API src

Found 1910 results.

Related terms

Entwicklung und Erprobung biogener Brennstoffe als Ersatz für Braunkohle in der Staubfeuerung, Teilvorhaben: Auswahl und Bewertung organsicher Reststoffe sowie analytische Begleitung Mahlung, Rauchgasreinigung und Verbrennung

Eine der größten Herausforderungen im Rahmen der Energiewende ist die CO2-neutrale Versorgung von Industrie und Gewerbe mit Prozesswärme und -kälte. Eine besondere strategische Relevanz gewinnt BioBrauS dadurch, dass nicht nur biogene Reststoffe, die einen überschüssigen und in der Regel unvermeidbaren Stoffstrom darstellen, einer weitergehenden energetischen Verwertung zugänglich gemacht werden, sondern auch der Verbrauch der fossilen Primärressource Braunkohle mit hohen CO2-Aussstoß reduziert wird. Ziel ist die Entwicklung eines Brennstoffes aus aufbereiteten organischen Reststoffen, wie Gärprodukten oder Geflügelmist, mit abgestimmter Verbrennungstechnologie auf Basis der Stabfeuerung zu verwerten. Hierfür soll das Verfahren des Impulsbrenners evaluiert und an die Verbrennung diese Stoffsysteme adaptiert werden. Mit der Auswahl und Bewertung von Gärresten und Geflügelmist als Brennstoff für die Staubfeuerung soll der Grundstein für den Ersatz von Braun- und Steinkohle gelegt werden. Im Fokus stehen deshalb die experimentelle Verfahrensevaluation und Optimierung von Verbrennungseigenschaften und Prozessparameter der Staubfeuerung für den Einsatz landwirtschaftlicher Reststoffe, wie Gärrest und Geflügelmist als Ersatz des bisherigen Energieträgers Braunkohle für Bestands- und Neuanlagen. Auch die biogenen Inputsubstrate sollen für den Einsatz in der Staubfeuerung angepasst (Mahlung, Siebung) und optimiert werden. Schwerpunkt ist die Reduktion von Schad- und Störstoffen sowie die Verbesserung der Brennstoffeigenschaften. Die Entwicklungen sollen dann im technischen Maßstab getestet und bewertet werden. Außerdem soll ein Gesamtkonzept zur technischen Umsetzung und Einsatz der Technologien erarbeitet werden, welches die Logistik der Energie- und Stoffströme sowie deren Verwertung für Bestands- und Neuanlagen beinhaltet. Abschließend wird eine Wirtschaftlichkeitsbetrachtung und LCA mit Ökobilanzierung für den kommerziellen Maßstab durchgeführt.

Großtechnisch skalierbare Direct Air Capture Technologie für die Produktion von eFuels auf Basis von Luft-CO2, Teilvorhaben: Gesamtprojektkoordination und Integration der DAC100-Anlage in die e-gas Produktionsanlage am Standort Werlte

In dem beantragten Vorhaben soll eine bereits erprobte, effiziente und für die Synthese von eFuels ausgelegte DAC-Technologie des ZSW, die bislang als Demonstrator im Maßstab 1 kg/h CO2 (DAC1) validiert wurde, aufgegriffen in Kooperation mit den Projektpartnern ela und atmosfair industrialisiert und erstmalig in den Maßstab 100 kg/h CO2 (DAC100) umgesetzt werden. Die Wäscher-basierte Technologie zeichnet sich durch eine kontinuierliche Betriebsweise, Nutzung von Prozessabwärmen (Elektrolyse bzw. nachgelagerte Synthese) und insbesondere eine einfache Skalierbarkeit aus. Beim Engineering des DAC100-Prototypen sollen insbesondere auch für die Industrialisierung relevanten Aspekte wie Fertigbarkeit in Serie, Robustheit und Recyclingfähigkeit der eingesetzten Materialien berücksichtigt werden. Ziel des Vorhabens ist es, die Technologie im Maßstab DAC100 in realer Einsatzumgebung im e-gas-Anlagenkomplex in Werlte zu betrieben und durch Vermessung der Performancedaten zu validieren. Hierzu wird die Technologie zur CO2-Bereitstellung in den Produktionsstandort für regeneratives Methan und LNG des Projektpartners ela integriert und im Demonstrationsbetrieb über mehrere Tausend Stunden betrieben. Ziel des Projektes und der begleitenden Wirtschaftlichkeitsanalysen ist es, die Wirtschaftlichkeit des Verfahrens nachzuweisen und die nächsten Skalierungsschritte in den energietechnischen relevanten Tonnen-Maßstab vorzubereiten. Es ist geplant, dass die Anlage nach Projektende im e-gas-Anlagenkomplex in Werlte weitergetrieben und regeneratives Luft-CO2 für die dortigen Syntheseprozesse bereitstellt.

Holistische Entwicklung einer vernetzten Toolchain für Druckbehälter aus thermoplastischem faserverstärktem Kunststoff, Teilvorhaben: Validierung und Wirtschaftlichkeitsbetrachtung

PHA-Biopolymere aus CO2 für Verpackungsmaterialien, Teilprojekt E - Umsetzungsphase

Wärmenetzeignungsgebiete Hamburg

Die Karte zeigt, wo im Stadtgebiet der Freien und Hansestadt Hamburg Wärmenetze vorhanden sind und wo sich eine Wärmenetzversorgung unter wirtschaftlichen Gesichtspunkten für den Wärmenetzbetreiber und die jeweilige Gebäudeeigentümerin bzw. den jeweiligen Gebäudeeigentümer eignet. Die Einteilung des Stadtgebiets in bestimmte Wärmenetzeignungskategorien basiert auf einer Wirtschaftlichkeitsberechnung hypothetischer ("imaginärer") Wärmenetze und einem Vollkostenvergleich verschiedener klimaneutraler Wärmeversorgungsoptionen (Wärmenetzanschluss, Wärmepumpe, Pelletheizung) aus Gebäudesicht. Die hypothetischen Wärmenetze verbinden Gebäude der Stadt und orientieren sich dabei am Straßennetz. Für die Wirtschaftlichkeitsberechnung wird eine zusammenhängende Gebäudeanzahl zusammengefasst betrachtet. Aus Sicht des Wärmenetzes wirtschaftlich ist die Versorgung einer Gruppe an Gebäuden, wenn die Einnahmen aus der Wärmelieferung die Kosten für das Wärmenetz (Errichtung und Betrieb) und die Wärmeerzeugung decken. Aus Sicht der Gebäude wurde eine überschlägige Vollkostenrechnung verschiedener Wärmeversorgungsoptionen (Wärmepumpe, Pelletkessel, Wärmenetzanschluss) durchgeführt. Jedes Gebäude weist somit eine Wärmeversorgungsoption auf, die auf Basis der getroffenen Annahmen und unter den verglichenen Optionen, die günstigste darstellt. Aus diesen Analysen wurde die Aussage abgeleitet, ob ein Gebäude potenziell wirtschaftlich über ein Wärmenetz versorgt werden könnte und wie ein Wärmenetzanschluss aus Sicht des Gebäudes im Vergleich mit den alternativen Wärmeversorgungsoptionen abschneidet.

True Cost Accounting von Viti-PV Systemen

Perowskit auf Q.antum (NEO) Tandemzellen 2

Ziel des Teilvorhabens ist der Prozessübertrag der im Projekt entwickelten Konzepte und Materialien auf eine bei Hanwha Q CELLS (QC) befindliche Pilotlinie und die Gesamtintegration einer produktionstauglichen Tandemsolarzelle bei QC. Die kritischsten Schichten hierbei sind der Perowskit-Absorber und der Elektronenkontakt, die beide mittels Verdampfung abgeschieden werden sollen. Die hierzu in diesem Projekt am HZB entwickelten Schichtfolgen und Materialien sollen auf eine Aufdampfanlage im Produktionsmaßstab bei QC übertragen werden. Zum einen sollen diese Schichten bei QC zu vollständigen Tandemsolarzellen verarbeitet werden, deren Umwandlungseffizienz möglichst wenige Abschläge zu den im Projekt erzielten Laboreffizienzen erreicht. Zum anderen sollen die Prozesse auf kommerzielle Verwertbarkeit hin optimiert werden, vor allem in Bezug auf Durchsatz, Materialausnutzung, Homogenität und Reproduzierbarkeit der Prozesse. In einer Wirtschaftlichkeitsanalyse sollen zudem die Gesamtkosten und Kostensenkungspotentiale der Prozesse evaluiert werden und die Machbarkeit einer Perowskit-Silizium-Tandem-Solarzellfertigung in Deutschland auf MW- und GW-Skala bewertet werden.

Entwicklung und Erprobung biogener Brennstoffe als Ersatz für Braunkohle in der Staubfeuerung

Eine der größten Herausforderungen im Rahmen der Energiewende ist die CO2-neutrale Versorgung von Industrie und Gewerbe mit Prozesswärme und -kälte. Eine besondere strategische Relevanz gewinnt BioBrauS dadurch, dass nicht nur biogene Reststoffe, die einen überschüssigen und in der Regel unvermeidbaren Stoffstrom darstellen, einer weitergehenden energetischen Verwertung zugänglich gemacht werden, sondern auch der Verbrauch der fossilen Primärressource Braunkohle mit hohen CO2-Aussstoß reduziert wird. Ziel ist die Entwicklung eines Brennstoffes aus aufbereiteten organischen Reststoffen, wie Gärprodukten oder Geflügelmist, mit abgestimmter Verbrennungstechnologie auf Basis der Stabfeuerung zu verwerten. Hierfür soll das Verfahren des Impulsbrenners evaluiert und an die Verbrennung diese Stoffsysteme adaptiert werden. Mit der Auswahl und Bewertung von Gärresten und Geflügelmist als Brennstoff für die Staubfeuerung soll der Grundstein für den Ersatz von Braun- und Steinkohle gelegt werden. Im Fokus stehen deshalb die experimentelle Verfahrensevaluation und Optimierung von Verbrennungseigenschaften und Prozessparameter der Staubfeuerung für den Einsatz landwirtschaftlicher Reststoffe, wie Gärrest und Geflügelmist als Ersatz des bisherigen Energieträgers Braunkohle für Bestands- und Neuanlagen. Auch die biogenen Inputsubstrate sollen für den Einsatz in der Staubfeuerung angepasst (Mahlung, Siebung) und optimiert werden. Schwerpunkt ist die Reduktion von Schad- und Störstoffen sowie die Verbesserung der Brennstoffeigenschaften. Die Entwicklungen sollen dann im technischen Maßstab getestet und bewertet werden. Außerdem soll ein Gesamtkonzept zur technischen Umsetzung und Einsatz der Technologien erarbeitet werden, welches die Logistik der Energie- und Stoffströme sowie deren Verwertung für Bestands- und Neuanlagen beinhaltet. Abschließend wird eine Wirtschaftlichkeitsbetrachtung und LCA mit Ökobilanzierung für den kommerziellen Maßstab durchgeführt.

WIR! - Waste2Value - NovelBioChem

Großtechnisch skalierbare Direct Air Capture Technologie für die Produktion von eFuels auf Basis von Luft-CO2

In dem beantragten Vorhaben soll eine bereits erprobte, effiziente und für die Synthese von eFuels ausgelegte DAC-Technologie des ZSW, die bislang als Demonstrator im Maßstab 1 kg/h CO2 (DAC1) validiert wurde, aufgegriffen in Kooperation mit den Projektpartnern ela und atmosfair industrialisiert und erstmalig in den Maßstab 100 kg/h CO2 (DAC100) umgesetzt werden. Die Wäscher-basierte Technologie zeichnet sich durch eine kontinuierliche Betriebsweise, Nutzung von Prozessabwärmen (Elektrolyse bzw. nachgelagerte Synthese) und insbesondere eine einfache Skalierbarkeit aus. Beim Engineering des DAC100-Prototypen sollen insbesondere auch für die Industrialisierung relevanten Aspekte wie Fertigbarkeit in Serie, Robustheit und Recyclingfähigkeit der eingesetzten Materialien berücksichtigt werden. Ziel des Vorhabens ist es, die Technologie im Maßstab DAC100 in realer Einsatzumgebung im e-gas-Anlagenkomplex in Werlte zu betrieben und durch Vermessung der Performancedaten zu validieren. Hierzu wird die Technologie zur CO2-Bereitstellung in den Produktionsstandort für regeneratives Methan und LNG des Projektpartners ela integriert und im Demonstrationsbetrieb über mehrere Tausend Stunden betrieben. Ziel des Projektes und der begleitenden Wirtschaftlichkeitsanalysen ist es, die Wirtschaftlichkeit des Verfahrens nachzuweisen und die nächsten Skalierungsschritte in den energietechnischen relevanten Tonnen-Maßstab vorzubereiten. Es ist geplant, dass die Anlage nach Projektende im e-gas-Anlagenkomplex in Werlte weitergetrieben und regeneratives Luft-CO2 für die dortigen Syntheseprozesse bereitstellt.

1 2 3 4 5189 190 191