Konzeptionelles Modell zur Abflusssimulation. Das Modell ist untergliedert in ein Produktions- und ein Transfermodul. Das Produktionsmodul besteht aus einem Korrekturfaktor von Niederschlag und potenzieller Evapotranspiration sowie einem nicht-linearen Bodenfeuchteindex, das Transfermodul aus zwei Abflusskomponenten mit zwei linearen Speichern sowie unverfälschter Zeitverzögerung. Ein Grad/Tag-Schneeschmelzemodul wird in von Schnee beeinflussten Einzugsgebieten angewendet. Modellinput sind Tageszeitreihen von potenzieller Evapotranspiration und Niederschlag im Einzugsgebiet, sowie Tageszeitreihen der Temperatur zur Schneeschmelze. Als Modelloutput wird der tägliche Abfluss generiert. Zeitliche Einheit in Tagen.
This data set comprises different types of data acquired at the Krauthausen test site. The data are arranged in different folders corresponding to the method used to collect the data. The different folders are:
• Crosshole GPR data
• Borehole deviation data
• Cone penetration test data
• Direct-push data (acquired by the UFZ Leipzig)
• Flowmeter data
• Grain size data
• 3D aquifer models derived from multi-point statistical simulations
Each folder includes a documentation-file which briefly explains the data structure and which provides additional information e.g. about the exact location of measurement points or about the original source of the data. Papers describing the experimental setup / processing of the data are included as well.
GPR data was acquired in crosshole setup before (background) and after (time-lapse) salt tracer injection for 9 planes.
In total 42 datasets were measured.
To increase the resolution of crosshole ground-penetrating radar (GPR) tomography, a wide-range of ray-path angles are required including transmitter-receiver pairs that produce large angles. However, artefacts have been observed in the inverted GPR tomograms when high-angle data were incorporated in ray-base tomography and inversions. Therefore, it is common practice to limit the angular aperture to a particular threshold ranging between 30° to 50° for ray-based inversion which significantly reduces the spatial resolution. Detailed 3D modeling of the crosshole GPR waves including the water-filled borehole and finite length antenna showed that this phenomenon is caused by the strong refraction of the electromagnetic waves at the borehole interface between water and soil due to change in the electromagnetic waves velocities. Our novel correction method can be used by crosshole GPR user to incorporate wide-angle ray-paths and improved apparent velocity values to obtain more accurate and higher resolution tomographic inversion results.