Der View Service stellt Anlagen nach Bundesimmissionsschutzgesetz (BImSchG) im Land Brandenburg dar. Datenquelle ist das Anlageninformationssystem LIS-A. Die Anlagen werden zum einen gruppiert nach Anlagenarten 1. Ordnung (ohne Anlagenteile), zum anderen nach Tierhaltungs- und Aufzuchtanlagen, nach Blockheizkraftwerken und nach großen Feuerungsanlagen. Die BImSchG-Anlagen 1. Ordnung werden unterschieden nach: - Wärmeerzeugung, Bergbau und Energie (Nr. 1) - Steine und Erden, Glas, Keramik, Baustoffe (Nr. 2) - Stahl, Eisen und sonstige Metalle einschließlich Verarbeitung (Nr. 3) - Chemische Erzeugnisse, Arzneimittel, Mineralölraffination und Weiterverarbeitung (Nr. 4) - Oberflächenbehandlung mit organischen Stoffen, Herstellung von bahnenförmigen Materialien aus - Kunststoffen, sonstige Verarbeitung von Harzen und Kunststoffen (Nr. 5) - Holz, Zellstoff (Nr. 6) - Nahrungs-, Genuss- und Futtermittel, landwirtschaftliche Erzeugnisse (Nr. 7) - Verwertung und Beseitigung von Abfällen und sonstigen Stoffen (Nr. 8) - Lagerung, Be- und Entladen von Stoffen und Gemischen (Nr. 9) - Sonstige Anlagen (Nr. 10) Die Tierhaltungs- und Aufzuchtanlagen werden gemäß 4. BImSchV unterteilt in: - Geflügel (Nr. 7.1.1 bis 7.1.4) - Rinder und Kälber (Nr. 7.1.5 und 7.1.6) - Schweine (Nr. 7.1.7 bis 7.1.9) - gemischte Bestände (Nr. 7.1.11) Die großen Feuerungsanlagen werden gemäß 4. BImSchV unterteilt in: - Wärmeerzeugung, Energie (Nr. 1.1, 1.4.1.1, 1.4.2.1) - Zementherstellung (Nr. 2.3.1) - Raffinerien (Nr. 4.1.12, 4.4.1) - Abfallverbrennung (Nr. 8.1.1.1, 8.1.1.3). Es werden nur Anlagen gemäß 13. und 17. BImSchV berücksichtigt. Die Blockheizkraftwerke werden hinsichtlich ihrer elektrischen Leistung unterschieden. Windkraftanlagen werden nicht dargestellt! Maßstab: 1:500000; Bodenauflösung: nullm; Scanauflösung (DPI): null
Der Download Service ermöglicht das Herunterladen von Geodaten zu Anlagen nach Bundesimmissionsschutzgesetz (BImSchG) im Land Brandenburg. Datenquelle ist das Anlageninformationssystem LIS-A. Die Anlagen werden zum einen gruppiert nach Anlagenarten 1. Ordnung (ohne Anlagenteile), zum anderen nach Tierhaltungs- und Aufzuchtanlagen, nach Blockheizkraftwerken und nach großen Feuerungsanlagen. Die BImSchG-Anlagen 1. Ordnung werden unterschieden nach: - Wärmeerzeugung, Bergbau und Energie (Nr. 1) - Steine und Erden, Glas, Keramik, Baustoffe (Nr. 2) - Stahl, Eisen und sonstige Metalle einschließlich Verarbeitung (Nr. 3) - Chemische Erzeugnisse, Arzneimittel, Mineralölraffination und Weiterverarbeitung (Nr. 4) - Oberflächenbehandlung mit organischen Stoffen, Herstellung von bahnenförmigen Materialien aus - Kunststoffen, sonstige Verarbeitung von Harzen und Kunststoffen (Nr. 5) - Holz, Zellstoff (Nr. 6) - Nahrungs-, Genuss- und Futtermittel, landwirtschaftliche Erzeugnisse (Nr. 7) - Verwertung und Beseitigung von Abfällen und sonstigen Stoffen (Nr. 8) - Lagerung, Be- und Entladen von Stoffen und Gemischen (Nr. 9) - Sonstige Anlagen (Nr. 10) Die Tierhaltungs- und Aufzuchtanlagen werden gemäß 4. BImSchV unterteilt in: - Geflügel (Nr. 7.1.1 bis 7.1.4) - Rinder und Kälber (Nr. 7.1.5 und 7.1.6) - Schweine (Nr. 7.1.7 bis 7.1.9) - gemischte Bestände (Nr. 7.1.11) Die großen Feuerungsanlagen werden gemäß 4. BImSchV unterteilt in: - Wärmeerzeugung, Energie (Nr. 1.1, 1.4.1.1, 1.4.2.1) - Zementherstellung (Nr. 2.3.1) - Raffinerien (Nr. 4.1.12, 4.4.1) - Abfallverbrennung (Nr. 8.1.1.1, 8.1.1.3) Es werden nur Anlagen gemäß 13. und 17. BImSchV berücksichtigt. Die Blockheizkraftwerke werden hinsichtlich ihrer elektrischen Leistung unterschieden.
Der interoprable INSPIRE-Viewdienst (WMS) Production and Industrial Facilities gibt einen Überblick über die Anlagen nach Bundesimmissionsschutzgesetz (BImSchG) in Brandenburg. Der Datenbestand beinhaltet die Punktdaten zu BImSchG-Betriebsstätten und BImSchG-Anlagen (ohne Anlagenteile). Datenquelle ist das Anlageninformationssystem "LIS-A". Gemäß der INSPIRE-Datenspezifikation "Production and Industrial Facilities" (D2.8.III.8_v3.0) liegen die Inhalte der BImSchG-Anlagen INSPIREkonform vor. Der WMS beinhaltet 2 Layer: "ProductionFacility" (Betriebsstätte) und "ProductionInstallation" (Anlage). Der ProductionFacility-Layer wird gem. INSPIRE-Vorgaben nach Wirstschaftszweigen (BImSchG-Kategorie 1. Ordnung) untergliedert in: - PF.PowerGeneration: Wärmeerzeugung, Bergbau und Energie (BImSchG-Kategorie: Nr. 1) - PF.ConstructionMaterialProduction: Steine und Erden, Glas, Keramik, Baustoffe (BImSchG-Kategorie: Nr. 2) - PF.MetalProcessingAndProduction: Stahl, Eisen und sonstige Metalle einschließlich Verarbeitung (BImSchG-Kategorie: Nr. 3) - PF.ChemicalProcessing: Chemische Erzeugnisse, Arzneimittel, Mineralölraffination und Weiterverarbeitung (BImSchG-Kategorie: Nr. 4) - PF.PlasticsManufacturing: Oberflächenbehandlung mit organischen Stoffen, Herstellung von bahnenförmigen Materialien aus Kunststoffen, sonstige Verarbeitung von Harzen und Kunststoffen (BImSchGKategorie: Nr. 5) - PF.WoodAndPaperProcessing: Holz, Zellstoff (BImSchG-Kategorie: Nr. 6) - PF.FoodAndAgriculturalProduction: Nahrungs-, Genuss- und Futtermittel, landwirtschaftliche Erzeugnisse (BImSchG-Kategorie: Nr. 7) - PF.WasteProcessing: Verwertung und Beseitigung von Abfällen und sonstigen Stoffen(BImSchGKategorie: Nr. 8) - PF.MaterialStorage: Lagerung, Be- und Entladen von Stoffen und Gemischen(BImSchG-Kategorie: Nr. 9) - PF.OtherProcessing: Sonstige Anlagen (BImSchG-Kategorie: Nr. 10) Maßstab: 1:500000; Bodenauflösung: nullm; Scanauflösung (DPI): null
Gemeinsame Pressemitteilung von Umweltbundesamt und Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit Drei Produkte erfüllen die strengen Vergabekriterien Der Blaue Engel kennzeichnet jetzt auch Einwegwindeln. Die neuen Produkte werden zu 100 Prozent aus Zellstoff aus nachhaltiger Forstwirtschaft hergestellt, sind frei von Kosmetikzusätzen, schadstoffgeprüft und ab sofort in mehreren Drogeriemärkten erhältlich. Der Anteil der Kinder in Deutschland, die in ihren ersten Lebensjahren Einwegwindeln tragen, wird auf 95 Prozent geschätzt. Täglich werden in Deutschland ca. zehn Millionen Windeln gebraucht und weggeworfen. Es lohnt sich also, beim Kauf von Windeln auf die Bedingungen der Herstellung und die Qualität zu achten. Das ist sowohl gut für die Umwelt als auch für die Kinder. Die nunmehr mit dem Umweltzeichen Blauer Engel gekennzeichneten Windeln haben gegenüber anderen Einwegwindeln folgende Vorteile: Bislang erfüllen drei Windeln die Vergabekriterien für den Blauen Engel: Mehr zu den Vergabekriterien erfahren Sie hier . Der Blaue Engel ist seit 40 Jahren das Umweltzeichen der Bundesregierung. Unabhängig und glaubwürdig setzt er anspruchsvolle Maßstäbe für umweltfreundliche Produkte und Dienstleistungen. Der Blaue Engel ist die Orientierung beim nachhaltigen Einkauf. Er kennzeichnet über 12.000 Produkte und Dienstleistungen von rund 1.500 Unternehmen.
Am 3. März 2013 traten neue Rechtsvorschriften zur Bekämpfung des Handels mit illegal gewonnenem Holz in Kraft. Die neue EU-Verordnung für das Inverkehrbringen von Holz und Holzerzeugnissen betrifft alle am Holzhandel Beteiligten. Sie untersagt das Inverkehrbringen von Holz aus illegalem Holzeinschlag auf dem europäischen Markt, um zur Bewältigung des weltweiten Problems des illegalen Holzeinschlags beizutragen. Die neue Rechtsvorschrift gilt sowohl für eingeführte(s) als auch für im Inland erzeugtes Holz und hergestellte Holzerzeugnisse und umfasst eine breite Palette von Erzeugnissen, die von Papier und Zellstoff bis zu Massivholz und Holzfußböden reicht.
Wellpappenrohpapiererzeugung Europa (Brauner Kraftliner): Kiefern- oder Fichtenholz wird nach dem Kraft- (oder Sulfat)-Verfahren mit Natronlauge unter Zusatz von Sulfid aufgeschlossen. In manchen Fabriken wird der Sulfataufschluß nicht sehr weit getrieben und es wird eine Sauerstoffdelignifizierung angeschlossen. Die Aufschlußlauge wird zur Energiegewinnung und Chemikalienrückgewinnung reduzierend verbrannt, so daß Sulfide und Natronlauge (nach Kaustifizierung) zurückgewonnen werden. Der Zellstoff wird ungebleicht eingesetzt, woraus die typische braune Farbe und hohe Festigkeiten resultieren. Zellstoff- und Papiererzeugung sind in den Anlagen integriert, eine Zwischentrocknung des Zellstoffs entfällt dadurch. In Europa wird in den meisten Fabriken zusätzlich krafthaltiges Altpapier (aus Importen) als weiterer Einsatzstoff verwendet. Es wird in Wasser aufgeschlagen und durch mechanische Prozesse von Fremdstoffen befreit. Der Zellstoff wird in Refinern gemahlen und mit Zusätzen (Stärke) über ein Langsieb zu einer Papierbahn geformt. Durch Pressen wird sie auf 50 % TG gebracht und mit dampfbeheizten Trockenzylindern getrocknet (ca. 96 % TG). Die Oberfläche des Papiers wird in der Papiermaschine mit einer Stärkelösung geleimt. Die Daten gelten für Österreich, Finnland, Frankreich, Norwegen, Portugal und Schweden, prinzipiell in gleicher Form in USA und Canada. Allokation: keine Genese der Daten: Die Daten repräsentieren den Durchschnitt von 90 % der europäischen Kraftlinerproduktion und entsprechen dem Stand von 1994. Sie wurden durch ECOBILAN (Paris) im Auftrag dreier europäischer Verbände durch Befragung der Hersteller ermittelt und validiert. Systemgrenzen sind die Werke. Beim Energieverbrauch ist offensichtlich die Ablaugenverbrennung im Gegensatz zur Rindeverbrennung in den Werken nicht berücksichtigt worden. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 50% Produkt: Papier/Pappe
Die Modellierung des Umweltprofils „Holzstoff“ umfasst die Aufwendungen und Emissionen der Herstellung von TMP-Holzstoff („ThermoMechanical Pulp“) mit TCF-Bleiche („Total Chlorine Free“). Berücksichtigt wurden die Transporte zur Mühle, die Holzbearbeitung, der mechanische Aufschluss, das Bleichen und die Trocknung des Holzstoffs. Die Energieerzeugung vor Ort und interne Wasseraufbereitungsprozesse wurden ebenfalls berücksichtigt. Die Daten repräsentieren durchschnittliche, moderne Technologie. Eingesetzter Holzstoff: 1332569t Produktion: 1162776t
Die Modellierung des Umweltprofils „Sulfitzellstoff“ umfasst die Aufwendungen und Emis-sionen der Herstellung von Sulfitzellstoff als Produktionsmix aus 25 % ECF-gebleichtem und 75 % TCF-gebleichtem Sulfitzellstoff. Die Inventardaten spiegeln den europäischen Durchschnitt wieder. Einsatz in der Papierindustrie: 662629t Import: 132978t
technologyComment of gold mine operation and refining (SE): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. ORE AND WASTE HAULAGE: The haul trucks transport the ore to various areas for processing. The grade and type of ore determine the processing method used. Higher-grade ores are taken to a mill. Lower grade ores are taken to leach pads. Some ores may be stockpiled for later processing. HEAP LEACHING: The ore is crushed or placed directly on lined leach pads where a dilute cyanide solution is applied to the surface of the heap. The solution percolates down through the ore, where it leaches the gold and flows to a central collection location. The solution is recovered in this closed system. The pregnant leach solution is fed to electrowinning cells and undergoes the same steps as described below from Electro-winning. ORE PROCESSING: Milling: The ore is fed into a series of grinding mills where steel balls grind the ore to a fine slurry or powder. Oxidization and leaching: Some types of ore require further processing before gold is recovered. In this case, the slurry is pressure-oxidized in an autoclave before going to the leaching tanks or a dry powder is fed through a roaster in which it is oxidized using heat before being sent to the leaching tanks as a slurry. The slurry is thickened and runs through a series of leaching tanks. The gold in the slurry adheres to carbon in the tanks. Stripping: The carbon is then moved into a stripping vessel where the gold is removed from the carbon by pumping a hot caustic solution through the carbon. The carbon is later recycled. Electro-winning: The gold-bearing solution is pumped through electro-winning cells or through a zinc precipitation circuit where the gold is recovered from the solution. Smelting: The gold is then melted in a furnace at about 1’064°C and poured into moulds, creating doré bars. Doré bars are unrefined gold bullion bars containing between 60% and 95% gold. References: Newmont (2004) How gold is mined. Newmont. Retrieved from http://www.newmont.com/en/gold/howmined/index.asp technologyComment of gold-silver mine operation with refinery (PG): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. ORE AND WASTE HAULAGE: The haul trucks transport the ore to various areas for processing. The grade and type of ore determine the processing method used. Higher-grade ores are taken to a mill. Lower grade ores are taken to leach pads. Some ores may be stockpiled for later processing. HEAP LEACHING: The recovery processes of the Misima Mine are cyanide leach and carbon in pulp (CIP). The ore is crushed or placed directly on lined leach pads where a dilute cyanide solution is applied to the surface of the heap. The solution percolates down through the ore, where it leaches the gold and flows to a central collection location. The solution is recovered in this closed system. The pregnant leach solution is fed to electrowinning cells and undergoes the same steps as described below from Electro-winning. ORE PROCESSING: Milling: The ore is fed into a series of grinding mills where steel balls grind the ore to a fine slurry or powder. Oxidization and leaching: The recovery process in the Porgera Mine is pressure oxidation and cyanide leach. The slurry is pressure-oxidized in an autoclave before going to the leaching tanks or a dry powder is fed through a roaster in which it is oxidized using heat before being sent to the leaching tanks as a slurry. The slurry is thickened and runs through a series of leaching tanks. The gold in the slurry adheres to carbon in the tanks. Stripping: The carbon is then moved into a stripping vessel where the gold is removed from the carbon by pumping a hot caustic solution through the carbon. The carbon is later recycled. Electro-winning: The gold-bearing solution is pumped through electro-winning cells or through a zinc precipitation circuit where the gold is recovered from the solution. Smelting: The gold is then melted in a furnace at about 1’064°C and poured into moulds, creating doré bars. Doré bars are unrefined gold bullion bars containing between 60% and 95% gold. WATER SUPPLY: For Misima Mine, process water is supplied from pit dewatering bores and in-pit water. Potable water is sourced from boreholes in the coastal limestone. For Porgera Mine, the main water supply of the mine is the Waile Creek Dam, located approximately 7 kilometres from the mine. The reservoir has a capacity of approximately 717, 000 m3 of water. Water for the grinding circuit is also extracted from Kogai Creek, which is located adjacent to the grinding circuit. The mine operates four water treatment plants for potable water and five sewage treatment plants. ENERGY SUPPLY: For Misima Mine, electricity is produced by the mine on site or with own power generators, from diesel and heavy fuel oil. For Porgera Mine, electricity is produced by the mine on site. Assumed with Mobius / Wohlwill electrolysis. Porgera's principal source of power is supplied by a 73-kilometre transmission line from the gas fired and PJV-owned Hides Power Station. The station has a total output of 62 megawatts (“MW”). A back up diesel power station is located at the mine and has an output of 13MW. The average power requirement of the mine is about 60 MW. For both Misima and Porgera Mines, an 18 MW diesel fired power station supplies electrical power. Diesel was used in the station due to the unavailability of previously supplied heavy fuel oil. technologyComment of gold-silver mine operation with refinery (CA-QC): One of the modelled mine is an open-pit mine and the two others are underground. technologyComment of gold-silver mine operation with refinery (RoW): The mining of ore from open pit mines is considered. technologyComment of primary zinc production from concentrate (RoW): The technological representativeness of this dataset is considered to be high as smelting methods for zinc are consistent in all regions. Refined zinc produced pyro-metallurgically represents less than 5% of global zinc production and less than 2% of this dataset. Electrometallurgical Smelting The main unit processes for electrometallurgical zinc smelting are roasting, leaching, purification, electrolysis, and melting. In both electrometallurgical and pyro-metallurgical zinc production routes, the first step is to remove the sulfur from the concentrate. Roasting or sintering achieves this. The concentrate is heated in a furnace with operating temperature above 900 °C (exothermic, autogenous process) to convert the zinc sulfide to calcine (zinc oxide). Simultaneously, sulfur reacts with oxygen to produce sulfur dioxide, which is subsequently converted to sulfuric acid in acid plants, usually located with zinc-smelting facilities. During the leaching process, the calcine is dissolved in dilute sulfuric acid solution (re-circulated back from the electrolysis cells) to produce aqueous zinc sulfate solution. The iron impurities dissolve as well and are precipitated out as jarosite or goethite in the presence of calcine and possibly ammonia. Jarosite and goethite are usually disposed of in tailing ponds. Adding zinc dust to the zinc sulfate solution facilitates purification. The purification of leachate leads to precipitation of cadmium, copper, and cobalt as metals. In electrolysis, the purified solution is electrolyzed between lead alloy anodes and aluminum cathodes. The high-purity zinc deposited on aluminum cathodes is stripped off, dried, melted, and cast into SHG zinc ingots (99.99 % zinc). Pyro-metallurgical Smelting The pyro-metallurgical smelting process is based on the reduction of zinc and lead oxides into metal with carbon in an imperial smelting furnace. The sinter, along with pre-heated coke, is charged from the top of the furnace and injected from below with pre-heated air. This ensures that temperature in the center of the furnace remains in the range of 1000-1500 °C. The coke is converted to carbon monoxide, and zinc and lead oxides are reduced to metallic zinc and lead. The liquid lead bullion is collected at the bottom of the furnace along with other metal impurities (copper, silver, and gold). Zinc in vapor form is collected from the top of the furnace along with other gases. Zinc vapor is then condensed into liquid zinc. The lead and cadmium impurities in zinc bullion are removed through a distillation process. The imperial smelting process is an energy-intensive process and produces zinc of lower purity than the electrometallurgical process. technologyComment of processing of anode slime from electrorefining of copper, anode (GLO): Based on typical current technology. Anode slime treatment by pressure leaching and top blown rotary converter. Production of Silver by Möbius Electrolysis, Gold by Wohlwill electrolysis, copper telluride cement and crude selenium to further processing. technologyComment of silver-gold mine operation with refinery (CL): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. BENEFICIATION: The processing plant consists of primary crushing, a pre-crushing circuit, (semi autogenous ball mill crushing) grinding, leaching, filtering and washing, Merrill-Crowe plant and doré refinery. The Merrill-Crowe metal recovery circuit is better than a carbon-in-pulp system for the high-grade silver material. Tailings are filtered to recover excess water as well as residual cyanide and metals. A dry tailings disposal system was preferred to a conventional wet tailings impoundment because of site-specific environmental considerations. technologyComment of silver-gold mine operation with refinery (RoW): Refinement is estimated with electrolysis-data. technologyComment of treatment of crust from Parkes process for lead production (GLO): Processing of Parkes desilvering crust by hot pressing, dezincing (vacuum distillation), cupellation of lead and moebius electrolysis (electrowinning) technologyComment of treatment of precious metal from electronics scrap, in anode slime, precious metal extraction (SE, RoW): Anode slime treatment by pressure leaching and top blown rotary converter. Production of Silver by Möbius Electrolysis, Gold by Wohlwill electrolysis, Palladium to further processing technologyComment of treatment of waste x-ray film (GLO): None
"SAR [W/kg] im Anwendungsfall ""Telefonieren mit dem Handy am Ohr"" ('head')": 0,38 - "SAR [W/kg] im Anwendungsfall ""Betrieb des Handys am Körper"" ('body worn')": 0,97 - Messabstand bei Messung des 'body worn' - SAR-Wertes [cm]: 1,50
Origin | Count |
---|---|
Bund | 253 |
Land | 13 |
Zivilgesellschaft | 2 |
Type | Count |
---|---|
Ereignis | 1 |
Förderprogramm | 231 |
Messwerte | 5 |
Text | 22 |
Umweltprüfung | 1 |
unbekannt | 7 |
License | Count |
---|---|
closed | 19 |
open | 235 |
unknown | 12 |
Language | Count |
---|---|
Deutsch | 266 |
Englisch | 43 |
Resource type | Count |
---|---|
Archiv | 12 |
Datei | 12 |
Dokument | 15 |
Keine | 203 |
Webdienst | 3 |
Webseite | 47 |
Topic | Count |
---|---|
Boden | 266 |
Lebewesen & Lebensräume | 206 |
Luft | 100 |
Mensch & Umwelt | 266 |
Wasser | 111 |
Weitere | 255 |