Das Projekt "Regionale Simulationen in der Hydrologie - Quantifizierung der Fehler und der Unsicherheiten" wird vom Umweltbundesamt gefördert und von Universität Bonn, Geographisches Institut, GIUB durchgeführt. Dieses Projekt soll die im Rahmen des DFG-Schwerpunktprogrammes 'Regionalsierung in der Hydrologie' begonnenen Arbeiten erweitern und vervollständigen. Im SPP wurde von der Arbeitsgruppe der Antragsteller ein durchgängiges Konzept zur Simulation der Wasserflüsse sowohl an Standorten als auch im regionalen Maßstab entwickelt und im Einzugsgebiet der oberen Leine erfolgreich getestet. Die Analyse und Bewertung der mit der regionalen Simulation verbundenen Unsicherheiten (uncertainty analysis) und Fehler (error analysis) konnte nur für einzelne Eigenschaften bzw. Randbedingungen durchgeführt werden. Um eine abschließende Bewertung der entwickelten Regionalisierungsverfahren vornehmen zu können, sind entsprechende Untersuchungen notwendig. Das Ziel dieses Projektes ist es, eine Bewertung der Güte regionaler Simulationen der Wasserflüsse unter Berücksichtigung der skalenabhängigen Unsicherheiten hinsichtlich Boden, Relief, Landnutzung und Klima zu geben. Dieses ist notwendig, um die Anwendbarkeit von Simulations- und Regionalisierungskonzepten zu beurteilen und eine skalenabhängige Bewertung der Ergebnisse zu ermöglichen. - Die Anbindung hydrologischer Modelle an meso- und makroskalige Atmosphärenmodelle hinsichtlich der Hydrologie zu verbessern, ist somit immer noch ein großer Forschungsbedarf vorhanden. Es ist daher geplant, die Arbeiten in dieser Hinsicht auszudehnen und Konzepte zur Kopplung des Regionalisierungsansatzes mit einem Atmosphärenmodell zu entwickeln. Hierbei geht es allerdings nicht um die Realisierung der Kopplung, sondern um die Analyse der notwendigen Vorbereitungsschritte und die Parametrisierung hinsichtlich Boden, Relief und Klima.
Das Projekt "Snowmelt runoff modelling in mountain environments under changing climate conditions (SnowClim)" wird vom Umweltbundesamt gefördert und von Universität Zürich, Geographisches Institut durchgeführt. Rain-on-snow events with combined snow melting and rainfall is a frequent cause of floods in Europe. Reflecting possible long-term changes in climate conditions, there is the question of climate change impacts on the runoff regime at the regional and local scale. An important part of the research in mountain areas is therefore the issue of possible future changes in snow and glacier melt regimes. The main objective of this project is to contribute to research on processes connected with snow accumulation and melting as a factor of flood risk in the context of changing environment and climate change. The main focus will be possible future changes in snowpack using regional climate models (RCM) and impacts on runoff regime of mountainous basins. The project solution will lean on up-to-date hydrological and geoinformation methods and tools, which are presently applied for modelling the runoff from melting snow. The research will be carried out in selected middle-large basins in Switzerland and in the Czech Republic. Modelling the evolution of the snowpack (snow cover area, snow water equivalent, snowpack duration etc.) will be made by means of energy balance and temperature-index modelling techniques. Simulations using results from RCMs models will be made in order to simulate possible future changes of above mentioned snowpack.
Das Projekt "Hydrologic Prediction in Alpine Environments II" wird vom Umweltbundesamt gefördert und von Ecole Polytechnique Federale de Lausanne (EPFL), Faculte ENAC, IIE, Laboratoire d'ecohydrologie durchgeführt. Proposed research: This research programme proposes to analyze the predictability of the hydrologic behaviour of Alpine ecosystems at the spatio-temporal scales relevant for water management, i.e. at spatial scales of between 200 km2 (e.g. a hydropower production catchment) and around 5000 km2 (e.g. flood management of the Swiss Rhone catchment) and at temporal scales ranging from hours to seasons. Research context: Quantitative stream flow predictions are essential for the sustainable management of our natural and man-made environment and for the prevention of natural hazards. Despite of ever better insights into the involved physical processes at the point scale, many existing catchment scale runoff prediction models still show a lack of reliability for stream flow prediction. The present research programme addresses this foremost issue in Alpine environments, which are the source of many major European rivers and play a dominant role for hydropower production and flood protection. Stream flow prediction in such environments is particularly challenging due to the high spatial variability of the meteorological driving forces opposed to notorious data scarcity in remote and high elevation areas. Project context: The present proposal is a follow-up proposal of the Ambizione project Hydrologic Prediction in Alpine Environments. During the main phase of the project (3 years), certain essential research objectives could not be reached, due namely to the maternity leave of the principal investigator (PI), but also due to additional research questions that emerged at the very beginning of this research. The present follow-up project proposes to complete the research programme during a complementary project phase (2 years). Objectives: The main objective of this research programme is to assess under which conditions simple hydrological models can give reliable stream flow predictions in Alpine environments. This objective will be reached based on an analysis of the variability of natural flow generation processes and of the variability of corresponding state-of-the-art hydrological model outputs. During the main phase of the project, the research was concentrated on the analysis of flow generation processes related to snowmelt, which in Alpine areas dominate the hydrological response over a large part of the year. The achieved results include a new hourly snowmelt model combined to a spatially-explicit precipitation-runoff model, an improved snowfall-limit prediction method for hydrological models and a weather generator that produces coupled temperature and prediction scenarios to analyze how these two meteorological variables integrate to the snow-hydrological response.(...)