Das Projekt "AROSA: Assimilation of radio occultation from commercial satellites over Austria" wird vom Umweltbundesamt gefördert und von Zentralanstalt für Meteorologie und Geodynamik durchgeführt. Austria depends significantly on high quality, highly resolved weather forecasts, especially due to its complex orography, manifold landscapes and special meteorologically induced natural hazards in the alpine area and its important economic branches agriculture and tourism, which are strongly impacted by weather. The success of these forecasts is determined by a precise definition of the current state of the 3D atmosphere with highly resolved measurements due to the nonlinear nature of atmospheric processes. Radio occultation methods investigate the bending of a radio signal on its way through the atmosphere by measuring the Doppler shift between a global navigation satellite system (GNSS) and a low earth orbit satellite (LEO) and their precise positions. The bending and refraction of the signal depend on atmospheric properties like ionisation of the upper atmosphere and moisture and temperature in lower levels. So, these properties can be indirectly estimated by the bending with a high vertical resolution on the meter scale in the upper levels, where conventional observations (aircraft and radio soundings) are relatively scarce. The observation number of public financed probes dropped down recently by aging and breakdown of the LEO satellites, while on contrary a huge number of recently commercially launched and maintained satellites of the Spire Inc increased the amount of radio occultation data drastically. In addition to atmospheric monitoring, the occultation method can be used for the initialisation of numerical weather prediction models, as it was already shown for some global models (Arpège, GME, ECMWF-IFS), but also limited area models (WRF). Especially, in the latter case with higher model resolutions the definition of the observation operator simulating the measured parameter is rather crucial to succeed. Within the scope of this project, the new occultation measurements of Spire Inc will be assimilated for the first time into the numerical weather prediction system of ZAMG named AROME over Austria. To achieve this aim, data pre-processing is necessary (derivation of the bending angle, quality check by passive assimilation and first guess departure checks). For the time being, a 2D observation operator for bending angle is available in the AROME code, which was developed for coarser resolutions. Within the project, it will be investigated, how it can be improved and adapted to higher resolutions and which steps would be necessary to reach this goal. The possible impact of the new observations on the model performance will be estimated by case studies and a longer test period using intercomparison to a reference run without radio occultation assimilation. Finally the potential of an operational application of the data within the AROME system will be envisaged. (abridged text)
Das Projekt "Creation of a Sentinel-1 Soil Water Index for data assimilation in a convection-permitting weather model (CRESSIDA)" wird vom Umweltbundesamt gefördert und von Technische Universität Wien, Department für Geodäsie und Geoinformation (E120) durchgeführt. Sentinel-1 satellites with their Synthetic Aperture Radar sensors will make it possible to measure soil moisture in hitherto unreached spatial resolution an requires new approaches in efficient dealing with Big Data. This new data source will be used to create soil moisture products like the Soil Water Index (SWI), whereas the innovative combination with already established satellite sensors (e.g. ASCAT, ERS, SMOS) will result in a product being the new benchmark with regard to spatio-temporal resolution and accuracy. Due to the high resolution of the SWI product based on Sentinel-1 data, it will be feasibly for the first time to meaningful run the weather forecast model AROME with explicit convection in combination with soil moisture data assimilation. The expected positive impact on precipitation forecast quality will be verified within several case studies. At the end of the project, two main outcomes are expected: i) a high-quality soil moisture data set and an ii) improved severe weather forecast.
Das Projekt "Acoustic technology for observing the interior of the Arctic Ocean (ACOBAR)" wird vom Umweltbundesamt gefördert und von Stiftelsen Nansen Senter for Fjernmaaling, G.C. Rieber Climate Institute durchgeführt. Objective: ACOBAR will develop an observing system for the interior of the Arctic Ocean based on underwater acoustic methods including tomography, data transmission and communication to/from underwater platforms, and navigation of gliders. ACOBAR offers alternative methods to the ARGO system, which cannot be used in ice-covered seas, based on platforms located under the sea ice. Data collection and transmission from the water column, the seafloor and the subseafloor will be possible in ice-covered seas. ACOBAR will contribute to filling gaps in the global ocean observing system and thereby support the development of GEOSS. ACOBAR will implement field experiments with acoustic sources and receivers in the Fram Strait and the Arctic Ocean. Acoustic tomography will be used to obtain integrated 3-D fields of temperature, transports and heat fluxes. Long-range acoustic navigation commands will be tested to operate gliders. Data transmission from fixed moorings via acoustic modems to the surface for downloading from ships or for satellite transmission will be implemented. The existing array of acoustic sources from ice-tethered platforms in the Arctic Ocean will be tested for tomographic measurements of water mass properties. Data from tomography arrays and other underwater platforms will be disseminated to users with near real-time capability, including assimilation in ocean models. ACOBAR will extend and improve methods for underwater data collection that are presently tested in DAMOCLES IP. The acoustic technologies in ACOBAR aim to be used for transmission of multidisciplinary data from underwater observatories under development in ESONET NoE. Transfer of technology and know-how from USA to Europe will take place, with exchange of scientists, workshops and meetings between scientists, engineers and students. The consortium consists of 9 partners, of which three are SMEs and six are research and educational institutions.
Das Projekt "Kurzfristprognose" wird vom Umweltbundesamt gefördert und von Bundesamt für Meteorologie und Klimatologie durchgeführt. Dieses Projekt hat zum Ziel, die Qualitaet von Warnungen und Kurzfristwetterprognosen zu verbessern. Um dieses Ziel zu erreichen, wird ein numerisches Wettervorhersagesystem entwickelt, das aus folgenden Elementen besteht: einem vollstaendigen Datenassimilationssystem, einem nicht-hydrostatischen, hochaufgeloesten atmosphaerischen Modell sowie einigen nachgeschalteten Programmen, wie z.B. einem Dispersionsmodell zur Vorhersage des Transports und der Deposition von radioaktivem Material. Die Entwicklung und Verbesserung des Systems findet statt im Rahmen des Consortium for Small Scale Modeling' (COSMO), einem Zusammenschluss der Wetterdienste von Deutschland, Italien und Griechenland. Die Implementation des ganzen Systems an der MeteoSchweiz geschieht in Zusammenarbeit mit dem Centro Svizzero di Calcolo Scientifico' (CSCS). Projektziele: Dieses Projekt hat zum Ziel, die Qualitaet von Warnungen und Kurzfristwetterprognosen zu verbessern. Um dieses Ziel zu erreichen, wird ein numerisches Wettervorhersagesystem entwickelt, das aus folgenden Elementen besteht: einem vollstaendigen Datenassimilationssystem, einem nicht-hydrostatischen, hochaufgeloesten atmosphaerischen Modell sowie einigen nachgeschalteten Programmen, wie z.B. einem Dispersionsmodell zur Vorhersage des Transports und der Deposition von radioaktivem Material. Die Entwicklung und Verbesserung des Systems findet statt im Rahmen des 'Consortium for Small Scale Modeling' (COSMO), einem Zusammenschluss der Wetterdienste von Deutschland, Italien und Griechenland. Die Implementation des ganzen Systems an der MeteoSchweiz geschieht in Zusammenarbeit mit dem Centro Svizzero di Calcolo Scientifico' (CSCS). Gezielte Verbesserung der Qualitaet von Warnungen und Kurzfristwettervorhersagen durch die Entwicklung und Implementation eines hochaufgeloesten numerischen Wettervorhersagesystems. Umsetzung und Anwendungen: Dieses Projekt hat zum Ziel, die Qualitaet von Warnungen und Kurzfristwetterprognosen zu verbessern. Um dieses Ziel zu erreichen, wird ein numerisches Wettervorhersagesystem entwickelt, das aus folgenden Elementen besteht: einem vollstaendigen Datenassimilationssystem, einem nicht-hydrostatischen, hochaufgeloesten atmosphaerischen Modell sowie einigen nachgeschalteten Programmen, wie z.B. einem Dispersionsmodell zur Vorhersage des Transports und der Deposition von radioaktivem Material. Die Entwicklung und Verbesserung des Systems findet statt im Rahmen des Consortium for Small Scale Modeling' (COSMO), einem Zusammenschluss der Wetterdienste von Deutschland, Italien und Griechenland. Die Implementation des ganzen Systems an der MeteoSchweiz geschieht in Zusammenarbeit mit dem Centro Svizzero di Calcolo Scientifico' (CSCS).