Zielsetzung und Anlass des Vorhabens: Das Bauwesen und die damit verbundenen Berufe stehen vor bedeutenden Herausforderungen, die durch die Verknappung fossiler Energieträger, Umweltkatastrophen und die begrenzte Verfügbarkeit mineralischer Baustoffe verursacht werden. Die zunehmende Komplexität im Bauwesen sowie Nachhaltigkeitskriterien auf dem Immobilienmarkt verschärfen diese Probleme. Prognosen zufolge wird der Anteil an Neubauten am gesamten Gebäudebestand bis 2035 weniger als 10 % betragen. Der bestehende Gebäudebestand, einschließlich erhaltenswerter Gebäude, spielt daher eine wesentliche Rolle, insbesondere im Hinblick auf die in den Materialien enthaltene graue Energie und das Konzept des ‚Urban Mining‘. Derzeit berücksichtigen gesetzliche Vorschriften und Förderungen weder die Ressourceneffizienz noch die Ressourcenschonung im Bestand oder bei Denkmälern. Es ist notwendig, die Gebäudebewertung anzupassen, da der aktuelle Energieausweis lediglich die Betriebseffizienz für Heizwärme und Warmwasser erfasst und für Denkmäler nicht verpflichtend ist. Um die Dekarbonisierung des Bauwesens voranzutreiben, muss eine Grundlage geschaffen werden, die es ermöglicht, diese Potenziale einzubeziehen. Die Metastudie untersucht, wie ökologische Aspekte in denkmalgeschützten Beständen berücksichtigt werden können und welche Potenziale durch Bewertungen einfließen sollten, einschließlich einer Analyse möglicher Bewertungsverfahren unter Berücksichtigung der Ökobilanzierung. Das Ziel der Studie besteht darin, einen umfassenden Überblick über die Einbindung der ökologischen Aspekte von Baustoffen in denkmalgeschützten Beständen zu geben. Referenzprojekte mit Ökobilanzierung werden identifiziert und analysiert, um darauf basierende Handlungsempfehlungen abzuleiten. Es soll eine Überarbeitung der Systematik für Baudenkmale mit einer Lebensdauer von mehr als 50 Jahren vorgeschlagen werden, wobei die Priorisierung von Bauteilen und die Bewertung der Betriebseffizienz im Vergleich zu Suffizienzstrategien berücksichtigt werden sollen. Es wird angestrebt, Hinweise für zukünftige Maßnahmen zur Bewältigung des Klimawandels, einschließlich des Einsatzes erneuerbarer Energien, zu geben. Die Studie bietet Empfehlungen zur Verbesserung der Beurteilungskriterien in Denkmälern und zeigt Potenziale zur Implementierung in Bewertungssystemen auf, einschließlich der Berücksichtigung von Ausnahmeregelungen für Kulturdenkmäler. Es soll erfasst und analysiert werden, wie Ökobilanzen in verschiedenen Bewertungsmethoden für historische Gebäude verwendet wurden. Eine Übersicht über Denkmalprojekte, die erneuerbare Energien nutzen, sowie deren Effizienz- und Ökobilanzbewertung wird erstellt. Die Unterschiede und Auswirkungen von Lebenszyklusanalysen werden untersucht, um Handlungsempfehlungen für zukünftige Systemmodifikationen und Nachhaltigkeitsbewertungen bereitzustellen.
Biosynthetische Polymere werden in zunehmender Zahl und Menge eingesetzt und sind aus vielen Bereichen des Alltags nicht mehr wegzudenken. Waren es frueher vorwiegend von hoeheren Lebewesen synthetisierte Polymere, so gewinnen nun von Mikroorganismen synthetisierte Polymere als Werkstoffe sowie als Hilfs- und Nebenstoffe an Bedeutung. Mikroorganismen synthetisieren in vielfaeltiger Form Polymere fuer technische Anwendungen. Die meisten technisch genutzten mikrobiellen Polymere werden heute als Hilfs- und Nebenstoffe eingesetzt, einige auch direkt zu Werkstoffen verarbeitet. Mikrobielle Polymere werden als Rohstoffe zu anderen Werkstoffen oder Hilfs- und Nebenstoffen verarbeitet oder dienen als Ausgangsmittel fuer weitere chemische Synthesen. Der Einsatz von Mikroorganismen bei der biotechnologischen Produktion von Polymeren ermoeglicht haeufig die Nutzung nachwachsender Rohstoffe als Substrate und Kohlenstoffquelle fuer die Produktion wie zB die Nutzung pflanzlicher Photosynthetate, die von der Land- und Forstwirtschaft in grossen Mengen bereitgestellt werden koennen. Die Kenntnis der Biosynthesewege fuer Polymere in Bakterien in Verbund mit der Gentechnik ermoeglicht zudem die Erzeugung transgener Pflanzen, die zur Produktion neuer Polymere anstelle von Bakterien herangezogen werden koennen. 1) Biosynthese von Polyestern: Mikrobielle, aus Hydroxyfettsaeuren aufgebaute Polyester (PHF) machen seit einigen Jahren als neue biologische abbaubare Werkstoffe von sich reden. Neben 3-Hydroxybuttersaeure sind mittlerweile mehr als 100 verschiedene Hydroxyfettsaeuren als Bausteine von PHF bekannt. Seit ca 10 Jahren wird in der Arbeitsgruppe die Biosynthese dieser wasserunloeslichen Polyester untersucht. Als Modellorganismen dienten zunaechst Alcaligenes eutrophus und Pseudomonas aeruginosa; Rhodococcus ruber und zahlreiche anoxygene phototrophe Bakterien wie zB Chromatium vinosum wurden spaeter ebenfalls untersucht. Diese Untersuchungen haben zur Aufklaerung von Biosynthesewegen der PHF und zur Entdeckung neuer Bausteine von PHF sowie zur Klonierung und Ermittlung der Primaerstrukturen des Schluesselenzyms PHF-Synthase aus ca 20 Bakterien beigetragen. Durch Screening nach neuen Wildtypen, durch Verwendung von Mutanten und mit gentechnischen Methoden gelang es, Polyester mit ungewoehnlichen Hydroxyfettsaeuren aus einfachen Kohlenstoffquellen verfuegbar zu machen. In Zusammenarbeit mit Industriepartnern und gefoerdert durch das BMBF und das BML sollen Reststoffe, Kohlen und nachwachsende Rohstoffe fuer die Produktion dieser Polyester erschlossen werden. Ein Biotechnikum mit Bioreaktoren von 1 bis 20 l Nutzvolumen, welches demnaechst durch einen Anbau und einen Bioreaktor von 450 L Nutzvolumen erweitert wird, erlaubt die Herstellung von Polymermustern zur Ermittlung der Materialeigenschaften durch hieran interessierte Kooperationspartner. Ferner kommt der Zusammenarbeit mit Pflanzengenetikern, die Gene fuer PHF Biosynthese aus Bakterien in Pflanzen ...
Cydia pomonella granulovirus (CpGV, Baculoviridae) is one of the most important agents for the control of codling moth (CM, Cydia pomonella, L.) in both biological and integrated pest management. The rapid emergence of resistance against CpGV-M, which was observed in about 40 European CM field populations from 2003 on, could be traced back to a single, dominant, sex-linked gene. Since then, resistance management has been based on mixtures of new CpGV isolates (CpGV-I12, -S), which are able to overcome this resistance. Recently, resistance even to these novel isolates was observed in CM field populations. This resistance does not follow the described dominant, sex-linked inheritance trait. At the same time, another isolate CpGV-V15 was identified showing high virulence against these resistant populations. To elucidate this novel resistance mechanism and to identify the resistance gene(s) involved, we propose a comprehensive analysis of this resistance on the cellular and genomic level of codling moth. Because of the lack of previous knowledge of the molecular mechanisms of virus resistance in insects, several different and complementary approaches will be pursued. This study will not only give an in-depth insight into the genetic possibilities for development of baculovirus resistance in CM field populations and how the virus overcomes it, but can also serve as an important model for other baculovirus-host interaction systems.
Termiten der Unterfamilie Macrotermitinae besitzen in den Savannen Afrikas und Asien eine große ökologische und ökonomische Bedeutung. Diese Termitengruppe züchtet Pilze, durch die sie ein breiteres Nahrungsspektrum nutzen kann. Aufgrund der geringen morphologischen Differenzierung sind die taxonomischen Verhältnisse dieser Termitengruppe ungesichert und deren Phylogenie unklar. Anhand von Sequenzen des mitochondrialen Gens Cytochromoxidase II erfolgt für die Macrotermitinae eine phylogenetische Analyse und, gestützt durch eine Erfassung historischer, tektonischer sowie klimatischer Ereignisse, eine Datierung allopatrischer Speziation.
<p>Neubau - energieeffizient und ökologisch</p><p>So planen Sie Ihren Hausbau möglichst klimafreundlich</p><p><ul><li>Prüfen Sie vorab ehrlich Ihren genauen Wohnbedarf.</li><li>Achten Sie auf möglichst hohe Energieeffizienz (Passivhaus-/ Plusenergiestandard).</li><li>Installieren Sie eine Heizung nur mit erneuerbaren Energien.</li><li>Wählen Sie ökologische Baustoffe und eine Bauweise mit geringem Energieaufwand für die Herstellung (Graue Energie).</li><li>Mit Qualitätssicherung und Erfolgskontrolle vermeiden Sie Baufehler.</li></ul></p><p>Gewusst wie</p><p>Der Bau eines neuen Hauses ist nicht nur unter persönlichen und finanziellen, sondern auch unter Umweltgesichtspunkten eine der folgenreichsten Konsumentscheidungen.</p><p>Dies betrifft den Rohstoffbedarf und Energieverbrauch für Herstellung der Baustoffe, die dauerhafte Flächenversiegelung insbesondere durch Ein- und Zweifamilienhäuser, aber auch Schadstoffemissionen aus Baustoffen.</p><p>Zudem wird mit der Bauart der Energieverbrauch und damit die Betriebskosten des Hauses für die nächsten Jahrzehnte festgeschrieben. Mit den folgenden Tipps können Sie die Umweltwirkungen eines Neubaus verringern.</p><p><strong>Genauen Wohnbedarf prüfen:</strong> Es klingt selbstverständlich, den genauen Wohnbedarf vor der Bauplanung zu klären. Die Praxis zeigt jedoch, dass bei Neubauten eher "zu groß" als "zu klein" geplant wird. Nicht selten führt das dazu, dass das Baubudget knapp und paradoxerweise am energetischen Standard gespart wird, obwohl gerade dieser zukünftige Kosten fürs Heizen verringert. Aus Umweltsicht gibt es drei wichtige Daumenregeln für die Planung des Wohnbedarfs:</p><p><strong>Am Passivhaus orientieren:</strong> Der Passivhausstandard ist die effizienteste und komfortabelste Bauweise. Er entspricht für Neubauten dem "Stand der Technik" und rechnet sich im Normalfall, wenn er kompetent geplant wird. Sehr gute und wärmebrückenfreie Wärmedämmung von Bodenplatte, Wänden, Dach und Fenstern sowie eine luftdichte Bauweise mit Lüftung und Wärmerückgewinnung minimieren den Energieverbrauch. Das ist langfristig am tragfähigsten und schützt am besten vor steigenden Energiepreisen. Gute Luftqualität und warme Raumoberflächen sorgen für einen hohen Wohnkomfort.</p><p><strong>Von Anfang an nur erneuerbare Energien nutzen:</strong> Fossile Brennstoffe sind nicht zukunftssicher und sollten für Neubauten nicht mehr verwendet werden. Heizen mit <a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/heizen-bauen/waermepumpe">Wärmepumpe</a> ist zum Standard geworden. Für Mehrfamilienhäuser in dicht bebauten Vierteln kann auch Fernwärme eine gute Lösung sein. Im Einfamilienhaus sollten Sie auf eine Zirkulationsleitung für Warmwasser verzichten, um hohe Wärmeverluste zu vermeiden. Der Komfortverlust bleibt überschaubar, wenn der Grundriss so gestaltet ist, dass kurze Leitungen genügen. Nutzen Sie möglichst das vollständige Dach für die Stromerzeugung mit <a href="https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/photovoltaik">Photovoltaik</a>. Die Mehrkosten für eine leistungsstärkere, d. h. nicht auf den Eigenverbrauch optimierten Anlage sind gering. Mit den Erträgen Ihrer Photovoltaikanlage können Sie Effizienzmaßnahmen gegenfinanzieren. Wenn Sie viel erneuerbare Energien gewinnen und wenig Energie brauchen, erreichen Sie sogar ein "Plusenergiehaus".</p><p><strong>Energie im Lebenszyklus berücksichtigen:</strong> Bei Klimaschutzmaßnahmen geht es nicht nur um den Energieverbrauch des Gebäudes während der Nutzungsphase. Es ist sinnvoll, den gesamten Lebenszyklus eines Gebäudes zu betrachten. Hierzu gehören neben der Nutzung die Phasen Herstellung, Errichtung, Entsorgung und Wiederverwendung. Die Energie, die in allen Phasen benötigt wird, wird unter dem Begriff Kumulierter Energieaufwand (<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=KEA#alphabar">KEA</a>) zusammengefasst. Ihre Entscheidungen machen einen Unterschied:</p><p><strong>Qualitätssicherung und Erfolgskontrolle fest einplanen:</strong> Empfehlenswert ist eine Baubegleitung, die Fehler in der Bauphase vermeiden kann – und bei besonders effizienten Neubauten auch gefördert wird. Ein Blower-Door-Test weist die angestrebte Luftdichtheit nach oder zeigt, an welchen Stellen nicht sorgfältig genug gearbeitet wurde. Ziel sollte ein Drucktestkennwert n50 kleiner 0,6 1/h sein. Nach Fertigstellung des Gebäudes ist Ihnen ein Energieausweis auszuhändigen. Lassen Sie sich bestätigen, dass die Berechnungen mit der tatsächlichen Bauausführung übereinstimmen. Außerdem geht es um die Frage: Funktioniert das Haus wie gedacht? Überwachen Sie dafür den Energieverbrauch, zum Beispiel mit dem kostenlosen <a href="https://www.energiesparkonto.de/">Energiesparkonto</a>. Stellen Sie eine Abweichung fest, sollten Sie, bei Bedarf mit Energieberater*in, die Ursache suchen und nachbessern (lassen).</p><p><strong>Was Sie noch tun können:</strong></p><p>Hintergrund</p><p><strong>Umweltsituation: </strong>Der Strom- und insbesondere der Heizenergieverbrauch der Gebäude verursacht in Deutschland etwa 35 Prozent des Endenergieverbrauchs. Zählt man die Herstellung der Bauprodukte und die Bauphase hinzu, sind Gebäude für etwa 40 Prozent der deutschen Treibhausgasemissionen verantwortlich. Rund 70 Prozent davon entfallen auf Wohngebäude. Um das <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a> zu schützen, müssen Neubauten möglichst wenig zu den Treibhausgasemissionen beitragen, also möglichst effizient sein, mit erneuerbaren Energien versorgt und klimafreundlich hergestellt werden. Darüber hinaus gibt es weitere Handlungsfelder für den Umweltschutz im Bereich Bauen und Wohnen: Beispielsweise nahm die Siedlungsfläche 2022 täglich um fast <a href="https://www.umweltbundesamt.de/daten/flaeche-boden-land-oekosysteme/flaeche/siedlungs-verkehrsflaeche#-das-tempo-des-flachen-neuverbrauchs-geht-zuruck%20">37 Hektar</a> (51 Fußballfelder) zu. Mehr als die Hälfte des Abfalls in Deutschland sind <a href="https://www.umweltbundesamt.de/daten/ressourcen-abfall/abfallaufkommen#bau-abbruch-gewerbe-und-bergbauabfalle">Bau- und Abbruchabfälle</a>.</p><p><strong>Gesetzeslage: </strong>Das Klimaschutzgesetz gibt vor, dass Deutschland 2045 netto keine Treibhausgasemissionen mehr verursachen darf – was auch für Gebäude und ihre Heizungen gilt. Das Brennstoffemissionshandelsgesetz hat einen CO₂-Preis eingeführt, was Erdgas und Heizöl nach und nach immer teurer machen wird. Zudem wird dieses Gesetz die zulässigen Emissionsmengen begrenzen. Deshalb ist es sinnvoll, ein Haus von Anfang an möglichst effizient zu errichten und mit erneuerbaren Energien zu versorgen.</p><p>Das <a href="https://www.gesetze-im-internet.de/geg/index.html">Gebäudeenergiegesetz</a> (GEG) begrenzt den zulässigen Bedarf an nicht-erneuerbarer <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a> und die Wärmeverluste durch die Gebäudehülle. Es bestimmt, wann neu installierte Heizungen mindestens welchen Anteil erneuerbarer Energien nutzen müssen. Neubauten müssen auch Anforderungen an den sommerlichen Wärmeschutz einhalten, damit sich Räume im Sommer weniger überhitzen. Zur Baufertigstellung ist ein Energieausweis auszustellen, und der Bauherr oder Eigentümer muss der <a href="https://www.bbsr-geg.bund.de/GEGPortal/DE/ErgaenzendeRegelungen/Vollzug/RegelLaender/RegelLaender-node.html">nach Landesrecht zuständigen Behörde</a> in einer Erfüllungserklärung bestätigen, dass die Anforderungen des Gesetzes eingehalten werden.</p><p>Neubauten, die die gesetzlichen Anforderungen übertreffen, werden im Programm <a href="https://www.kfw.de/inlandsfoerderung/Privatpersonen/Neubau/">Klimafreundlicher Neubau Wohngebäude</a> mit zinsverbilligten Krediten gefördert. Für Neubauten mit Nachhaltigkeitszertifizierung steigt der Kredithöchstbetrag und es gelten bessere Förderbedingungen.</p><p>Der Betrieb einer <a href="https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/photovoltaik/photovoltaik-dachanlagen">Photovoltaik-Dachanlage</a> lohnt sich auf Einfamilienhäusern in erster Linie durch den vermiedenen Strombezug ("Eigenverbrauch"). Zusätzlich wird für den überschüssigen Strom, der in das Netz eingespeist wird, eine Vergütung nach dem <a href="https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/erneuerbare-energien-gesetz">Erneuerbare-Energien-Gesetz</a> gezahlt. Ein Batteriespeicher lohnt sich nicht in allen Fällen – lassen Sie sich ein Angebot mit und eines ohne Batteriespeicher geben.</p><p>Nach und nach werden wir mit mehr erneuerbaren Energien heizen. Das ist gut für das Klima und auch für Ihren Geldbeutel. Unser Entscheidungsbaum hilft Ihnen durch die Paragraphen des neuen Gebäudeenergiegesetzes, die seit dem 1.1.2024 gelten. (Stand: 10/2024)</p><p><strong>Marktbeobachtung: </strong>Das Neubaugeschehen ist derzeit rückläufig: während seit 2016 rund 30.000 Wohnungen pro Monat genehmigt wurden, waren es 2023 monatlich noch rund 20.000.1 Schon seit einigen Jahren setzt die deutliche Mehrheit neu errichteter Wohngebäude beim Heizen auf Wärmepumpen. 2022 lag der Anteil bei 70 Prozent, Tendenz steigend.2</p><p>Es gibt eine Reihe von Gebäudestandards: Das <strong>Effizienzhaus</strong> beschreibt förderfähige Häuser. Ein Effizienzhaus 40 bedeutet, dass sein Primärenergiebedarf nur noch 40 Prozent des Primärenergiebedarfs des Referenzgebäudes beträgt, also eines Gebäudes mit gleicher Geometrie, aber im GEG festgelegten energetischen Eigenschaften. Ein <strong>Plusenergiehaus</strong> gewinnt im Jahresverlauf mehr Energie aus erneuerbaren Energien, als es selbst verbraucht. Am effizientesten ist das <strong>Passivhaus</strong>, das einen so geringen Heizwärmebedarf hat, dass die Abwärme der Bewohner*innen und üblicher Haushaltsgeräte zum Heizen ausreicht. Das erreicht es mit kompakter Bauweise, hervorragendem Wärmeschutz, hoher Luftdichtheit und Lüftung mit Wärmerückgewinnung. Es ist ratsam, effiziente Häuser wie das Passivhaus mit einer speziell angepassten Methode wie dem Passivhaus-Projektierungspaket zu planen, um ausreichend genaue Ergebnisse zu erzielen.</p><p>Auch wenn ein Haus an sich ziemlich viel Geld kostet: Der Blick allein auf die Investitionskosten übersieht die Tatsache, dass ein Haus für Heizung, Betrieb, Instandhaltung usw. jahrzehntelang Geld kostet. Wichtiger als die Investitionskosten sind also die gesamten Lebenszykluskosten. Zusätzlich gibt es auch Möglichkeiten, ohne Verlust an Umweltqualität die Anschaffungskosten zu verringern: Kompakte Kubatur, kleine Wohnfläche oder nahe beieinander liegende Räume mit Wasserbedarf (Bäder und Küche) für kurze (Ab-)Wasserleitungen und Lüftungskanäle. Eine Lüftung mit Wärmerückgewinnung und die Beseitigung von Wärmebrücken senken die Heizlast und erlauben eine kleinere und günstigere Heizung einzubauen.</p><p> </p><p><strong>Quellen:</strong></p><p>1 Statistisches Bundesamt: <a href="https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Bauen/_inhalt.html#sprg229260">Monatlich genehmigte Wohnungen</a></p><p>2 Statistisches Bundesamt: Auswahl <a href="https://www-genesis.destatis.de/genesis//online?operation=table&code=31111-0008&bypass=true&levelindex=0&levelid=1706716056044%20">Wohngebäude</a></p>
Mykorrhizen sind in der Lage, das Wachstum der Bäume durch erhöhte Aufnahme von Nährstoffen zu verbessern. Im Gegensatz zu Phosphat und Nitrat, ist nur wenig über die Bedeutung der Mykorrhiza für die Aufnahme und den Metabolismus von Schwefel bekannt, obwohl schwefelhaltige Stoffe eine wichtige Rolle bei Rhizobiumwurzel Symbiose spielen, die in vielen Aspekten ähnlich zu Mykorrhizierung ist. Ziel des Projekts ist es, Gene des Schwefelhaushalts von Wurzeln zu identifizieren, die bei der Wechselwirkung Wurzelpilz eine Rolle spielen, und deren Expression und Regulation zu analysieren. Als Modellsystem soll dabei die Pappel und der Pilz Amanita muscaria eingesetzt werden. In diesem Modellsystem soll die Hypothese überprüft werden, dass der Pilz die Sulfatversorgung der Pflanze durch eine erhöhte Aufnahme sowie einen intensiven Austausch mit der Wurzel verbessert und, in Analogie zu Rhizobien, dem Pilz von der Pflanze reduzierter Schwefel in Form von Glutathion zur Verfügung gestellt wird. In der ersten Phase wird der Einfluss der Schwefel- und Stickstoffernährung auf die Expression der Gene des Schwefel-Metabolismus in Pappel und im Pilz untersucht. Weiterhin soll der Einfluss der Modulation des Schwefelhaushalts in Pappeln durch genetische Manipulation auf die Wechselwirkung im Schwefelhaushalt zwischen Wurzel und Pilz analysiert werden.
Zielsetzung: Im Kontext von Klimawandel und Energiekrise sind Fragen der Energiebilanz und -effizienz von Gebäuden besonders relevant. Die Baudenkmalpflege trägt durch ihre wirtschaftlichen, ökologischen und soziokulturellen Aspekte der nachhaltigen Ressourcenverwendung und damit direkt zum Klimaschutz bei. Historische Bauten, die überwiegend aus dauerhaften Materialien und Konstruktionen bestehen, sind ein gutes Beispiel für Green Culture durch energie-schonende Nutzung und bestandsorientierte Weiterentwicklung. Die beim Bau alter Gebäude bereits eingesetzte (graue) Energie muss bei sorgfältiger und schonender Erneuerung, u.a. durch Einsatz nachhaltiger Baustoffe, nicht noch einmal aufgewendet werden. Holz war schon immer ein nachhaltiger, ressourcen- und energieschonender Werkstoff und gehört zu den ältesten Baukulturen weltweit. Allein in Deutschland gilt die Holzarchitektur (Fachwerkhäuser, Dachwerke) als prägend. Es ist daher sowohl im Sinne der Denkmalpflege als auch zur zukünftigen Nutzung von Holz als Baumaterial wichtig, Eigenschaften, Zustand und Veränderung dieses Materials zu beobachten und zu verstehen. Dazu stehen heute vielversprechende Technologien wie optische 3D-Messtechnik und KI-basierte Datenanalyse zur Verfügung, die in diesem Sektor bisher noch kaum eingesetzt werden. Ziel dieses Vorhabens ist, ein Verfahren zur automatisierten Bauteildokumentation und -kontrolle für Altholzbauten im Bestand zu entwickeln. Dies beinhaltet: - Entwicklung eines prototyphaften optischen Messsystems zur Bestands- und Merkmalsaufnahme; - Entwicklung eines Automatisierungsverfahrens zur Merkmalsdetektion; - Automatisierung des Informationstransfers in digitales 3D-Modell. Im Laufe des Projektes werden folgende Ergebnisse angestrebt: - Messverfahren bestehend aus innovativer Hardware (RTI-Sensor, patentiert) und Software (KI-gestützte Merkmalserkennung) zur objektiven und dokumentierten Festigkeitsanalyse von verbautem Altholz; - Schnittstelle zur automatischen Übertragung von Holzkenngrößen an einen Digitalen Zwilling (basierend auf BauWolke-Software/BauCAD); - Zukünftige Vermarktungsmöglichkeiten durch Sensor/Software und erweitertes Dienstleistungsangebot durch Gutachter.
Ziel der Fördermaßnahme ist die Erforschung einer materialreduzierten Baukeramik für nichttragende Innenwände mit niedrigem Anteil 'grauer Energie' und stark vermindertem CO2-Fußabdruck. 'Graue Energie' ist als die zur Herstellung eines Produktes aufgewendete Energie definiert. Im Projekt LightCer (Akronym für leichte Keramik) wird durch den hohen Einsatz von mehr als 60 % Baustoff-Rezyklaten in Verbindung mit einer ungefähr 50-%igen Absenkung der Materialrohdichte, die zur Herstellung des neuen Bauproduktes benötigte Energie, um mindestens 30 % zum konventionellen Ziegelprodukt abgesenkt. Die damit einhergehende Einsparung von 30 % Primärenergie aus fossilem Erdgas würde damit zwar symptomatisch einhergehen, allerdings geht der Projektansatz weit darüber hinaus, in dem durch die Elektrifizierung der beiden Hauptverfahrensschritte von Trocknung und Brand mit Hilfe von Mikrowellentechnologie der komplette Verzicht auf den fossilen Energieträger Erdgas verwirklicht und somit der Primärenergiegehalt auf nahezu null gesenkt wird. Neben dem Key Performance Indicator (KPI) der Energieeffizienz sieht Schlagmann einen weiteren in der Reduktion der Treibhausgasemissionen, de facto CO2-Emissionen. Mit der Prämisse der Zurverfügungstellung von regenerativ erzeugtem Strom wird die neue Baukeramik einen einmalig niedrigen CO2-Fußabdruck aufweisen. Vor Projektende stehen Demonstratoren zur Verfügung, die auf ihre bauphysikalischen Gesamteigenschaften wie Statik im Sinne der Eigenlastabtragung, sowie Standsicherheit, aber auch Wärme und Schall geprüft werden. Zur weiteren Verwertung der Forschungsergebnisse wird im Anschluss ein Demonstrationsprojekt mit Bau einer Pilot-Anlage angestrebt, wo die anvisierten Prototypen in signifikanter Zahl für Musterbaustellen bereitgestellt und anschließend auf ihre Praxistauglichkeit untersucht werden.
Ziel der Fördermaßnahme ist die Erforschung einer materialreduzierten Baukeramik für nichttragende Innenwände mit niedrigem Anteil 'grauer Energie' und stark vermindertem CO2-Fußabdruck. 'Graue Energie' ist als die zur Herstellung eines Produktes aufgewendete Energie definiert. Im Projekt LightCer (Akronym für leichte Keramik) wird durch den hohen Einsatz von mehr als 60 % Baustoff-Rezyklaten in Verbindung mit einer ungefähr 50-%igen Absenkung der Materialrohdichte, die zur Herstellung des neuen Bauproduktes benötigte Energie, um mindestens 30 % zum konventionellen Ziegelprodukt abgesenkt. Die damit einhergehende Einsparung von 30 % Primärenergie aus fossilem Erdgas würde damit zwar symptomatisch einhergehen, allerdings geht der Projektansatz weit darüber hinaus, in dem durch die Elektrifizierung der beiden Hauptverfahrensschritte von Trocknung und Brand mit Hilfe von Mikrowellentechnologie der komplette Verzicht auf den fossilen Energieträger Erdgas verwirklicht und somit der Primärenergiegehalt auf nahezu null gesenkt wird. Neben dem Key Performance Indicator (KPI) der Energieeffizienz sieht Schlagmann einen weiteren in der Reduktion der Treibhausgasemissionen, de facto CO2-Emissionen. Mit der Prämisse der Zurverfügungstellung von regenerativ erzeugtem Strom wird die neue Baukeramik einen einmalig niedrigen CO2-Fußabdruck aufweisen. Vor Projektende stehen Demonstratoren zur Verfügung, die auf ihre bauphysikalischen Gesamteigenschaften wie Statik im Sinne der Eigenlastabtragung, sowie Standsicherheit, aber auch Wärme und Schall geprüft werden. Zur weiteren Verwertung der Forschungsergebnisse wird im Anschluss ein Demonstrationsprojekt mit Bau einer Pilot-Anlage angestrebt, wo die anvisierten Prototypen in signifikanter Zahl für Musterbaustellen bereitgestellt und anschließend auf ihre Praxistauglichkeit untersucht werden.
| Origin | Count |
|---|---|
| Bund | 1308 |
| Kommune | 2 |
| Land | 12 |
| Type | Count |
|---|---|
| Ereignis | 2 |
| Förderprogramm | 1276 |
| Text | 28 |
| unbekannt | 12 |
| License | Count |
|---|---|
| geschlossen | 40 |
| offen | 1277 |
| unbekannt | 1 |
| Language | Count |
|---|---|
| Deutsch | 1109 |
| Englisch | 352 |
| Resource type | Count |
|---|---|
| Bild | 1 |
| Datei | 2 |
| Dokument | 21 |
| Keine | 854 |
| Multimedia | 1 |
| Webseite | 450 |
| Topic | Count |
|---|---|
| Boden | 876 |
| Lebewesen und Lebensräume | 1280 |
| Luft | 661 |
| Mensch und Umwelt | 1314 |
| Wasser | 658 |
| Weitere | 1305 |