Das Projekt "Function of BAK1 in plant immunity" wird vom Umweltbundesamt gefördert und von Universität Basel, Botanisches Institut, Abteilung Pflanzenökologie durchgeführt. In nature most plants are resistant to most pathogens and disease is rather the exception than the rule. A key aspect of this phenomenon is a resistance response called 'innate immunity'. It is based on the host recognition of characteristic microbial molecules, known as MAMPs (Microbe Associated Molecular Patterns), by specific receptors called pattern recognition receptors (PRRs). A paradigm of a MAMP is flagellin, the main building unit of the mobility organ of bacteria. Bacterial flagellin is perceived by the pattern recognition receptor FLS2 (FLagellin Sensing 2) at the surface of plant cells. Binding of flagellin to FLS2 on the outside of the cells induces a set of physiological responses inside the cells, which we can easily measure in our lab and which ultimately contribute to limitation of bacterial invasion and plant resistance. Our lab has focused in the last years in understanding how FLS2, a single pass transmembrane molecule, functions to transmit the signal from outside of the cell to its inside. We could demonstrate that upon stimulation with flagellin, FLS2 associates very quickly at the plasma membrane with a second receptor known as BAK1 (BRI1-Associated Kinase 1). This was initially a big surprise because BAK1 was already known as the co-receptor of the BRI1, a plant hormone receptor which regulates plant development but not plant immunity. More recently we developed an original biochemical approach to label and detect phosphorylated receptors in cell cultures in vivo. This allowed us to show that the transmission of the flagellin signal occurs via phosphorylation of FLS2 and BAK1 within seconds after flagellin perception. In addition we could show that BAK1 is capable of regulating several PRRs other than FLS2 by forming stable complexes. Thus BAK1 appears to be a crucial regulator or plant immunity in addition to its role in plant development. Our recent progress on the plants' flagellin-sensing system was mostly obtained using Arabidopsis as plant model. In view of the ability of BAK1 to form stable complexes with PRRs in a ligand-dependent manner, we are now interested to fish out and identify new PRRs, notably from crop species, using a proteomic approach. The identification of more PRRs in different plants is a very important step toward understanding plant innate immunity. In more general terms, better knowledge about innate immunity is crucial because it may reveal new strategies to fight the devastating impact of some plant diseases.