API src

Found 3 results.

Mikrostrukturelle Aufklärung und galenische Weiterentwicklung bioabbaubarer Arzneistoffträger auf Basis von Kollagen mit Hilfe mathematischer Modellierung und numerischer Simulation

Das Projekt "Mikrostrukturelle Aufklärung und galenische Weiterentwicklung bioabbaubarer Arzneistoffträger auf Basis von Kollagen mit Hilfe mathematischer Modellierung und numerischer Simulation" wird vom Umweltbundesamt gefördert und von Universität München, Pharmazeutische Biologie, Department Pharmazie Zentrum für Pharmaforschung durchgeführt. Arzneistoffträger auf Basis von Kollagen bieten aufgrund der Interaktionen mit Zellen und des positiven Einflusses auf die Geweberegeneration Vorteile gegenüber synthetischen Polymersystemen. Das Verständnis um Möglichkeiten zur Steuerung der Wirkstofffreigabe ist noch begrenzt. Zwei Prozesse, welche durch Modifikation des Trägermaterials wie z.B. Vernetzung gesteuert werden können, spielen eine entscheidende Rolle: Die Quellung des hydrophilen Polymers und dessen enzymatischer Abbau. Im Forschungsvorhaben sollen diese auf mikrostruktureller Ebene charakterisiert, mathematisch beschrieben und zur numerischen Simulation in zwei Raumdimensionen erforderliche Parameter bestimmt werden. Bei der Modellierung werden auf mikroskopischer Ebene Erhaltungsgesetze formuliert. Durch einen Mittelungsprozess unter Einbeziehung heuristischer Ansätze wird ein Übergang auf die Makroskala vollzogen. Der Degradationsprozess wird anschließend mit dem bereits in eigenen Vorarbeiten untersuchten Quellungsvorhang gekoppelt. Parallel werden die experimentellen Untersuchungen zur Wirkstofffreigabe durchgeführt. Die abschließende mehrdimensionale Simulation soll eine gezielte Einstellung der Matrixeigenschaften und -form zur Optimierung einer lokalen Arzneistofftherapie ermöglichen.

Mathematische Modellierung der hydrodynamischen Belastung von Deichen (INTBEM B)

Das Projekt "Mathematische Modellierung der hydrodynamischen Belastung von Deichen (INTBEM B)" wird vom Umweltbundesamt gefördert und von Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz, Betriebsstelle Norden-Norderney, Forschungsstelle Küste (FSK) durchgeführt. Vorrangiges Ziel ist die integrierte Bemessung von Deichen unter gleichzeitiger Berücksichtigung der äußeren hydrodynamischen Kräfte und der Widerstandsfähigkeit der verwendeten Erdbaustoffe (Klei, Mergel) über die Formulierung deterministischer Grenzzustandsgleichungen. Ermittlung der Belastungsbandbreiten aus denen des Bemessungsseegangs und mathematische Modellierung der hydrodynamischen Einwirkungen auf Deiche (Wellenauf- und -rücklauf auf der Außenböschung, Schichtdicken auf der Deichkrone, Überlaufvolumen und -geschwindigkeiten auf der Binnenböschung; Verifikation mittels neuronaler Netzwerke; empirische Ermittlung von Druckschlagbelastungen. Überführung der Ergebnisse in die Bemessungspraxis zur Erhöhung von Sicherheit und Wirtschaftlichkeit. Weiterhin lassen sich bestehende Küstenschutzwerke hinsichtlich ihrer Sturmflutsicherheit genauer als bisher überprüfen. Hiermit ist eine verbesserte Grundlage für die Vorsorgeplanung hinsichtlich von Folgen zum globalen Klimawandel gegeben.

Multiskalen-Modellierung von Boden-Pflanze-Interaktionen

Das Projekt "Multiskalen-Modellierung von Boden-Pflanze-Interaktionen" wird vom Umweltbundesamt gefördert und von Universität für Bodenkultur Wien, Institut für Bodenforschung durchgeführt. Ziel des Projekts ist es, mathematische Methoden und Simulationen einzusetzen, um zu einem besseren Verständnis über die Mechanismen der Interaktion im System Boden-Pflanze, und insbesondere der Funktion von Mykorrhizapilzen bei der pflanzlichen Stoffaufnahme, beizutragen. Dabei liegt der Fokus auf den Auswirkungen von Rhizosphärenprozessen auf der Mikroskala auf die Stoffaufnahme eines ganzen Wurzelsystems. Mögliche Anwendungsgebiete reichen von der Pflanzenernährung bis zu der Verwendung von Pflanzen für Phytosanierung. Als Mykorrhiza werden Symbiosen zwischen Pflanzenwurzeln und Bodenpilzen bezeichnet, die im allgemeinen für beide Partner vorteilhaft ist. 80 Prozent aller Landpflanzen bilden solche Mykorrhizen aus. Die externen Pilzfäden bieten einen zusätzlichen Pfad für Nähr- und andere im Boden gelöste Stoffe in die Wurzel. Das kann sich unter anderem positiv auf die Pflanzenernährung auswirken. In diesem Projekt werden wir detaillierte mechanistische und hierarchische Modelle für Boden-Pflanze Interaktionen entwickeln, und zwar basierend auf Daten, die in der Literatur vorhanden sind, beziehungsweise auf der Expertise von Experten, die an diesem Projekt beteiligt sind. Wir berücksichtigen drei Skalenniveaus: das eines Pilzfadens im Boden, das einer Wurzel, die von einem Pilzgeflecht umgeben ist, und das einer ganzen Pflanze. Auf dem Skalenniveau des Pilzfadens beschreiben wir mit einem Modell, wie Stoffe aus dem Boden aufgenommen werden und was dann im Inneren des Pilzes damit passiert. Die meisten Literaturdaten dazu, und damit auch unsere Modellbildung, beschäftigen sich mit dem Nährstoff Phosphor und arbuskulären Mykorrhizen. Auf dem Skalenniveau einer Einzelwurzel beschäftigen wir uns mit Rhizosphärenprozessen wie Wurzelexsudation, Kohlenstoff- und Mikrobielle Dynamik in Wurzelnähe. Außerdem wird der Beitrag des Pilzmycels zur Stoffaufnahme der Wurzel berechnet. Auf dem Skalenniveau der ganzen Pflanze werden wir dazu noch die Konkurrenz zwischen mehreren mykorrhizierten Wurzeln beschreiben. Außerdem gehen wir der Frage nach, wie sich die Erhaltung eines Pilzgeflechts im Vergleich zur Exsudation von Nährstoffmobilisierenden Stoffen auswirkt. Die Informationen eines Skalenniveaus werden durch Homogenisierungsmethoden in die höheren Skalenniveaus transferiert. Literatur-Screening, Datenaufbereitung und -analyse bieten die Basis für das Quantifizieren der Modellprozesse und Parameter als auch für die Validierung. Die numerischen Berechnungen werden mit MATLAB 7.1.0 durchgeführt, die numerische Lösung partieller Differentialgleichungen mit Hilfe des Softwarepakets FEMLAB 3.2. Die Ergebnisse dieses Projekts werden zu effizienteren Pflanzenbau- und Phytosanierungsstrategien als auch zum Design neuer Experimente beitragen.

1