API src

Found 576 results.

Related terms

Atmosphärische Zirkulationsindizes globaler Klimamodelle (Status: 2010) "OWLK_GCM-plus"

Dieser Datenbestand dient der Analyse atmosphärischer Zirkulationsbedingungen (Wetterlagen, NAO) im nordatlantisch-mitteleuropäischen Sektor wie sie von Reanalyse- und globalen Klimamodellen (Status: 2010) simuliert werden. Ausgewählt wurden solche Klimamodelläufe, die für Mitteleuropa oder Deutschland regionalisiert wurden. Mit dem Datenbestand kann einerseits die Eignung der verschiedenen Modelle zur Reproduktion der beobachteten Zirkulationsverhälnisse (1950-2000) geprüft werden. Andererseits können simulierte Änderungen (2001-2100) ausgewertet werden. Zusätzlich werden Temperatur -und Niederschlagsdaten bereitgestellt, mit denen die Wetterwirksamkeit der Wetterlagen je GCM bewertet werden kann.

The importance of peripheral oceanic processes in the Labrador Sea for the Atlantic meridional overturning circulation

Das Projekt "The importance of peripheral oceanic processes in the Labrador Sea for the Atlantic meridional overturning circulation" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), Forschungsbereich 1: Ozeanzirkulation und Klimadynamik durchgeführt. The Labrador Sea is one of the few places in the world ocean, where deep water formation takes place. This water is exported from the Labrador Sea to become part of the southward branch of the meridional overturning circulation. Previous observational work has largely focused on the role of deep convection in the interior of the Labrador Sea. Recent evidence from observations and numerical ocean models specifically indicate that processes near the ocean boundaries might be most relevant for both Eulerian downwelling of waters in the Labrador Sea and the fast export of newly transformed waters. We propose to analyze mooring based observations at the western margin of the Labrador Sea together with high resolution numerical model simulations to understand the role both processes play for the meridional overturning circulation in the subpolar North Atlantic. Specifically, we want to test (i) if (and where) downwelling occurs along the margins of the Labrador Sea, (ii) how downwelling relates to the seasonal evolution of convection and eddy activity, (iii) how fast waters newly transformed near the western margin of the Labrador Sea are exported, and (iv) how the two processes (downwelling, fast export) affect the temporal variability of the Atlantic meridional overturning circulation.

The Atmospheric Side of the Freshwater Budget

Das Projekt "The Atmospheric Side of the Freshwater Budget" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Fachbereich Erdsystemwissenschaften, Meteorologisches Institut durchgeführt. The focus of this project is to analyse the observed surface freshwater fluxes through improved estimates of evaporation and precipitation and their individual error characteristics in the HOAPS climatology and its ground validation in climate-related hotspots of the Atlantic Ocean. To enable that in a consistent manner we propose to establish an error characterization of the HOAPS evaporation data by triple collocations with ship and buoy measurements and between individual satellites and to improve the error characterization of the HOAPS precipitation by analysing available shipboard disdrometer data using point to area statistics. After these improvements, an analysis of the spatio-temporal variability of the surface fresh water balance E-P over the Atlantic Ocean is planned, especially with respect to the Hadley circulation and the hotspot regions of interest to related WPs. Also the atmospheric water transport shall be analysed in order to find the source or target region of local fresh water imbalances. And finally, a consistent inter-comparison of the upcoming global ocean surface salinity fields from SMOS with freshwater fluxes from the HOAPS climatology is proposed.

Einfluss von Schwerewellen auf Eiswolken in der Tropopausenregion (GW-ICE)

Das Projekt "Einfluss von Schwerewellen auf Eiswolken in der Tropopausenregion (GW-ICE)" wird vom Umweltbundesamt gefördert und von Johann Wolfgang Goethe-Universität Frankfurt am Main, Institut für Atmosphäre und Umwelt durchgeführt. Schwerewellen stellen eine wichtige Komponente im Atmosphärensystem dar. Sie beeinflussen den vertikalen Impuls- und Energietransport und tragen damit entscheidend für verschiedene Zirkulationsmuster bei. Schwerewellen entstehen hauptsächlich in der Troposphäre und propagieren dann durch die Tropopausen Region in die höhere Atmosphäre. Dabei werden ihre Eigenschaften zum Teil verändert. Außerdem können sie durch die induzierten Vertikalgeschwindigkeiten einen großen Einfluss auf die Bildung und Entwicklung von Eiswolken in der Tropopausen Region haben. In diesem Projekt soll die Interaktion von Schwerewellen und Eiswolken in der Tropopausen Region untersucht werden. Dabei soll das in der ersten Phase von MS-GWaves entwickelte WKB-Modell durch Wolkenphysik erweitert werden und dann zur Untersuchung der Wechselwirkung Wellen-Eiswolken benutzt werden. Zusätzlich werden schwerewelleninduzierte Eiswolken mit Hilfe eines Large Eddy Simulation (LES) Modells untersucht. Mögliche Rückkopplungen der Eiswolken auf die Tropopausen Dynamik durch diabatische Effekte werden ebenfalls untersucht. Die Strahlungseffekt der simulierten Eiswolken (WKB Modell oder LES) wird mit Hilfe eines Strahlungstransportmodells abgeschätzt. Damit wird es möglich sein, den Einfluss der Schwerewellen auf Eiswolken und deren Strahlungsbilanz zu untersuchen, mögliche Wechselwirkungen mit der Tropopause abzuschätzen, und genauere Abschätzungen für die Energiebilanz der schwerewelleninduzierten Eiswolken anzugeben.

Wechselwirkungen von Schwerewellen in der globalen Atmosphäre (GWING)

Das Projekt "Wechselwirkungen von Schwerewellen in der globalen Atmosphäre (GWING)" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für Meteorologie durchgeführt. Interne Schwerewellen (SW) verbinden verschiedene Schichten der Atmosphäre von der Troposphäre bis zur Thermosphäre und treiben die großskalige Zirkulation der mittleren Atmosphäre an. Viele der für SW relevanten Prozesse, von ihrer Entstehung über die Ausbreitung bis zur Dissipation sind jedoch unvollständig verstanden und, wegen der geringen typischen Wellenlänge, meist schlecht in numerischen Wettervorhersage- und Klimamodellen repräsentiert. GWING ist eines der Projekte der Forschergruppe MS-GWaves, die darauf abzielt, unser Verständnis der oben angesprochenen multi-skalaren dynamischen Schwerewellenprozesse zu verbessern, um letztendlich eine einheitliche Parametrisierung der in Atmosphärenmodellen nicht auflösbaren Schwerewellen (und ihrer Effekte) von der Entstehung bis zur Dissipation zu entwickeln. Um hierzu beizutragen, ist das zentrale Ziel von GWING die Entwicklung und Anwendung des atmosphärischen Zirkulationsmodells UA-ICON. Mit diesem Modell integriert GWING das in der Forschergruppe MS-GWaves entwickelte Wissen. In der zweiten Phase von GWING stehen zwei übergeordnete wissenschaftliche Fragen im Fokus: a) Welche Bedeutung haben Eigenschaften von Schwerewellen, die in klassischen Parametrisierungen nicht berücksichtigt werden, also insbesondere horizontale und nicht-inständige Propagation sowie die Wechselwirkung transienter Wellen mit dem Grundstrom? b) Welche Rolle spielen Schwerewellen für die globale Zirkulation und ihre Variabilität? Um diese Fragen zu beantworten, werden wir UA-ICON global sowohl mit einer Maschenweite von etwa 20 km (d.h. mit Auflösung von SW bis etwa 100 km Wellenlänge) als auch mit grober Auflösung, dafür aber mit der State-of-the-art Parametrisierung MS-GWaM nutzen. Weiterhin werden spezielle Beobachtungsepisoden mit sehr hoch (ca. 1,5 km) aufgelösten Nestern simuliert. Zur Evaluation und Analyse werden diese Modellsimulationen mit Beobachtungen der Partnerprojekte zusammengeführt. Die wesentlichen Entwicklungsziele für UA-ICON in Phase 2 des Projekts sind dementsprechend die Implementierung von MS-GWaM (entwickelt im Partnerprojekt 3DMSD), die Einführung physik-basierter Schwerewellenquellen (zusammen mit 3DMSD und SV) und eine verbesserte Behandlung von SW bei sehr hoher Modellauflösung. Die Nutzung der verschiedenen UA-ICON-Konfigurationen wird schließlich erlauben, die Bedeutung bisher vernachlässigter Eigenschaften von SW zu untersuchen, d.h. die erste der oben genannten Fragestellungen zu beantworten. Ein spezielles Ziel im Rahmen von GWING ist diese Untersuchung für Episoden plötzlicher Stratosphärenerwärmungen, die durch sich schnell ändernde und zonal nicht symmetrische Bedingungen des Grundstroms gekennzeichnet sind. Im Hinblick auf die zweite übergeordnete Fragestellung, wird sich GWING auf a) die Rolle der SW und einer hohen Modellausdehnung für die Simulation von Zirkulationsänderungen bei globaler Erwärmung und b) die Rolle für die Güte von Wettervorhersagen konzentrieren.

Prozesse und Klimatologie von Schwerewellen

Das Projekt "Prozesse und Klimatologie von Schwerewellen" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Abteilung Wolkenphysik und Verkehrsmeteorologie durchgeführt. PACOG ist ein Projekt im Rahmen der Forschergruppe 'MS-GWaves', bei der es um die Erforschung von Schwerewellen geht. PACOG konzentriert sich dabei auf atmosphärenphysikalische Beobachtungen und Vergleich mit Modellrechnungen. Schwerewellen spielen für unser Verständnis der mittleren Atmosphäre eine entscheidende Rolle, da sie die Atmosphäre um mehr als 100 K vom strahlungsbedingten Zustand treiben können und drastische Veränderungen der Zirkulation und der Zusammensetzung bewirken können. Schwerewellen stellen den wichtigsten Kopplungsprozess zwischen unteren und oberen Schichten der Atmosphäre dar. Leider sind viele Einzelheiten bezüglich Schwerewellen unzureichend verstanden. Dies betrifft z. B. die Erzeugung, Ausbreitung, Filterung, Dissipation und die zeitliche und räumliche Variabilität. Wir möchten die Klimatologie von Schwerewellen auf regionalen und globalen Skalen untersuchen. Dabei wird eine Kombination von hochmodernen Instrumenten eingesetzt, z. B. Lidars und Radars. Die Interpretation der Ergebnisse wird mit Hilfe von Simulationen, die auf Reanalysen aufbauen, unterstützt. Das Ziel von MS-GWaves besteht letzten Endes darin, die Parametrisierung von Schwerewellen in globalen Modellen zu verbessern. Die in PACOG durchgeführten Beobachtungen sollen in allen Teilprojekten von MS-GWaves verwendet werden, z. B. beim Vergleich von lokalen und regionalen Messungen mit globalen Beobachtungen von Satelliten (Projekt SV) oder zur Validierung von Modellrechnungen in den Projekten 3DMSD und GWING.

Detection and Attribution des Klimawandels im Hochgebirge anhand der Kryosphäre: Auflösung der Prozessebene

Das Projekt "Detection and Attribution des Klimawandels im Hochgebirge anhand der Kryosphäre: Auflösung der Prozessebene" wird vom Umweltbundesamt gefördert und von Universität Erlangen-Nürnberg, Institut für Geographie durchgeführt. Der menschliche Einfluss auf großräumige Änderungen des Klimas hat in den letzten Jahrzehnten stark zugenommen, sowohl in Atmosphäre, Ozean und Kryosphäre. Die genauen Eigenschaften physikalischer Prozesse und Mechanismen, die den menschlichen Einfluss von großräumigen auf lokale Skalen übertragen, sind allerdings kaum bekannt. Dies bedeutet eine erhebliche Unsicherheit für die Folgen des Klimawandels in der Zukunft. Das Problem der Übertragung betrifft auch den Gletscherrückgang im Hochgebirge, der überdies ein seltener Indikator für den Klimawandel in der mittleren Troposphäre ist. --- Das vorliegende Projekt hat das Ziel, unser Verständnis des Klimawandels in großer Höhe entscheidend zu verbessern. Das Fundament dafür legt eine neuartige und interdisziplinäre Methodik, mit der wir den menschlichen Anteil am Klimawandel in der großräumigen Klimadynamik, der regionalen Zirkulation über den ausgewählten Gebirgen sowie in der atmosphärischen Grenzschicht der dortigen Gletscher quantifizieren können. Die Verknüpfung prozessauflösender, physikalischer Modelle von globaler bis lokaler Skala sowie außergewöhnliche Messungen auf Gletschern in großer Höhe spannen diese Methodik auf. Sie wird letztlich ermöglichen, den menschlichen Anteil präzise zu erklären und die dafür verantwortlichen Mechanismen ausweisen zu können, inklusive der empfindlichsten Zusammenhänge im multiskaligen System ('Achillesfersen'). --- Der Einfluss des Projekts wird sich deutlich über die Glaziologie hinaus erstrecken. Unser Wissen über das globale Klimasystem wird durch den besser verstandenen Aspekt der Verknüpfung zwischen bodennahen Luftschichten und der mittleren Troposphäre profitieren. Auf regionalen und lokalen Skalen helfen die Ergebnisse für die Abschätzung von Klimafolgen, da Gletscheränderungen Wasserreserven und Naturgefahren beeinflussen. Und schließlich werden die Ergebnisse neue Wege für die Klimafolgenforschung allgemein aufzeigen, indem sie eine prozessauflösende und skalenübergreifende Methodik demonstrieren.

Teilprojekt: Bestimmung des 'endmembers' der Nd-Isotopie von nordatlantischem Tiefenwasser über den letzten glazialen Zyklus

Das Projekt "Teilprojekt: Bestimmung des 'endmembers' der Nd-Isotopie von nordatlantischem Tiefenwasser über den letzten glazialen Zyklus" wird vom Umweltbundesamt gefördert und von Universität Heidelberg, Institut für Geowissenschaften durchgeführt. Während des letzten Eiszeit-Zykluses wurde CO2 aus der Atmosphäre jahrtausendelang in den tiefen Ozeanen gebunden. Die ozeanische Wassermassenstruktur, die eine solche erhöhte Kohlenstoffspeicherung ermöglichte, ist jedoch weiterhin nicht bekannt. Inkonsistente Rekonstruktionsergebnisse sind größtenteils eine Folge der begrenzten. Insbesondere sind nur wenige Rekonstruktionen von Tiefenwassermassen-Struktur mittels des Neodym (Nd)-Isotopen-Proxys für die letzten 100.000 Jahren verfügbar. Als Selten Erden Elemente wird Nd nicht durch den biologischen Kreislauf beeinflusst, wodurch die Nd-Isotopenzusammensetzung des Meerwassers benutzt werden kann, um Änderungen des Kohlenstoffkreislaufs von der Zirkulation in der Tiefsee getrennt betrachten. Aufgrund des Unterschieds der Nd-Isotopensignaturen zwischen Nord- und Südwasser mehrfach über signifikant unterschiedliche Wassermassenstrukturen des Atlantiks in der Vergangenheit berichtet. Kürzlich wurden jedoch Prozesse identifiziert, die unabhängig von der Herkunft der Wassermasse, die archivierten Nd-Isotopensignaturen (vor allem in Verbindung mit benthischen Nepheloid-Schichten) verändern können und somit die Interpretation als Wassermassen-Tracer in Frage stellen. Diese Prozesse könnten erhebliche Auswirkungen auf paläo-ozeanographische Rekonstruktionen haben, da die meisten Studien bislang Nd-Isotopien unter der Annahme unveränderlicher endmember interpretierten. Gegenwärtig existiert jedoch kein Datensatz aus dem Nordatlantik, der den nördlichen endmember ausreichend genau repräsentiert und dabei den gesamten Glazialen Zyklus abdeckt. Die hier vorgeschlagene Studie wird die etablierte Methodik über den Nd-Isotopen-Proxy an der Universität Heidelberg nutzen und zielt darauf ab, diese kritische Datenlücke zu schließen, indem ein nördlicher Nd-Isotopen-endmember von einem Sedimentkern über die letzten 100.000 Jahre definiert wird. Der IODP-Kern U1313 aus dem subpolare Nordatlantik ist hierfür besonders geeignet, denn er verfügt u.a. über eine ausreichend hohe Sedimentationsrate und liegt außerhalb des Einflusses von benthischen Nepheloid-Schichten oder vulkanischem Material.

6-stündige Gezeiten in den mittleren Atmosphäre (QuarTA)

Das Projekt "6-stündige Gezeiten in den mittleren Atmosphäre (QuarTA)" wird vom Umweltbundesamt gefördert und von Universität Leipzig, Institut für Meteorologie durchgeführt. Die Dynamik der Mesosphäre und unteren Thermosphäre wird zu großen Teilen von solaren Gezeiten dominiert. Eine davon ist die 6-stündige Gezeit (quarterdiurnal tide, QDT), die unter anderem in sporadischen E-Schichten und mit Hilfe von Radar- und Satellitenmessungen beobachtet wurde. Während allerdings die ganztägigen, halbtägigen, und auch 8-stündigen Gezeiten vergleichsweise gut dokumentiert und untersucht sind, sind Beobachtungen und Analysen der - weniger starken aber nichtsdestoweniger als ein Bestandteil der dynamischen Prozesse in ihrer Gesamtheit zu sehenden - 6-stündigen Komponente bislang selten. Um diese Lücke zu schließen, werden innerhalb des QuarTA-Projekts die 6-stündigen Gezeiten und ihre Antriebsmechanismen im Detail untersucht. Die Klimatologie der Gezeiten wir mit Hilfe von Meteorradarwindmessungen, vor allem der Langzeitreihe in Collm, ergänzt durch weitere Radarmessungen, erstellt. Die globale Verteilung der Gezeitenamplituden wird mit Hilfe von Ionosonden- und GPS-Radiookkultationsmessungen sporadischer E-Schichten untersucht, und die Beobachtungen in Verbindung mit Windscherungen aus Radarmessungen und numerischen Simulationen interpretiert. Um Einblick in die hauptsächlichen Anregungsmechanismen der 6-stündigen Gezeiten zu erhalten, wird ein nichtlineares mechanistisches Zirkulationsmodell, welches auch die Anregung durch Absorption solarer Strahlung enthält, verwendet. Hierbei wird, einzeln und in Kombination, die Anregung der 6-stündigen Gezeit durch Absorption solarer Strahlung und durch nichtlineare Wechselwirkung von Gezeiten in den Simulationen ausgeschaltet, so dass die Hauptantriebsquelle erkennbar wird. Innerhalb des QuarTA-Projekts wird daher, durch die Kombination von Beobachtungen und Modellsimulationen, ein vertiefter Einblick in die Klimatologie und die Anregung der 6-stündigen Gezeiten ermöglicht, der bislang noch nicht in ausreichendem Maße gegeben ist.

Die Auswirkung der dynamischen und thermodynamischen Eigenschaften der Strömung auf die räumliche und zeitliche Verteilung von Niederschlag im südlichen Patagonien

Das Projekt "Die Auswirkung der dynamischen und thermodynamischen Eigenschaften der Strömung auf die räumliche und zeitliche Verteilung von Niederschlag im südlichen Patagonien" wird vom Umweltbundesamt gefördert und von Universität Erlangen-Nürnberg, Institut für Geographie durchgeführt. Der weit nach Süden vordringende Keil Südamerikas ist weltweit die einzige nennenswerte Landmasse zwischen ca. 45° und 60°Süd. Das senkrecht zur Hauptwindrichtung verlaufende Andengebirge stellt eine wirksame Barriere für die Westwinddrift dar und hat einen bestimmenden Einfluss auf die hemisphärische Zirkulation sowie das lokale Wettergeschehen. Das Gebirge zwingt die maritimen Luftmassen zum Aufsteigen, was häufig mit intensiven Steigungsregen auf der Luvseite der Anden einhergeht. Durch die Überströmung des Gebirges kommt es zur Ausbildung von speziellen Prozessgefügen in der atmosphärischen Strömung sowohl auf der Meso- als auch regionaler Skala. Der damit einhergehende Transport und Austausch von Energie und Masse beeinflusst maßgeblich die Entstehung und den Ausfall von Hydrometeoren. Trotz der starken Wechselwirkung zwischen Strömung, Topographie und Niederschlag wurde in Patagonien darüber bisher nur wenig geforscht. Das vorgeschlagene Forschungsvorhaben leistet daher einen Beitrag zum Verständnis der Wechselwirkung zwischen dynamischen Prozessen und der räumlichen und zeitlichen Variabilität von Niederschlag in dieser Region. Ziel des Projektes ist die Quantifizierung wichtiger Prozesse die neue Aufschlüsse über die relevanten Mechanismen liefern soll. Anhand von hochauflösenden numerischen Simulationen werden an Einzelfallstudien die dynamischen und thermodynamischen Eigenschaften der atmosphärischen Strömung im Detail analysiert. Begleitende Sensitivitätsstudien mit vereinfachten analytischen Modelle werden zudem Aussagen zu den Auswirkungen der atmosphärischen Variabilität auf die Niederschlagsverteilung liefern. Das aus der Studie gewonnene Prozessverständnis ist eine wichtige Grundlage für weiterführende Forschungsarbeiten im Bereich der Hydrologie, Glaziologie und Ökologie.

1 2 3 4 556 57 58