API src

Found 2 results.

Teilprojekt GEO: Integrierte geophysikalische Abbildung der Wasserverteilung und -dynamik in Böden unter besonderem Einbezug des neuen Verfahrens Oberflächen Nuklear Magnetische Resonanz

Das Projekt "Teilprojekt GEO: Integrierte geophysikalische Abbildung der Wasserverteilung und -dynamik in Böden unter besonderem Einbezug des neuen Verfahrens Oberflächen Nuklear Magnetische Resonanz" wird vom Umweltbundesamt gefördert und von Technische Universität Berlin, Fakultät VI Bauingenieurwesen und Angewandte Geowissenschaften, Institut für Angewandte Geowissenschaften, Fachgebiet Angewandte Geophysik durchgeführt. Für ein besseres Verständnis der Vorgänge in urbanen Böden soll ein nichtinvasives geophysikalisches Verfahrenskonzept zur verlässlichen Abbildung des Wasserhaushaltes und wichtiger Strukturparameter entwickelt und erprobt werden. Neben den Standardverfahren Geoelektrik und Radar, soll das neue Verfahren 'Oberflächen Nuklear Magnetische Resonanz' (SNMR) zum Einsatz kommen. Mit SNMR ist erstmals von der Oberfläche aus eine direkte Ermittlung des Wassergehaltes und der Porengröße möglich, welche in Kombination mit den Indikatoren elektrische Leitfähigkeit und Dielektrizitätszahl, den Zugang verbessern sollen. Es ist eine Weiterentwicklung der SNMR in Mess- und Auswertetechnik zur Erhöhung des Auflösungsvermögens im oberflächennahen Bereich sowie ein besseres Verständnis der gemessenen Amplituden und Abklingzeiten notwendig. Dies soll auch mit NMR-Messungen im Labor erreicht werden. Für Geoelektrik und Radar bedarf es des Einsatzes neuer Verfahren zur Inversion und das optimierte Einbinden der TDR-Messungen. Vor allem ist notwendig, die grundlegenden Zusammenhänge zwischen den NMR-Parametern, komplexwertiger elektrischer Leitfähigkeit, Dielektrizitätszahl und Porenstrukturgrößen aufzudecken bzw. diese für die hier vorliegenden heterogenen Böden und Standortbedingungen zu spezifizieren, um die Feldmessungen in Strukturgrößen zu führen.

Sustainable Water Resources Management in the Yanqi Basin, Sinkiang, China

Das Projekt "Sustainable Water Resources Management in the Yanqi Basin, Sinkiang, China" wird vom Umweltbundesamt gefördert und von Eidgenössische Technische Hochschule Zürich, Institut für Verkehrsplanung und Transportsysteme durchgeführt. Irrigation in the Yanqi Basin, Sinkiang, China has led to water table rise and soil salination. A model is used to assess management options. These include more irrigation with groundwater, water saving irrigation techniques and others. The model relies on input data from remote sensing.The Yanqi Basin is located in the north-western Chinese province of Xinjiang.This agriculturally highly productive region is heavily irrigated with water drawn from the Kaidu River. The Kaidu River itself is mainly fed by snow and glacier melt from the Tian Mountain surrounding the basin. A very poor drainage system and an overexploitation of surface water have lead to a series of environmental problems: 1. Seepage water under irrigated fields has raised the groundwater table during the last years, causing strongly increased groundwater evaporation. The salt dissolved in the groundwater accumulates at the soil surface as the groundwater evaporates. This soil salinization leads to degradation of vegetation as well as to a loss of arable farmland. 2. The runoff from the Bostan Lake to the downstream Corridor is limited since large amount of water is used for irrigation in the Yanqi Basin. Nowadays, the runoff is maintained by pumping water from the lake to the river. The environmental and ecological system is facing a serious threat.In order to improve the situation in the Yanqi Basin, a jointly funded cooperation has been set up by the Institute of Environmental Engineering, Swiss Federal Institute of Technology (ETH) , China Institute of Geological and Environmental Monitoring (CIGEM) and Xinjiang Agricultural University. The situation could in principle be improved by using groundwater for irrigation, thus lowering the groundwater table and saving unproductive evaporation. However, this is associated with higher cost as groundwater has to be pumped. The major decision variable to steer the system into a desirable state is thus the ratio of irrigation water pumped from the aquifer and irrigation water drawn from the river. The basis to evaluate the ideal ratio between river and groundwater - applied to irrigation - will be a groundwater model combined with models describing the processes of the unsaturated zone. The project will focus on the following aspects of research: (...)

1