acquisition. However, contact areas between roots and the pore wall have been reported to be low. It is still unclear to which extent the nutrients present in the drilosphere are used and which potential relevance subsoil biopores may have for the nutrient supply of crops. We will use a flexible videoscope to determine the root-soil contact in biopores. Nitrogen input into the drilosphere by earthworms and potential re-uptake of nitrogen from the drilosphere by subsequent crops with different rooting systems (oilseed rape vs. cereals) will be quantified using 15N as a tracer.
Das Projekt "Tierexperimentelle Untersuchungen zum Verhalten von PCB, HCB und HCH-Isomeren in der Nahrungskette Pflanze - Milchtier - Milch - Mensch" wird/wurde gefördert durch: Bundesministerium für Forschung und Technologie. Es wird/wurde ausgeführt durch: Bundesanstalt für Milchforschung.Im Rahmen des Forschungsvorhabens werden Untersuchungen zum Vorkommen der genannten Verbindungen und ihr Verhalten in der Nahrungskette (Carry Over von Futtermitteln fuer Milchtiere in die Milch u.ae.) durchgefuehrt.
Das Projekt "Barley dwarfs acting big in agronomy. Identification of genes and characterization of proteins involved in dwarfism, lodging resistance and crop yield" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Barley (Hordeum vulgare) is an important cereal grain which serves as major animal fodder crop as well as basis for malt beverages or staple food. Currently barley is ranked fourth in terms of quantity of cereal crops produced worldwide. In times of a constantly growing world population in conjunction with an unforeseeable climate change and groundwater depletion, the accumulation of knowledge concerning cereal growth and rate of yield gain is important. The Nordic Genetic Resource Center holds a major collection of barley mutants produced by irradiation or chemical treatment. One phenotypic group of barley varieties are dwarf mutants (erectoides, brachytic, semidwarf, uzu). They are characterized by a compact spike and high rate of yield while the straw is short and stiff, enhancing the lodging resistance of the plant. Obviously they are of applied interest, but they are also of scientific interest as virtually nothing is known about the genes behind the development of plant dwarfism. The aim of this project is to identify and isolate the genes carrying the mutations by using state of the art techniques for gene cloning at the Carlsberg Laboratory. The identified genes will be connected with the mutant phenotype to reveal the gene function in general. One or two genes will be overexpressed and the resulting recombinant proteins will be biochemically and structurally characterized. The insights how the mutation effects the protein will display the protein function in particular. Identified genes and their mutant alleles will be tested in the barley breeding program of the Carlsberg brewery.
Das Projekt "Dynamic (redox) interfaces in soil - Carbon turnover in microbial biomass and flux into soil organic matter" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Department Umweltbiotechnologie.Existing models of soil organic matter (SOM) formation consider plant material as the main source of SOM. Recent results from nuclear magnetic resonance analyses of SOM and from own incubation studies, however, show that microbial residues also contribute to a large extent to SOM formation. Scanning electron microscopy showed that the soil mineral sur-faces are covered by numerous small patchy fragments (100 - 500 nm) deriving from microbial cell wall residues. We will study the formation and fate of these patchy fragments as continuously produced interfaces in artificial soil systems (quartz, montmorillonite, iron oxides, bacteria and carbon sources). We will quantify the relative contributions of different types of soil organisms to patchy fragment formation and elucidate the effect of redox con-ditions and iron mineralogy on the formation and turnover of patchy fragments. The develop-ment of patchy fragments during pedogenesis will be followed by studying soil samples from a chronosequence in the forefield of the retreating Damma glacier. We will characterize chemical and physical properties of the patchy fragments by nanothermal analysis and microscale condensation experiments in an environmental scanning electron microscope. The results will help understanding the processes at and characteristics of biogeochemical interfaces.
Origin | Count |
---|---|
Bund | 1655 |
Europa | 2 |
Land | 14 |
Wissenschaft | 21 |
Zivilgesellschaft | 1 |
Type | Count |
---|---|
Förderprogramm | 1647 |
Text | 3 |
unbekannt | 6 |
License | Count |
---|---|
geschlossen | 7 |
offen | 1648 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 467 |
Englisch | 1457 |
Resource type | Count |
---|---|
Dokument | 1 |
Keine | 1176 |
Webseite | 480 |
Topic | Count |
---|---|
Boden | 1465 |
Lebewesen & Lebensräume | 1555 |
Luft | 1312 |
Mensch & Umwelt | 1654 |
Wasser | 1272 |
Weitere | 1656 |