Das 3D-Gebäudemodell LoD3.0-HH basiert auf einer manuellen Auswertung der Dachlandschaft. Alle Gebäude und Bauwerke auf Hamburger Stadtgebiet (ausgenommen die Inseln Neuwerk und Scharhörn) wurden photogrammetrisch ausgewertet und dreidimensional modelliert. Dabei wurden nicht nur die Gebäude aus dem amtlichen Kataster genutzt, sondern alle Gebäude, die zum Zeitpunkt der Datenerfassung in Hamburg existierten. Datengrundlage für die Auswertung ist ein Nadir- und Schrägbildflug aus dem Jahr 2020. Dabei wurde eine detaillierte Dachlandschaft modelliert, die über die übliche LoD2-Klassifikation hinausgeht. Signifikante Dachüberstände wurden in der Regel ebenso erfasst wie Dachaufbauten über einer Größe von einem Quadratmeter. Aus den Schrägluftbildern wurden abschließend Texturen für alle Gebäude mit einer datenschutz-konformen Auflösung von 20cm generiert.
Die Gebäudemodelle sind auf einem Digitalen Geländemodell platziert, das mit einer Auflösung von fünf Metern unter der Berücksichtigung von Bruchkanten berechnet wurde. (DGM 5H)
Die Gebäude-IDs sind im Wesentlichen identisch mit dem Kataster (ALKIS), es kann aber in einzelnen Fällen zu Abweichungen sowohl im Grundriss als auch zu unterschiedlichen IDs kommen.
Die Gebäudedaten sind für alle fünf Areas verfügbar: Area 1 mit ca. 34.000 Gebäudemodellen vornehmlich aus dem Innenstadtbereich, Area 3 im Bereich Harburg und Hamburgs Südwesten (ca. 80.000 Objekte), Area 5 mit Hamburgs Nordosten (hauptsächlich Wandsbek, ca. 177.000 Objekte), Area 2 (Bergedorf, ca. 80.000 Objekte) und Area 4 mit Altona und Hamburgs Westen (ca. 160.000 Objekte).
Das Projekt "The Adaptability of PhotoVoltaic-Thermal Collectors to Increase the Share of REnewable Energy Production for Heating-, Cooling-, and Electric-Energy in Systems of Buildings (PVT-RESyst)" wird vom Umweltbundesamt gefördert und von Hochschule für Technik Stuttgart, Zentrum für angewandte Forschung an Fachhochschulen, Nachhaltige Energietechnik - zafh.net durchgeführt. The main objectives of the PVT-RESyst project is to develop and demonstrate a system based on novel PVT technology capable of reducing significantly the primary energy consumption of the Egyptian residential sector. This system should be able to provide heating, cooling, domestic hot water (DHW) and electricity for new Egyptian buildings. Further on the system needs to be sustainable, affordable and adapted to Egyptian weather conditions in order to trigger proactive small and medium enterprise (SME) activities and allow a successful transfer of this technology to the Egyptian market creating a sustainable local innovation environment. A special aim of the project will be to strengthen the cooperation between academics and local companies by developing adapted business models that will support the creation of a lasting entity to exploit the project's results. In this regard, a guideline for installers and planners will be one of the outputs of this project.