Das Projekt "Föhnstudien im Rheintal in Österreich während MAP" wird vom Umweltbundesamt gefördert und von Universität Wien, Institut für Meteorologie und Geophysik durchgeführt. Im Rahmen des 'Mesoscale Alpine Programme' (MAP), einer internationalen kooperativen Forschungsinitiative zahlreicher Institutionen europäischen und außereuropäischer Länder zum Studium intensiver Wettervorgänge im Alpenraum, ist die Erforschung des Föhns als ein Schwerpunkt festgelegt worden. Das Alpenrheintal von seinem Ursprung an den Pässen des Alpenhauptkamms bis zum Bodensee, einschließlich der Seitentäler, wurde von den internationalen MAP Gremien zum Zielgebiet ausgewählt. Diese Region wird in einer gemeinsamen Aktion im kommenden Jahr von einem dichten Beobachtungsnetz überzogen um den Atmosphärenzustand während interessanter meteorologischer Situationen zu erfassen. Der vorliegende Forschungsantrag soll einer der österreichischen Beiträge zu dieser internationalen Initiative werden. Er ist so angelegt, dass er einerseits die Messungen der zahlreichen anderen Forschergruppen durch zusätzliche Messungen ergänzt, anderseits werden eigene Forschungsziele verfolgt. Die entsprechenden Fragestellungen sollen dann anhand des gemeinsamen MAP Datensatzes studiert werden. Das vorliegende Projekt verfolgt zwei Hauptziele, nämlich (1) die Erfassung der kleinskaligen räumlich zeitlichen Variabilität und des Lebenszyklus von Föhnepisoden in Bodennähe, und (2) die Beobachtung der Struktur der Föhnströmung in der unteren und mittleren Troposphäre, wobei vor allem auf die Wechselwirkung zwischen den Strömungsprozessen in Tälern verschiedener Länge, Breite und Richtung eingegangen werden soll. Als weiteres Ziel ist die Qualitäts-Evaluierung der erhobenen Messdaten zu nennen, die mittels eines ausgeklügelten Verfahrens durchgeführt werden soll, welches in der jüngsten Zeit von den Antragstellern entwickelt wurde. Die qualitätsgeprüften Messungen sollen schließlich dem internationalen MAP Datenzentrum für die weitere Bearbeitung zur Verfügung gestellt werden, von wo die Antragsteller dann als Gegenleistung auch die Beobachtungsdaten der anderen beteiligten Forschergruppen beziehen können. Das Alpenrheingebiet wurde deshalb als Zielgebiet ausgewählt, weil dort klimatologisch eine der höchsten Wahrscheinlichkeiten für Föhn im Alpenraum vorliegt und die Länder Österreich, Schweiz und Deutschland betroffen sind. Außer an wenigen langjährigen Klimastationen ist bisher wenig über die kleinräumige Struktur von Föhn in dem von den Antragstellern ausgewählten Gebiet bekannt, nämlich dem Walgau von Bludenz bis Feldkirch und dem Brandner Tal, südlich von Bludenz. Eine bessere Kenntnis und vor allem eine besser Vorhersage von Föhn in diesem Gebiet ist von großem praktischem Wert, da immer wieder Schäden durch Föhn (z. B. Sturmschäden) auftreten und plötzlich und unerwartet auftretende Windböen und Turbulenz eine beträchtliche Gefahr für die Luftfahrt, insbesondere für motorlose Fluggeräte darstellt. usw.
Das Projekt "Diabatic processes in North Atlantic weather systems: dynamics and impact on forecast errors" wird vom Umweltbundesamt gefördert und von Eidgenössische Technische Hochschule Zürich, Institut für Atmosphäre und Klima durchgeführt. Extratropical cyclones and persistent anticyclones, also referred to as atmospheric blockings, are key synoptic-scale weather systems that strongly determine the evolution of daily weather in Europe. Recent research has quantified that also many extreme events are linked to the passage of these systems; e.g., extreme precipitation and wind co-occur frequently with cyclones. It is therefore of crucial importance to understand the dynamics of cyclones and blockings and the reasons why their prediction at times fails. A central aspect, which has been increasingly considered during the last years, is the interaction of dry dynamical and moist physical processes for the dynamics and forecasting of cyclones and blockings. In our current SNF project and in accompanying group activities, we have been mainly focusing on the role of moist ascending airstreams in extratropical cyclones, so-called warm conveyor belts (WCBs), and could clarify their role for the formation of low-level positive and upper-level negative potential vorticity (PV) anomalies, both in detailed case study simulations and from a climatological point of view. Due to their cross-isentropic transport of low-PV air into the upper-level ridges, WCBs tend to intensify these ridges and modify the downstream flow at the level of the jet stream. The cloud microphysical processes within the ascending WCB air have been investigated, leading to a refined picture of the various phase transitions and the related release of latent heat associated with the cloud and precipitation mechanisms in WCBs. The aircraft field experiment T-NAWDEX-Falcon, to which we will contribute in October 2012, will provide in-situ observations of these complex processes. In this continuation project, novel aspects of the role of diabatic processes for the evolution of cyclones and blockings will be addressed, which extend our current work on WCBs. To further advance the understanding of these fundamental and complex processes, the main objectives of this project are to (i) investigate the role of positive low-level PV anomalies in WCBs for the evolution of the associated cyclones, (ii) identify the impact of various cloud microphysical processes on the mesoscale PV structures within cyclones, (iii) quantify the evolution of cirrus cloud properties and associated radiative impact in the WCB outflow, (iv) utilize observational data from the aircraft field experiment T-NAWDEX-Falcon to better characterize these processes in nature and for assessing the accuracy of their implementation in numerical models, and (v) assess the role of microphysical PV modifications for the quality of weather system predictions. The project will also contribute to the aircraft experiment ML-CIRRUS in 2014 and to the planning of an international T-NAWDEX activity in 2015. usw.
Das Projekt "Spatial and Temporal Scales of Linkages in the Atmospheric Water Cycle (Waterscales)" wird vom Umweltbundesamt gefördert und von Eidgenössische Technische Hochschule Zürich, Institut für Atmosphäre und Klima durchgeführt. The atmospheric branch of the global water cycle is an important link between the major reservoirs, such as ocean, land, and ice sheets. Water vapour evaporates from the world oceans and land surfaces, is transported through the atmosphere governed by atmospheric dynamics, until it condenses and returns as precipitation to the surface. Variability is a key characteristic of the atmospheric water cycle. Extremes in precipitation variability, such as flooding and drought periods can have severe consequences for human societies. It is the aim of this project to contribute to a better understanding of the processes governing precipitation variability on a global scale through a novel analysis of the linkages between evaporation sources, atmospheric transport, and precipitation processes. One way to characterise the connection between precipitation and the water vapour sources are variables of temporal and spatial scale, such as atmospheric residence time and water vapour transport distance. Previous research has indicated that most of the water vapour converted to precipitation by weather systems had already been present in the atmosphere beforehand. It has however not been studied in detail which processes had lead to the evaporation of that moisture in the first place, over which radius water vapour is typically advected into different weather systems, and which life time of the atmospheric water vapour this implies. While on a global mean an atmospheric life time of water vapour of about 10 days can be derived, several recent studies specifically highlight that substantial variability can exist, ranging between less than two days for mid-latitude heavy precipitation events to about two weeks in polar regions. In order to advance the basic understanding of the atmospheric water cycle, this project proposes to provide a first climatology of the characteristic spatial and temporal scales of linkages in the tropospheric water cycle using the ECMWF ERA-Interim reanalysis data set. To this end, two complementary methods developed by the applicant will be used in the proposed PhD project. The first method is a Lagrangian diagnostic to identify the moisture sources and transport pathways of atmospheric water vapour. This is currently the most advanced method of its kind, and will yield global information on the spatial and temporal scales linking the atmospheric water cycle. Explicitly displaying this information globally will allow to delineate regions by characteristic processes, identify transition regions, and their seasonal and inter-annual variability. (...)
Das Projekt "Mixing Height and Dynamic Parameters from Radiosondes, Acoustic Sounder, and Windprofiler" wird vom Umweltbundesamt gefördert und von Eidgenössische Technische Hochschule Zürich, Laboratorium für Atmosphärenphysik durchgeführt. The project is a continuation of the efforts during the field program POLLUMET (pollution and meteorology). Its main aim is to further investigate the turbulent structure of the troposphere and stratosphere. Based on relatively simple and operationally available instrumentation such as balloonborne radiosondes, acoustic echo sounders, and wind profilers, methods for reliable estimations of turbulence and local circulation patterns will be developed. The turbulence characteristics include the determination of the depth of the mixing layer, a parameter which is of significant importance for modeling chemical processes in the atmosphere. The observing as well as the evaluation system allows also to determine 'turbulence on a larger scale'. This will be made use of when the persistent structures of potential vorticity predicted by recent numerical models will either be experimentally verified or rejected. Leading Questions: How can turbulence (from the surface to the stratosphere) be measured using the fast response thermocouple on the SRS radisonde? How does turbulence intensity depend on the vertical structure of the atmosphere? How well do turbulence measurements made by different systems (balloon borne, radar, sodar) agree? What is the turbulence 'climatology' over Switzerland over the past four years?