API src

Found 2 results.

Cellular and molecular studies on radiation quality: a comparison between genetically relevant radiation damage and cell inactivation

Das Projekt "Cellular and molecular studies on radiation quality: a comparison between genetically relevant radiation damage and cell inactivation" wird vom Umweltbundesamt gefördert und von Gesellschaft für Schwerionenforschung durchgeführt. Objective: The proposed experiments aim to gain more insight into the biological efficiency of lighter ions at different biological levels for the induction and repair of DNA strand breaks in both chromosomal and plasmid DNA. General Information: Description of research work. In the last ten years, heavy charged particles have been used in radiobiological experiments more extensively than before. This development has basically two reasons: the increasing use of these particles in radiotherapy and radioprotection problems of manned space flights. In radiotherapy, approximately ten thousand patients have been treated with charged particles (mostly protons) with extraordinary success. Because of the better dose distribution and the increased relative biological efficiency at the end of the particle range, a strong trend is visible toward a treatment with heavier ions (e.g. carbon or neon ions). In manned space flights outside the shielding of the magnetosphere of the earth which are proposed by NASA and ESA, the heavy component of cosmic radiation pose a major risk for the health of the astronauts. In the case of the solar flare, lethal doses of protons can be reached even in short excursions outside the space craft. For long term space flights the risk of cancer induction is also important because the highly energetic heavy ions cannot be shielded very efficiently by the spacecraft and the radiation risk accumulates with time (i.e. over the duration of the flight). In both cases, radiotherapy and radioprotection in space, more information is needed on the inactivation process caused by the particle radiation where the data for lighter ions are scarce. But almost no information exists on the genetic risk caused by heavy charged particles. In addition, no theoretical approach exists which allows calculation of the biological effects with sufficient accuracy. Also the molecular nature of the very slowly restoring breaks has not been explored. In order to gain more molecular information, DNA damage of genetically well known plasmid sequences inserted in mammalian cells should be studied in greater detail, and new methods in gene technology should be used to analyse induced DNA damage. In the proposed experiments both approaches will be started and used to analyze the complexity of particle induced DNA damage. In summary, the radiobiological effects of charged particles like protons or heavier ions are of great importance for the development of heavy particle radiotherapy as well as for the estimation of the radiation risk in manned space flights. Because a unique theory of the RBE does not exist up to now, the radiobiological effects of the particle radiation have to be measured in detail. ... Prime Contractor: Gesellschaft für Schwerionenforschung mbH; Darmstadt; Germany.

Biophysicical models for the effectiveness of different radiations

Das Projekt "Biophysicical models for the effectiveness of different radiations" wird vom Umweltbundesamt gefördert und von GSF-Forschungszentrum für Umwelt und Gesundheit, GmbH durchgeführt. Objective: This project involves experimental and theoretical research towards a better understanding of the biological radiation actions of different radiation fields, with particular emphasis on low doses and low dose rates. It aims at an improvement of our present knowledge on somatic and genetic radiation risks of man and to help develop radiation protection instrumentation to measure the characteristic properties with regard to these endpoints in mixed radiation fields. In addition, the combined action of radiation and chemicals (also of those prevalent in the environment) will be investigated on a mechanistic level. General Information: This goal shall be reached by the development of new models based on: the improvement of biophysical track structure calculations for relevant radiation fields (photons, neutrons, electrons, ions) in particular by introducing structured cell geometry, condensed state cross sections, time dependency, and chemical and biological reactions; various codes of other authors will be compared in critical bench mark calculations; the analysis of such physical to chemical to biological track structures will be improved using new cluster algorithms and by testing biophysical models which will be developed; selective radiation biological experiments with soft X-rays and UV-photons will be performed, as well as with alpha-particles and gamma-rays; the biological systems will include appropriate transformational and inactivation assays, etc. The usefulness of a better understanding of radiation effects on members of the public has often been described in the radiation protection literature. This understanding is necessary also to improve the protection of workers and the public in the ALARA-sense of the IRCP, where overestimations of radiation risks might lead, for example, to a not optimum allocation of large resources. Collaboration is foreseen with other projects working on the improvements of dosimeters and on biological radiation effects. Achievements: Objectives of the project include calculation of secondary electrons produced in a water molecule and in a water cluster by proton and electron impact to investigate the influence of physical state on double differential ionization cross sections, testing of the geometry routines simulating a lymphocyte and calculation of single strand breaks (SSB), double strand breaks (DSB) and fields of dicentric chromosomes using simple models of deoxyribonucleic acid (DNA) interaction. A set of calculations of the double and single differential cross sections for secondary electron emission as a function of angle and secondary electron energy have been completed for the case of proton impact on a water molecule and a cluster of water molecules using methods developed for electron impact. ... Prime Contractor: GSF-Forschungszentrum für Umwelt und Gesundheit GmbH; Oberschleissheim; Germany.

1