Das Projekt "Scale effects and heterogeneity in land-atmosphere interactions: Simulation studies, field validations and parameterizations" wird vom Umweltbundesamt gefördert und von Ecole Polytechnique Federale de Lausanne (EPFL), Faculte ENAC, IIE, Laboratoire de mecanique des fluides de l'environnement (EFLUM) durchgeführt. The accuracy of hydrology and weather predictions depends to a large extent on our understanding of small-scale flow phenomena at the land-atmosphere interface. The overall goal of this grant concerns improved understanding of the effects of complex alpine terrain on included field studies of air flow over steep slopes during morning and evening transition periods and thermal circulations that develop driven by differential heating on the earths surface from variations in solar heating and surface thermal properties. We have also developed improved turbulence simulations of the lower atmosphere using the immersed boundary method (IBM) and have tested our results against measurement studies in the open literature (laboratory and field). This grant has supported two PhD students (Daniel Nadeau & Marc Diebold). Nadeau was responsible for field studies and analysis of flows over steep slopes and successfully defended his PhD at the end of 2011 and is now Assistant Professor at Polytechnique in Montreal. Diebold is primarily focused on numerical simulation based upon the Large Eddy Simulation (LES) technique and is completing field campaigns (2011-2013) in the Val Ferret watershed on turbulent flow over snow covered terrain. His numerical work has focused on the implementation of new ideas in IBM and subgrid-scale (sgs) modeling. Simulation of local atmospheric flows around complex topography is of great importance for several applications in wind energy (e.g. short term wind forecasting and turbine siting and control), local weather predictions in mountainous regions and avalanche risk assessment. However atmospheric simulations around steep mountain topography remain difficult as the typical strategy used to introduce topographic elements, terrain following coordinates, becomes numerically unstable if the topography is too steep. The IBM provides a unique approach that is particularly well suited for efficient and numerically stable simulation of flows around steep terrain. To date the IBM has been used in conjunction with the EPFL-LES and tested against two unique data sets. In the first comparison, the LES was used to reproduce the experimental results from a wind tunnel study of a smooth three-dimensional hill. In the second study, we simulated the wind field around the Bolund Island, Denmark, and made direct comparisons with field measurements (this has been published recently in Boundary Layer Meteorology journal in 2013).
Das Projekt "MESOCLIM - Mesoskalige Alpine Klimatologie" wird vom Umweltbundesamt gefördert und von Universität Wien, Institut für Meteorologie und Geophysik durchgeführt. Die Entwicklung von Methoden zur klimatologischen Auswertung von zeitlich und räumlich hoch aufgelösten Analysen meteorologischer Parameter stellt eine wichtige Aufgabe im Bereich der Grundlagenforschung dar und bietet darüber hinaus ein breites Spektrum an Anwendungsmöglichkeiten. Im Rahmen des Projekts VERACLIM wurden mit Hilfe des am Institut für Meteorologie und Geophysik der Universität Wien entwickelten, räumlich hochauflösenden Analyseverfahrens VERA begonnen, mesoskalige Phänomene im Alpenraum klimatologisch auszuwerten. Dabei konnten einige zum Teil völlige neue Erkenntnisse gewonnen werden. Ein Problem, das im Rahmen von VERACLIM auftauchte, war die eingeschränkte Datenlage der verwendeten Datenarchive des ECMWF. So waren trotz Kombination des MARS und ERA40 Archivs eine lückenlose Erzeugung von Analysen nur über einen 22 jährigen Zeitraum möglich. Im beantragten Projekt MESOCLIM sollen diese Ergebnisse nun erweitert und verbessert werden. Der bisher verwendete, räumlich und zeitlich hoch aufgelöste synoptische Datensatz soll europaweit zumindest auf eine 30-jährige Klimanormalperiode ergänzt werden, was die Aussagekraft der Analysen enorm steigern würde. Nach der Anlegung eines umfassenden Datenarchivs soll mit Hilfe eines neuen, verbesserten Analyseansatzes, der nach einem adaptierten thin-plate-spline Variationsalgorithmus erfolgt, drei- und vierdimensionale Analysen in stark strukturiertem Gelände berechnet werden. Die räumliche Auflösung kann dabei von den bisherigen 20 km auf bis zu 1 km erhöht werden, wobei die Datendomäne frei gewählt werden kann. Darüber hinaus soll mit Hilfe von neu zu entwickelnden Fingerprints für die Niederschlags- und Windfelder die Analysequalität deutlich verbessert werden. Die Ergebnisse, die im Rahmen von MESOCLIM zu erwarten sind, wären nicht nur ein wertvoller Beitrag für die grundlegende Erforschung mesoskaliger Phänomene in Gebirgsregionen, sie würden auch breite Anwendung in verschiedenen Wirtschaftszweigen finden.