Das Projekt "DAM Dekarbonisierung: Künstlicher Auftrieb als Mittel ozeanbasierter Entfernung von Kohlendioxid aus der Atmosphäre, Leitantrag; Vorhaben: Technische Umsetzung, Reaktionen des Ökosystems, Upscaling durch biogeochemische Modellierung" wird/wurde gefördert durch: Bundesministerium für Forschung, Technologie und Raumfahrt. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR).
Ökologisch zertifizierte Weihnachtsbäume aus der Region bevorzugen Was Sie beim Weihnachtsbaum-Kauf beachten sollten Kaufen Sie Weihnachtsbäume aus ökologischer Erzeugung. Kaufen Sie Weihnachtsbäume, die in Ihrer Region gewachsen sind. Kaufen Sie Ihren Weihnachtsbaum beim Händler um die Ecke – möglichst ohne Auto. Verwenden Sie künstliche Weihnachtsbäume möglichst viele Jahre. Nutzen Sie für die Entsorgung Ihres Baums die speziellen Angebote Ihrer Kommune. Gewusst wie Weihnachtsbäume werden in der Regel in Plantagen angebaut. Umweltbelastungen entstehen insbesondere durch den Einsatz von Kunstdünger und Pestiziden sowie durch den Transport zu den Kund*innen. Im Vergleich zu anderen Konsumgütern sind die Umweltbelastungen von Weihnachtsbäumen allerdings als gering einzustufen. Ökologisch zertifizierte Bäume bevorzugen: Bio-Qualität gibt es nicht nur bei Lebensmitteln, sondern auch bei Weihnachtsbäumen. Achten Sie deshalb beim Kauf Ihres Weihnachtsbaumes möglichst auf das EU-Biosiegel. Dann können Sie sicher sein, dass der Anbau ohne synthetische Pestizide und Mineraldünger erfolgte. Dies gilt auch für Bäume aus FSC-zertifizierten Forstbetrieben, oder wenn die Weihnachtsbäume durch Biosiegel wie z. B. Bioland oder Naturland zertifiziert sind. Bei der Umweltschutzorganisation Robin Wood finden Sie eine Liste mit bundesweiten Verkaufsstellen für ökologisch angebaute Weihnachtsbäume. Für Bayern gibt es eine solche Liste zusätzlich beim Bund Naturschutz (siehe Linkspalte). Bio-Logo (EU) Quelle: EU-Kommission FSC-Label Quelle: Forest Stewardship Council (FSC) Bäume aus der Region kaufen: Weihnachtsbäume sind groß und sperrig. Deshalb lohnt es sich besonders, wenn sie nicht quer durchs Land per Lkw transportiert werden müssen. Kaufen Sie deshalb einen Baum, der in Ihrer Nähe gewachsen ist. Einige Forstbetriebe bieten auch an, den Weihnachtsbaum selbst zu schlagen. Beim Händler um die Ecke holen: Mehr noch als bei anderen Produkten gilt beim Weihnachtsbaum: Die Strecke mit dem Auto vom Händler zu Ihnen nach Hause kann einer oder der größte Posten in der CO 2 -Bilanz Ihres Baumes sein. Am besten holen Sie deshalb Ihren Weihnachtsbaum bei einem Händler "um die Ecke". Noch besser für die Umwelt ist es, wenn Sie den Baum mit dem Fahrradanhänger oder gar zu Fuß abholen können. Künstliche Bäume lange nutzen: Weihnachtsbäume aus Plastik sind unter Umweltgesichtspunkten nicht pauschal schlechter als natürliche Weihnachtsbäume. Entscheidend ist die Frage, wie lange der Baum genutzt wird bzw. wie viele natürliche Weihnachtsbäume er im Laufe seines "Lebens" ersetzt. Wenn Sie einen künstlichen Weihnachtsbaum haben oder kaufen wollen, gehen Sie sorgsam mit diesem um. Denn je länger Ihr Baum hält, desto besser ist das für Ihren Geldbeutel und für die Umweltbilanz. Baum richtig entsorgen: Die meisten Kommunen bieten gesonderte Abholungen für Weihnachtsbäume an. Nehmen Sie diese Angebote wahr, damit das Holz des Weihnachtsbaums noch möglichst umweltschonend genutzt werden kann. Entfernen Sie vor der Entsorgung grundsätzlich allen Baumschmuck und Reste von Verpackungsnetzen. Sie sollten den Weihnachtsbaum weder im Ofen noch in der Feuerschale im Garten verbrennen. Nur gut (am besten zwei Jahre) getrocknetes und naturbelassenes Holz darf in Öfen verbrannt werden. Auch bei trockenen Nadeln ist das Stamm- und Astholz des Weihnachtsbaums noch zu feucht. Beim Verbrennen entstehen deshalb hohe Staubemissionen und Teerablagerungen. Sind die Zweige sehr trocken, kann der Ofen zudem kurzzeitig überhitzt werden. Dabei können Ofentürscheiben dauerhaft milchig werden. Es besteht die Gefahr, dass die Ofentür dauerhaft undicht wird. Kaputte künstliche Weihnachtsbäume gehören in die Restmülltonne. Was Sie noch tun können: Ein kleiner Baum tut's auch: Stellen Sie Ihren Baum auf ein Podest oder Tischchen, dann füllt auch ein kleinerer Baum den Raum gut aus. Ein schönes Weihnachtsgesteck aus wintergrünen Zweigen kann ebenfalls eine Alternative sein. Weniger ist mehr: Aus Umweltsicht wichtiger als der Weihnachtsbaum ist das, was unter dem Weihnachtsbaum liegt. Achten Sie deshalb beim Schenken auch auf Umwelt- und Klimagesichtspunkte. Verschenken Sie immaterielle Dinge wie z. B. Zeit-Gutscheine. Probieren Sie (neue) vegetarische oder vegane Leckereien an den Feiertagen aus. Denn eine Weihnachtsgans hat z. B. einen höheren CO 2 -Fußabdruck als ein Weihnachtsbaum. Weitere Hinweise finden Sie in unserem Tipp Klima- und umweltfreundliche Ernährung . Schalten Sie die Festbeleuchtung aus, wenn die Sonne scheint oder wenn Sie schlafen. Mit LED-Beleuchtung sparen Sie zudem Strom. Beachten Sie auch unsere Tipps zu Weihnachten [Link folgt in Kürze] sowie zu Lagerfeuer und Feuerschalen . Hintergrund Umweltsituation: Die meisten Weihnachtsbäume wachsen als sogenannte Sonderkulturen auf landwirtschaftlichen Flächen. Lediglich schätzungsweise 15 Prozent werden von Waldbetrieben verkauft. Im Gegensatz zu Wald handelt sich bei den Sonderkulturen um plantagenartige Intensivkulturen mit einem regelmäßigen Einsatz von Dünger und Pestiziden. Dieser liegt allerdings deutlich unter den Einsatzmengen bei (einjährigen) landwirtschaftlichen Kulturen, sollte aber trotzdem aus Umwelt- und Naturschutzgründen möglichst minimiert werden. Im Vergleich zu Waldflächen haben Weihnachtsbaumkulturen auch eine deutlich geringere jährliche CO 2 -Speicherleistung. In Bezug auf die Artenvielfalt konnten hingegen verschiedene positive Effekte der Weihnachtsbaumkulturen nachgewiesen werden. Die offene Vegetationsstruktur bietet einigen seltenen Vogelarten, aber auch für Spinnen- und Laufkäferarten einen wertvollen Lebensraum zwischen den Acker- und Waldstandorten. Um diese positiven Effekte auf die Artenvielfalt zu erhalten und zu stärken, sollte eine weitere Intensivierung unterbunden und auf ein zusammenhängendes Mosaik unterschiedlich alter Weihnachtsbaumkulturen geachtet werden. Im Vergleich zu anderen Konsumgütern oder Verhaltensweisen hat ein Weihnachtsbaum – unabhängig ob natürlich gewachsen oder aus Kunststoff – nur eine geringe Umweltwirkung. Schon eine Weihnachtsgans verursacht z. B. tendenziell mehr Treibhausgasemissionen als Herstellung und Transport eines Weihnachtsbaums aus Kunststoff bei fünfjähriger Nutzung. Eine pauschale Aussage, ob künstliche oder natürliche Weihnachtsbäume die bessere Ökobilanz haben, ist nicht möglich. Die Art der Bewirtschaftung bei natürlichen, die Nutzungsdauer bei künstlichen Bäumen und insbesondere die sogenannte "letzte Meile", d. h. die Strecke zwischen Verkaufs- und Aufstellort, können die Ökobilanz in die eine oder in die andere Richtung kippen lassen. Dies gilt auch für Bäume im Topf oder für Mietbäume. Gesetzeslage: In der Regel sind Weihnachtsbaumkulturen genehmigungspflichtig, da sie als Intensivkulturen als Eingriff in Natur und Landschaft gelten. Die rechtlichen Vorschriften sind allerdings abhängig vom Bundesland. Kleinere Flächen oder spezifische Standorte (z.B. unter Stromleitungen) sind häufig von der Genehmigungspflicht ausgenommen. Marktbeobachtung: Im Jahr 2019 wurden nach Angaben von Statista in Deutschland fast 30 Millionen Weihnachtsbäume verkauft. Davon stammen mehr als 90 Prozent aus Deutschland. Die restlichen Bäume kommen aus angrenzenden Ländern, allen voran aus Dänemark. Der Marktanteil von ökologisch zertifizierten Weihnachtsbäumen liegt nach einer Erhebung von Robin Wood bei unter 1 Prozent.
Nickel gilt für manche Tiere, Pflanzen und Mikroorganismen als essentielles Spurenelement; für den Menschen ist dies nicht sicher nachgewiesen. Die Ni-Konzentration in der oberen kontinentalen Kruste (Totalgehalte) beträgt 19 mg/kg, kann aber in den unterschiedlichen Gesteinstypen stark schwanken. Die mittleren Ni-Gehalte (Median) der sächsischen Hauptgesteinstypen variieren von 1 bis 1 900 mg/kg, der regionale Clarke des Erzgebirges/Vogtlandes beträgt 23 mg/kg. Für unbelastete Böden gelten Ni-Gehalte von 5 bis 50 mg/kg als normal. Zusätzliche geogene Ni-Anreicherungen in Böden sind vor allem im Bereich der Ni-Verwitterungslagerstätten (Haupterzmineral Garnierit) über Serpentiniten im Granulitgebirge und dessen Schiefermantel anzutreffen, die jedoch nur geringe Flächen einnehmen. Bei den Ganglagerstätten besitzen die Vererzungen der Quarz-Arsenid-Assoziation ("Bi-Co-Ni-Ag-U-Formation") eine nur geringe umweltgeochemische Relevanz. Auch ein Einfluss der Ni-Mineralisation von Sohland/Spree ist im vorliegenden Maßstab nicht erkennbar. Anthropogene Ni-Einträge erfolgen vor allem durch die Eisenmetallurgie bzw. durch Ni-verarbeitende Industrien (Legierungen, Apparatebau, Lacke, Kunststoffe) und durch die Verbrennung fossiler Energieträger. Weitere nennenswerte Ni-Einträge sind vor allem mit den Abwässern in aquatische Ökosysteme möglich (z. B. Klärschlamm). Die regionale Verbreitung erhöhter Ni-Gehalte in den sächsischen Böden wird vor allem durch die geogene Spezialisierung der Substrate bestimmt. Aufgrund der erhöhten Ni-Gehalte der Serpentinite (1 900 mg/kg), der tertiären Basalte (120 mg/kg), Amphibolite und Gabbros (110 mg/kg) und der devonischen Diabase (80 mg/kg) kommt es entsprechend der Verbreitung dieser Substrate, teils zu flächenhaften, teils zu punktförmigen anomal hohen Ni-Gehalten im Oberboden. Durch Einschaltungen von Metabasiten in die Phyllit- und Glimmerschieferfolgen, sowie wegen der schwach erhöhten Ni-Gehalte in diesen Gesteinen selbst (30 bis 40 mg/kg), treten das Vogtland und das Westerzgebirge als Gebiete erhöhter Ni-Gehalte im Kartenbild deutlich in Erscheinung. Analog zum Cr, kommen über den Substraten der sauren Magmatite und Metamorphite, der Sandsteine der Elbtalkreide sowie der periglaziären Decksedimente die niedrigsten Ni-Gehalte in den Böden vor. Bei den Auenböden lassen sich hinsichtlich der Ni-Gehalte deutliche Beziehungen zum geologischen Bau der Gewässereinzugsgebiete erkennen. Während in den Auenböden der Weißen Elster, des Muldensystems und der Elbe (Einzugsgebiet Erzgebirge, Vogtland) mittlere und z. T. schwach erhöhte Gehalte auftreten, sind die Auenböden u. a. der Schwarzen Elster und Spree (Einzugsgebiet Lausitz) relativ Ni-arm. Dazu tragen sicher auch die geringere Besiedlungsdichte und die niedrigere Dichte von Industriestandorten in der Lau-sitz bei. Problematisch ist die Umrechnung von Ni-Totalgehalten in Ni-Königswassergehalte (KW). Praktische Erfahrungen bei den Bodenuntersuchungen zeigen, dass die KW-Gehalte gegenüber den Totalgehalten in Abhängigkeit von der Bindungsform in den Substraten um ca. 10 bis 30 % niedriger sind. Die in der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) festgelegten Prüfwerte für den Wirkungspfad Boden-Mensch (KW-Gehalte) werden in Sachsen nur z. T über den Diabasen und den kleinräumig auftretenden Serpentiniten überschritten. Gefährdungen können aber hier weitgehend ausgeschlossen werden, da das Ni silikatisch gebunden vorliegt und eine Freisetzung nicht zu befürchten ist. Der Ni-Transfer Boden-Pflanze auf Grünlandflächen ist unbedeutend; der Maßnahmenwert von 1 900 mg/kg wird nicht erreicht.
Energie- und CO2-Bilanzierung 2021 Die Stadt Aachen erstellt seit 2010 jährlich eine Energie- und CO2-Bilanz (Daten und Berechnungen von 1990 bis 2021 liegen vor). Als Basisjahr wurde das Jahr 1990 (gemäß Kyoto-Protokoll 1997) ausgewählt. Die Bilanz wird mit dem vom Klimabündnis (Climate Alliance) empfohlenen Berechnungstool ECORegion auf Basis tatsächlicher Verbräuche sowie zusätzlicher statistischer Daten ermittelt. Die Endenergiebilanz umfasst zunächst den Energiebedarf der Verbraucher innerhalb der Stadtgrenzen. Die Primärenergiebilanz (Methode LCA: Life Cycle Assessment) umfasst darüber hinaus den Energiebedarf zur Produktion, Umwandlung und Transport der Energieträger (Vorkettenanteile) und erstreckt sich somit über den Bilanzierungsraum der Stadt hinaus.
Als Ballungsraum ist die Stadt Oldenburg verpflichtet, eine flächendeckende Lärmkartierung vorzunehmen und einen Lärmaktionsplan zu erstellen. Lärmkarten stellen die Belastung der Bevölkerung durch Lärm, der von verschiedenen Lärmquellenarten verursacht wird graphisch dar. In der Stadt Oldenburg sind dabei die Lärmquellenarten Straßenverkehr, Schienenverkehr und Gewerbe/Industrie zu betrachten. Anhand der Lärmkarten sind anschließend in einem Lärmaktionsplan Maßnahmen zu benennen, mit deren Hilfe die Lärmbelastung der Bevölkerung vermindert werden kann, bzw. mit denen ruhige Gebiete vor der Zunahme einer weiteren Lärmbelastung geschützt werden können.
Aktuelle sektorübergreifende Szenarienarbeiten des Umweltbundesamtes zeigen, dass mit einer ambitionierten Minderungsstrategie Treibhausgasneutralität bis 2045 theoretisch noch ohne die Technologie der Kohlenstoffabscheidung und -einlagerung möglich ist. Werden ergänzend technische Maßnahmen in die Transformation integriert, werden robust Treibhausgasneutralität und schon 2045 Netto-Negativemissionen ermöglicht. Ein moderater Hochlauf der technischen Negativemissionen in einer Größenordnung von -6 Mio. t CO 2 bis 2045 scheint angemessen. Die festgelegten Ziele für den Sektor LULUCF können in 2045 noch erreicht werden. Gelingen kann dies mit einer Offensive für Wälder, Moorböden und Agroforst, die zu den wichtigsten Elementen des Instrumenten- und Maßnahmenspektrums zählen. Veröffentlicht in Fact Sheet.
Das Projekt "WIR! - RENAT.BAU - Minrest, Teilprojekt 3" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: BB Beton und Bauwaren Produktions- und Beteiligungsgesellschaft mbH.
Der Forschungsbericht untersucht die ökologische und ökonomische Sinnhaftigkeit des Austauschs von Kühl- und Gefriergeräten, Geschirrspülern, Wäschetrocknern und Staubsaugern gegen besonders effiziente Neugeräte. Ziel ist es, Empfehlungen für Verbraucher*innen zu entwickeln, ob sie ihre bestehenden Geräte weiter nutzen oder durch neue, besonders effiziente Modelle ersetzen sollten. Methodisch basiert die Studie auf einer vereinfachten Ökobilanz und einer Lebenszykluskostenrechnung. Insgesamt zeigt die Studie, dass die Entscheidung für oder gegen einen Geräteaustausch von vielen Faktoren abhängt, darunter der spezifische Energieverbrauch der Geräte, die Nutzungsintensität und die Entwicklung der erneuerbaren Energien. Veröffentlicht in Texte | 46/2025.
Pflanzliche Öle werden als energiereiche Reservestoffe in Speicherorgane von Pflanzen eingelagert. Sie sind chemisch gesehen Ester aus Glycerin und drei Fettsäuren. In Deutschland konzentriert sich der Ölsaatenanbau auf Raps, Sonnenblume und Lein. Im Freistaat Sachsen dominiert auf Grund der Standortbedingungen und vor allem der Wirtschaftlichkeit eindeutig der Raps. Der maximal mögliche Anbauumfang von Raps liegt aus anbautechnischer Sicht bei 25 % der Ackerfläche und ist noch nicht ausgeschöpft (Sachsen 2004: 17 %). Für den landwirtschaftlichen Anbau kommen eine Reihe weiterer ölliefernder Pflanzenarten oder spezieller Sorten in Betracht. Interessant sind sie aus der Sicht der Verwertung insbesondere, wenn sie hohe Gehalte einzelner spezieller Fettsäuren aufweisen. Bei der Verarbeitung können dann aufwändige Aufbereitungs- und Trennprozesse eingespart und die Synthesevorleistung der Natur optimal genutzt werden. Der Anbauumfang ist jedoch meist noch sehr gering. Beispiele sind Nachtkerze und Iberischer Drachenkopf, aber auch Erucaraps und ölsäurereiche Sonnenblumensorten. a) stoffliche Verwertung In der stofflichen Verwertung reichen die Einsatzfelder pflanzlicher Öle von biologisch schnell abbaubaren Schmierstoffen, Lacken und Farben, über Tenside, Kosmetika, Wachse bis zu Grundchemikalien, aber auch Bitumen. b) energetische Verwertung Desweiteren können Pflanzenöle in Fahrzeugen, stationären oder mobilen Anlagen energetisch verwertet werden. Für den breiten Einsatz ist derzeit vor allem Biodiesel geeignet. Dieser kommt als reiner Kraftstoff zum Einsatz, seit 2004 auch in Beimischung zu Dieselkraftstoff. Eine weitere Möglichkeit eröffnet sich durch die Verwendung von reinem Rapsöl.
Emissionen von flüchtigen organischen Verbindungen, außer Methan, ( NMVOC – non-methane volatile organic compounds) aus der Herstellung und Verwendung von Lösemitteln und lösemittelhaltigen Produkten werden, unterteilt in abgrenzbare Verfahren und Anwendungsbereiche, auf Basis von statistischen Daten zur wirtschaftlichen Entwicklung inventarisiert. Entsprechend geben Prognosen mit der wirtschaftlichen Entwicklung anwachsende Emissionen für die Zukunft an. Da Prognosen zur wirtschaftlichen Entwicklung vielfach nur in Bezug auf monetäre Wertgrößen vorliegen und es an belastbaren Korrelationen zur Mengenentwicklung fehlt, wurden im Projekt neue Methoden und Parameter getestet, um die Entwicklung der NMVOC-Emissionen belastbarer vorherzusagen, insbesondere in den Bereichen Druckindustrie-Druckanwendungen sowie Anwendung von Farben und Lacken für die Jahre 2025 bis 2050. Veröffentlicht in Texte | 57/2025.
Origin | Count |
---|---|
Bund | 3943 |
Kommune | 15 |
Land | 925 |
Unklar | 1 |
Wirtschaft | 2 |
Wissenschaft | 23 |
Zivilgesellschaft | 9 |
Type | Count |
---|---|
Chemische Verbindung | 11 |
Ereignis | 17 |
Förderprogramm | 3388 |
Gesetzestext | 2 |
Messwerte | 467 |
Software | 1 |
Taxon | 1 |
Text | 506 |
Umweltprüfung | 221 |
unbekannt | 229 |
License | Count |
---|---|
geschlossen | 879 |
offen | 3895 |
unbekannt | 67 |
Language | Count |
---|---|
Deutsch | 4520 |
Englisch | 654 |
andere | 1 |
Resource type | Count |
---|---|
Archiv | 509 |
Bild | 11 |
Datei | 71 |
Dokument | 274 |
Keine | 2610 |
Multimedia | 2 |
Unbekannt | 7 |
Webdienst | 8 |
Webseite | 2054 |
Topic | Count |
---|---|
Boden | 3478 |
Lebewesen & Lebensräume | 3725 |
Luft | 3256 |
Mensch & Umwelt | 4834 |
Wasser | 2700 |
Weitere | 4596 |